

MSc mathematical modelling (weeks 7-8)

Mathematical modelling of infectious disease outbreaks

Robin Thompson

Associate Professor, Mathematical Institute and St Hilda's College

University of Oxford

Next term...

- Case study in mathematical modelling
- Work in a group of around 5-6 students on a modelling research project [last year: cycle races, Alzheimer's modelling etc...]
- Work on project throughout Hilary term
- Deliver group presentation (20% of final mark)
- Write individual project report (80% of final mark)

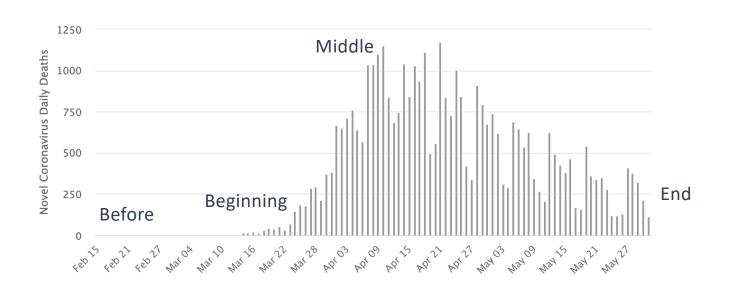
Now!

- Today: 2-hour introduction to infectious disease modelling
- Tomorrow: Assign groups and start infectious disease modelling "mini project"
- Main aim: As a group, put together 2-3 slides about an infectious disease modelling topic (either one of the exercises I will suggest today, or a summary of one of the topics I will explain today)

Now!

- Between tomorrow and next Monday: Please work on your group mini project
- Next Monday 2-4: Extra time to work on group mini project, prepare slides
- Next Tuesday 3-4: Report back on your mini project (2-3 slides per group; please email slides to me by 10am next Tuesday robin.thompson@maths.ox.ac.uk)
- This is an opportunity to practise group work (not assessed)
- Have fun and enjoy working together to create some slides!!!

Modelling for real-time outbreak response



Before

- Where is an outbreak most likely to occur?
- Where should surveillance resources be deployed?

Beginning

- Will initial cases lead to a major epidemic?
- Which interventions reduce the epidemic risk?

Middle

- How effective are current interventions?
- Which interventions optimally balance benefits and costs?

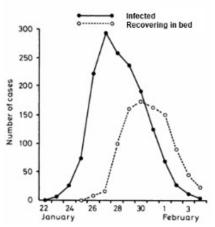
End

- How should interventions be lifted?
- Is the epidemic over?

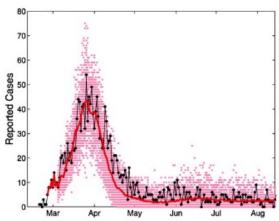
Outline

- 1. Introduction to common infectious disease outbreak models
 - Compartmental models
 - Renewal equation models
- 2. Early in an outbreak: Assessing the risk of major epidemics
 - Estimating the probability of a major epidemic [stochastic compartmental model]
 - Possible mini project
- 3. During an epidemic: Assessing the effectiveness of current interventions
 - Inferring current transmissibility [renewal equation model]
 - Possible mini project
- 4. At the end of an epidemic: Assessing when the epidemic is over
 - End-of-outbreak probability estimation [compartmental model and renewal equation model]
 - Possible mini project

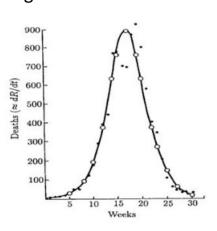
Outbreak waves have a characteristic "shape"



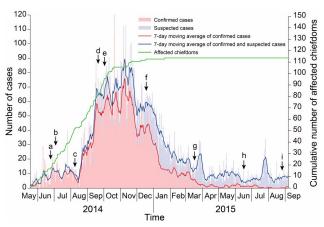
Foot and mouth in the UK 2001



Plague in Mumbai in 1906



Ebola in West Africa in 2014-15

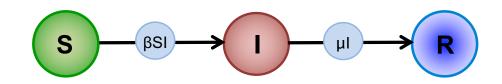


First compartmental models

(early 20th century)

aimed to capture this shape

Compartmental models: SIR model

