Infinite groups: Sheet 1

September 17, 2025

Section A

- Exercise 1. (i) If $N \unlhd H$ and $H \unlhd G$, with N of finite index in H and H finitely generated, then N contains a finite-index subgroup K which is normal in G
 - (ii) Show that if H is characteristic in G then we can take K to be characteristic in G as well.

Solution.

- (i) This is Lemma 2.7 of the revision notes.
- (ii) Since H is finitely generated it has fintely many subgroups of index |H:N| in H (see prop. 2.8 of the revision notes). If we denote the intersection of all these subgroups by K then clearly K is of finite index in H and as H is characteristic in G, K is also caracteristic in G.

Exercise 2. Find the commutator subgroup and the abelianization for the finite dihedral group D_{2n} and for the infinite dihedral group D_{∞} .

Solution. If we denote as usual by r the rotation generator of D_{2n} and by s the reflection we have $srs^{-1} = r^{-1}$ and $[s,r] = r^{-2}$. It follows that $\langle r^2 \rangle$ is contained in the commutator subgroup of D_{2n} . By calculating explicitly all commutators $[sr^i, sr^j]$ we see that in fact the commutator subgroup is $\langle r^2 \rangle$. So if n is odd the commutator subgroup is $\langle r \rangle$ and the abelianization is \mathbb{Z}_2 . If n is even the commutator subgroup is $\langle r^2 \rangle$ and the abelianization is $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

Similarly for D_{∞} we have that commutator subgroup is $\langle r^2 \rangle$ and the abelianization is $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

Exercise 3. Show that

- (i) The dihedral group D_{2n} is isomorphic to a semi-direct product $\mathbb{Z}_n \rtimes_{\varphi} \mathbb{Z}_2$ and the infinite dihedral group D_{∞} is isomorphic to a semi-direct product $\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}_2$.
- (ii) The permutation group S_n is the semidirect product of A_n and $\mathbb{Z}_2 = \{ \mathrm{Id}, (12) \}.$

Solution.

(i) Note that \mathbb{Z}_n, \mathbb{Z} are normal subgroups of D_{2n}, D_{∞} respectively. So we have the short exact sequences $0 \to \mathbb{Z}_n \to D_{2n} \to \mathbb{Z}_2 \to 0$ and $0 \to \mathbb{Z} \to D_{\infty} \to \mathbb{Z}_2 \to 0$.

Both these sequences split: simply map the generator of \mathbb{Z}_2 to the reflection generator of the dihedral group.

Hence these two groups split as semi-direct products (see Revision notes).

- (ii) Note the sign of a permutation gives a homomorphism $\sigma: S_n \to \mathbb{Z}_2$ with kernel A_n . So we have the split short exact sequence
- $1 \to A_n \to S_n \to \mathbb{Z}_2 \to 1$ and S_n splits as a semidirect product of A_n and $\mathbb{Z}_2 = \{ \mathrm{Id}, (12) \}.$
- Exercise 4. (i) Show that the torsion-free abelian group \mathbb{Q} is not a free abelian group.
- (ii) Let $0 \to A \to B \xrightarrow{r} C \to 0$ be a short exact sequence of abelian groups, where C is free abelian. Then the sequence splits and $B \cong A \oplus C$.
- (iii) Let F be a free abelian group of rank n and let $B = \{x_1, \ldots, x_n\}$ be a generating set of F. Show that B is a basis of F. Conclude that n equals the minimal cardinality of all generating sets of F.
- **Solution.** (i) Assume that \mathbb{Q} is free abelian and let x = m/n, y = p/q be two elements of a basis with $m, n, p, q \in \mathbb{Z}$. Then pnx mqy = 0 which is a contradiction as pnx mqy is a non-trivial element of $\langle x \rangle \oplus \langle y \rangle$.
 - (ii) This is Corollary 2.24 of the revision notes.
- (iii) Let $Y = \{y_1, \ldots, y_n\}$ be a basis of of F. By the universal property of free abelian groups the map $f: Y \to B$, $f(y_i) = x_i$ (i = 1, ..., n) extends to a homomorphism $f: F \to F$. f is surjective since B is a generating set. Let N be the kernel of f. By theorem 2.26 of the revision notes N is free abelian. So by part (ii) $F \cong F \oplus N$. By comparing the rank of the two sides we have that N = 0 and f is an isomorphism, so B is a basis of F.