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Next term...

Case study in mathematical modelling

Work in a group of around 5-6 students on a modelling research project
[last year: cycle races, Alzheimer’s modelling etc...]

Work on project throughout Hilary term

Deliver group presentation (20% of final mark)

Write individual project report (80% of final mark)



Now!

Today: 2-hour introduction to infectious disease modelling

Tomorrow: Assign groups and start infectious disease modelling “mini project”

Next Monday 2-4: Work on group mini project, prepare slides

Next Tuesday 3-4: Report back on your mini project (3-5 slides per group; please email

slides to me by noon next Tuesday — robin.thompson@maths.ox.ac.uk)

This is an opportunity to practise group work (not assessed)
In the next 2 hours, | will give you some suggestions for possible mini projects to do over

the next week: your group can do one of these, all of these, or something different!

Have fun!!!



Modelling for real-time outbreak response
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Outline

1. Introduction to common infectious disease outbreak models
* Compartmental models
* Renewal equation models
2. Early in an outbreak: Assessing the risk of major epidemics
* Estimating the probability of a major epidemic [stochastic compartmental model]
* Possible mini project
3. During an epidemic: Assessing the effectiveness of current interventions
* Inferring current transmissibility [renewal equation model]

* Possible mini project

4. At the end of an epidemic: Assessing when the epidemic is over

* End-of-outbreak probability estimation [compartmental model and renewal equation model]

* Possible mini project



Number of cases

Outbreak waves have a characteristic “shape”
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Compartmental models: SIR model

O~ —®

Boarding school flu epidemic
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Compartmental models: SIR model

O~ —®

Boarding school flu epidemic

§ ~|= Infected
—=— SIR model
d_S = —BSI - | Involves assumptions
de E (homogeneous mixing, infected individuals
dJ % S - immediately infectious, etc)
—=BSI —ul :
dt b s g
g But... not bad for a two-parameter model
dr _ :
—_— = u 27
dt

Time (Days)



Compartmental models: SIR model
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Compartmental models: Extensions to SIR model
1. Infectious disease outbreaks are inherently random
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Compartmental models: Extensions to SIR model
1. Infectious disease outbreaks are inherently random
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Compartmental models: Extensions to SIR model
1. Infectious disease outbreaks are inherently random
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Compartmental models: Extensions to SIR model
1. Infectious disease outbreaks are inherently random

O——D—®

How to run one simulation of stochastic SIR model (using Gillespie direct method):

- Assume that events occur at exponentially distributed time intervals. The time until the next event
therefore follows an exponential distribution with rate parameter SSI + ul.

- The probability that the next event is an infection is:

BSI
BSI+ul’

ul
BSI+ul

Prob(infection) = Similarly, Prob(removal) =



Compartmental models: Extensions to SIR model
1. Infectious disease outbreaks are inherently random

O——D—®

How to run one simulation of stochastic SIR model (using Gillespie direct method):

1. Initialise the number of individuals in each of the S, / and R classes in the model, and set the outbreak time t = 0.

2. Steps 2-4 should be repeated while the outbreak is still ongoing (i.e. / > 0). First calculate two random numbersry, r,
each uniformly distributed in (0,1).

3. Calculate the time of the next event from an exponential distribution. Set

t=t+ — ln(l—).
LIS+ ul 12

4. Choose whether the next event is an infection event or removal event. If
IS

D P ——
IS + ul
then the next event is an infection event, and sosetS=S—1and/=/+ 1. Otherwiseset/=/—1land R=R+ 1.

]



Compartmental models: Extensions to SIR model
2. Different epidemiology
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Delay between infection and becoming infectious:
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Compartmental models: Extensions to SIR model
2. Different epidemiology

O——D—®

Delay between infection and becoming infectious:
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Compartmental models: Extensions to SIR model

3. Age structure
UK: all qontaqts
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basic reproduction

R, =

Compartmental models: Extensions to SIR model
4. Asymptomatic transmission
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Compartmental models: Extensions to SIR model
5. Spatial structure

Region 1 Region 2
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Compartmental models: Testing interventions

Models can be used to test counterfactual (“what if”) interventions
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ICU bed demand

Compartmental models: Testing interventions

Interventions with increasing complexity can be tested

Reduce R, periodically via social
distancing to keep healthcare
demand “manageable”

ICU bed demand

J J\j\f\f\g/\)\

Adapted from research on COVID-
19 by Imperial and LSHTM



Renewal equation models

Avoid need to divide hosts
into compartments; simply
count infections



Renewal equation models

Avoid need to divide hosts Cnow = o03-
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Incidence

-

Can account for super-

Renewal equation models

spreading events
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Renewal equation models

Commonly used to infer R;
(more later in talk)
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Outline

2. Early in an outbreak: Assessing the risk of major epidemics
* Estimating the probability of a major epidemic [stochastic compartmental model]
* Possible mini project

3. During an epidemic: Assessing the effectiveness of current interventions
* Inferring current transmissibility [renewal equation model]

* Possible mini project

4. At the end of an epidemic: Assessing when the epidemic is over

* End-of-outbreak probability estimation [compartmental model and renewal equation model]

* Possible mini project



Early in an outbreak
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Assessing the risk of a major epidemic
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Assessing the risk of a major epidemic
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Assessing the risk of a major epidemic
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Assessing the risk of a major epidemic

O~ —®

Susceptible

Epidemic Risk: the probability that an imported
case leads to a major epidemic

If ER = 0; a major epidemic will not occur
If ER = 1; a major epidemic will definitely occur

Infected

Number of infected individuals

Ul
o
o

D
o
o

300f

200f

100}

Removed

50 150
Time (days)

200



Assessing the risk of a major epidemic

()—»—()——(n)

Susceptible Infected Removed

Assume we start with one infected individual

Denote g, = Prob(no major epidemic starting from i infected
individuals)

Want to find 1 — g,

Contents lists available at ScienceDirect A
T_léeioreﬁca.w
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A practical guide to mathematical methods for estimating infectious di el

outbreak risks

. Southall ", Z. Ogi-Gittins ™", Kaye""’, W.S. Hart©, F.A. Lovell-Read ©,
R.N. Thompson *>



Assessing the risk of a major epidemic

O~ —®

Susceptible Infected Removed

Two possibilities for the next event: infection or recovery

q; = PP(infection) X g, + P(recovery) X g,



Assessing the risk of a major epidemic

O~ —®

Susceptible Infected Removed

Two possibilities for the next event: infection or recovery

g, ~ P(infection) X g{* + P(recovery)



Assessing the risk of a major epidemic

O~ —®

Susceptible Infected Removed

Two possibilities for the next event: infection or recovery

g, ~ P(infection) X g{* + P(recovery)

g =— or 1 ER=1—-q,=1——



INTERFACE Reducing transmission in multiple
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Heterogeneity in reporting rates

q;; = Prob(no major epidemic | i fast reporters, j slow reporters)

_ap (1 a)p y®
q1,0 _B+y(1) q2,0 t B+yD d1,1 [>’+y(1) qo,0

af 1-a)p y®
qo1 = B+70 911t B +70 Qo2 T B +70 90,0.

Journal of
Clinical Medicine

Article

Novel Coronavirus Outbreak in Wuhan, China, 2020:
Intense Surveillance Is Vital for Preventing Sustained
Transmission in New Locations

Robin N. Thompson 12



Age structure

dijk,.. = Prob(no major epidemic | i in age group 1, j in age group 2, k in age group 3, ....)

Probability of major outbreak: UK
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Time-dependence

q(1,t) = q(2,t + A)B(E)NAL + q(0, t + At)uAt + q(1,t + At)(1 — B(t)NAt — uAt).

— Analytic
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Time-dependence

q(1,0) = q(2,t + ADB(E)NAE + q(0, t + A)uAt + q(1, t + AD)(1 — B(t)NAE — uAb).
da, () = —B()q1(t)* + (B(t) + u(t))q,(t) — u(t).

dt

— Analytic
© Simulations
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Outbreak risk
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Assessing Epidemic Risks — Summary

Stochastic compartmental . L ) ]
Epidemic Risk estimates Estimates can be extended to
models can be used to .
can be generated include a range of features,

estimate the Epidemic
Risk (the probability that
an imported case leads to

analytically, informed by including heterogeneity in
using outbreak data, and

adjusted in real-time

reporting rates, age structure

a major epidemic) and temporal heterogeneity



Possible mini project

1. Using mathematical models to estimate outbreak risks

- Read “A practical guide to mathematical models for estimating infectious disease outbreak
risks” by Southall et al.

- Derive the probability of a major outbreak starting from 1 infected individual for the
stochastic SIR model (the “theoretical” result).

- Simulate the stochastic SIR model lots of times (each time starting from 1 infected
individual), and calculate the proportion of simulations that are “major outbreaks” according
to a definition of your choice (e.g. total number of infections exceeding 50 before disease
dies out and | hits 0).

- Consider different possible definitions of a major outbreak, and investigate when the
simulation-based probability of a major outbreak is matched by the theoretical value.

Possible definitions include: total infections exceeding x, maximum concurrent / exceeding x, outbreak
lasting for more than x days, etc....
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Possible mini project

2. Using mathematical models to estimate outbreak risks

- Read “A practical guide to mathematical models for estimating infectious disease outbreak
risks” by Southall et al.

- Derive the probability of a major outbreak starting from 1 infected for the stochastic SIR
model. Test against model simulations (proportion of simulations in which at least 50
infections occur, say). Plot the probability of a major outbreak as a function of R,.

- Derive the probability of a major outbreak for another model of your choice — for example,

the children-adults model in Southall et al. (section 4.2 of that paper; can you reproduce Fig
47?).

- Longer term extension: Consider the probability of a major outbreak for a model with
multiple age groups (derive equations, solve them numerically). Contact matrices that can be
used to inform infection rates between ages are available for different countries in the
supplementary material of “Projecting social contact matrices in 152 countries using contact
surveys and demographic data” by Prem et al.




Outline

3. During an epidemic: Assessing the effectiveness of current interventions
* Inferring current transmissibility [renewal equation model]

* Possible mini project

4. At the end of an epidemic: Assessing when the epidemic is over

* End-of-outbreak probability estimation [compartmental model and renewal equation model]

* Possible mini project



During an outbreak
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Two important quantities

Definition

reproduction number

Time dependent /
Ry \
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Generation time/ E; 0.2
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Renewal equation model

Epidemic curve

I, cases
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Epidemic curve
I, cases

Incidence
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Bayes'rule: P(A|B) =
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Corietal.,, Am. J. Epi., 2013



Epidemic curve
I, cases

Incidence

Bayes'rule: P(A|B) = P(B}L?B);)(A)

P(It =X | Rt' {WS}' {10'11'12' "'!It—l}) ‘ P(Rt |It =X, {WS}' {10111'12' "'iIt—l})

Generates estimates of R; that are highly sensitive to randomness in I;
Solution: Consider constant R; over a window {t — 7,t — 7+1,... t}

Corietal.,, Am. J. Epi., 2013



Epidemic curve
I, cases
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Epidemic curve
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Special case: If the prior for R; is a gamma distribution with shape parameter a and rate parameter 3, then the

posterior for R; is also a gamma distribution with
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Corietal.,, Am. J. Epi., 2013
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Uncertainty in the serial interval, imported cases

Time infector Time recipient
Case ID symptomatic symptomatic

(range, days) (range, days)

1 1-4 6-7

2 2-4 5-8

3 5-8 10-14

4 5-6 6-7

5 8-10 14-19

6 9-12 13-16

Analysis step 1:
Estimate the serial
interval

E.g.: Gamma (G), Offset gamma (off1G),
Weibull (W), Offset weibull (off1W),
Log-normal (L) or Offset log-normal (off1L)
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Analysis step 2:
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Step 1 of at most 9. View the interactive
documentation for this state.

Incidence Data

Do you want to use pre-loaded incidence
time series data or upload your own?

© Pre-loaded
C Own data

Thompson et al., Epidemics, 2019
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Temporally aggregated data

INPUTS OUTPUT
Input 1: Disease incidence Output: Estimated R;
time series D
=
2.5
30 2
s 2
g Y 15
g10 g g o.;
Data are often not 83 oL
. Time (weeks) 2 ‘E. Time (weeks)
reported daily .
Input 2: Serial interval
t distribution '
E(I¢ | Ry (W}, {lo, 1, I oo, Ii—4}) = th I sws 1
s=1 2 Weekly discretisation
% 2 of serial interval
0.5 | e e e e
25
00 1 2 3
Serial interval
(weeks)

ELSEVIER journal homepage: vnw.elsevier comocatelepidemics

A simulation-based approach for estimating the time-dependent
ion number from disease incidence time

. Nash®, J. Polonsky, A. Cori®, EM. Hill»", R.

oy 4 70, 0K

contcr10 8z, U




Temporally aggregated data
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Temporally aggregated data
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Warning: model inputs may change during an epidemic
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Estimating changes in pathogen transmissibility — Summary

Bayesian inference
methods can be used to
estimate reproduction

numbers in real-time
during epidemics; these

approaches were used
worldwide for COVID-19

Population heterogeneity
is important (e.g.
imported vs local cases)
and methods can be
adapted for use with
temporally aggregated
data

Care is needed to ensure that
model inputs are accurate



Possible mini project

3. Using mathematical models to infer changes in disease transmission during an outbreak

- Write code that takes the following as inputs: i) disease incidence time series; ii) discrete serial
interval distribution; iii) parameters of the (gamma distributed) prior for R;; iv) window length t;
and generates a plot of R; vs t (for t > 1) including 95% credible intervals.

- Download data for i and ii from EpiEstim App (https://shiny.dide.imperial.ac.uk/epiestim/).

- Compare results generated by your code from results generated using EpiEstim App
(if you prefer, rather than using the app you could use the R software package EpiEstim and use in-
built datasets from that package).

- Find a disease dataset online and apply your code to a new dataset.

- Longer term project. Extend the model to differentiate between imported cases and local cases — as

described in “Improved inference of time-varying reproduction numbers during infectious disease
outbreaks” by Thompson et al.

Key references:

- “New framework and software to estimate time-varying reproduction numbers during epidemics” by
Cori et al.

- “Improved inference of time-varying reproduction numbers during infectious disease outbreaks” by
Thompson et al.



https://shiny.dide.imperial.ac.uk/epiestim/
https://shiny.dide.imperial.ac.uk/epiestim/

Outline

4. At the end of an epidemic: Assessing when the epidemic is over

* End-of-outbreak probability estimation [compartmental model and renewal equation model]

* Possible mini project



At the end of an outbreak




When can outbreaks be declared over?

€he New York Eimes

Sierra Leone Declared Free of Ebola

Transmissions

'% Share full article A) D

People in Freetown, Sierra Leone, on Saturday, after the country passed 42 days
without an Ebola case. Aurelie Marrier D'Unienvil/Associated Press

Uganda declares end to latest ebola
outbreak

By Elias Biryabarema

Reuters

April 26, 2025 8:30 AM GMT+1 - Updated 4 days ago

WHO recommended criteria for declaring the end of the Ebola virus disease outbreak

Technical information note - updated 4 March 2020

The acute phase of the outbreak is defined by the propagation of the virus within communities through
transmission of the virus from one person to another. This phase will be considered to have been
interrupted when no confirmed or probable Ebola virus disease (EVD) cases are detected for a period
of 42 days (i.e. twice the maximum incubation period for Ebola infections) since the last potential
exposure to the last case occurred.



When can outbreaks be declared over?
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Research

Check for
updates.

Rigorous surveillance is necessary for high
confidence in end-of-outbreak
declarations for Ebola and other infectious
diseases

Robin N. Thompson'23, Oliver W. Morgan* and Katri Jalava®




When can outbreaks be declared over?
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When can outbreaks be declared over?
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When can outbreaks be declared over?

Initial analysis: T
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When can outbreaks be declared over?
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When can outbreaks be declared over?

cases

2 m 1.00
o
=
0.75 &,
=
=3
1 0.50 g
0.25 &
2
3
0 0
1 January 10 20 30

date

End-of-outbreak declarations
based solely on the time
since the previous observed
case fail to reflect outbreak-
specific effects on the end-
of-outbreak probability

IDEA: Take a specific
disease incidence time
series and calculate:

P(no future cases)



When can outbreaks be declared over?
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When can outbreaks be declared over?
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When can outbreaks be declared over?

INPUT 1: Case data INPUT 2: Serial interval

Cases

Probability

15t January [; :‘r«e 200
\OUTPUT: End-of-outbreak probability/

m
Prob(outbreak over on day t) = l—[(l —po(1—F(t— ti)))(“at).

g
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INPUT 3: Offspring distribution  |NPUT 4: Transmission tree

i=1

Under this transmission
model, the end-of-outbreak
probability can be calculated
exactly if the outbreak
transmission tree is known

INTERFACE Exact calculation of end-of-outbreak

o _ probabilities using contact tracing data
royalsocietypublishing.org/journal/rsif

N. V. Bradbury'?", W. S. Hart*", F. A. Lovell-Read?, J. A. Polonsky* and
R. N. Thompson®
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When can outbreaks be declared over?
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When can outbreaks be declared over?

Ebola in DRC (2017)

Nipah in Bangladesh (2004)
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Problem: Transmission tree is often unknown...

Exact calculation of end-of-outbreak
probabilities using contact tracing data
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When can outbreaks be declared over?

If the transmission tree is unknown, then the P(no future cases) =
end-of-outbreak probability can be considering 2.; P(no future cases | transmission tree i) X
“all possible transmission trees”: P(transmission tree i)
A B
1 - 1.0 7 -
s — MCMC
: 6 -
-0.8
z s z
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Ho§ 2y 1 -
— mcMc | i [02 s o2
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Optimizing the timing of an end-of-outbreak declaration
Hart et al.



When can outbreaks be declared over?

-  WHO declares Ebola outbreaks over after 42 “case-free” days

- Simple rules of thumb for end-of-outbreak declarations can be tested using repeated model
simulation (of e.g. stochastic compartmental models) — but these are not “outbreak specific”

- Under a branching process model, Nishiura et al. derived an approximation to the end-of-outbreak
probability

- The end-of-outbreak probability can be calculated exactly under the same model, if the
transmission tree is known (Bradbury et al.)

- If the transmission tree is not known, an unbiased estimate of the end-of-outbreak probability can
be calculated by enumerating over all possible transmission trees (or using MCMC to estimate the
transmission tree; Hart et al.)



An alternative (easier) modelling framework

Instead of using
compartmental models or
individual-based branching
processes, an alternative

modelling framework
involves renewal equations

[same model as described
earlier, but assuming
constant R]
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An alternative (easier) modelling framework

Instead of using End of outbreak probability:

compartmental models or
individual-based branching N ‘5
processes, an alternative [Iexp (—RZIj_sws)
modelling framework =
involves renewal equations

AN

Poisson model

® k
l—[(k+RZs —11j- sWs)

NB model



Case study: Ebola virus disease in DRC
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Case study: Ebola virus disease in DRC
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Case study: Ebola virus disease in DRC
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Effect of under-reporting
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When can outbreaks be declared over?

- Renewal equation models provide a framework for inferring the end-of-outbreak
probability straightforwardly (obtaining outbreak-specific estimates)

- Estimates can be informed by outbreak data and adjusted as additional data arise

- An outbreak can be declared over when the inferred end-of-outbreak probability
falls below a threshold reflecting a policy-makers’ appetite for risk

- Superspreading events can be accounted for by assuming a NB distributed
number of cases each day

- Effective disease surveillance is essential to declare outbreaks over quickly and
accurately following the final case



Possible mini project

4. Using mathematical models to determine when an outbreak is over

Number of infections

Write code that takes the following as inputs: i) a disease incidence time series; ii) a discrete serial
interval distribution; iii) the value of R; iv) (for NB distribution only) the value of k; and generates
estimates of the probability that no cases will occur in future (using the renewal equation method).

0

1

zz ) - Can you reproduce this figure? (for number of cases
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0.6 é&r
i % - Can you apply your methods to other datasets (e.g. the
Zz 2 datasets suggested under project idea 3)? How long is it
I @ necessary to wait to be confident that an outbreak is over

0.1 for different outbreaks/diseases?

Time (t)

Figure 5.5: Calculation of the end-of-outbreak probability using a renewal equation model.
Blue bars represent the number of infections each day, and the red line represents the end-of-
outbhreak probability estimate based on the infections arising prior to the current day. The end-
of-outbreak probability was calculated assuming that R; = 1.2 for all values of ¢t and {ws}iil =
{0.05,0.1,0.2,0.2,0.15,0.1,0.1,0.05,0.02,0.02,0.01} with ws =0 for s > 11.




Summary

- Infectious disease models exist in a range of forms (here: compartmental models
and renewal equations)

- Certain models may be more suitable to answer specific questions
- Compartmental models are flexible and can easily include different epidemiology
- Renewal equations simply track case numbers

- Epidemiological models can be used to answer different questions at different
outbreak stages (e.g., early in an outbreak = assess PMO, middle of an outbreak
= estimate R;, late in outbreak = assess when outbreak has finished).



https://www.maths.ox.ac.uk/groups/mathematical-biology/infectious-disease-modelling

- Assign groups

- Get started on an infectious disease modelling mini project (come up with some
interesting plots to show next week ©)

- Finish project (and 3-5 slides) next Monday
- Report back on Tuesday

Can each group please send 3-5 slides to me by noon next Tuesday?

robin.thompson@maths.ox.ac.uk



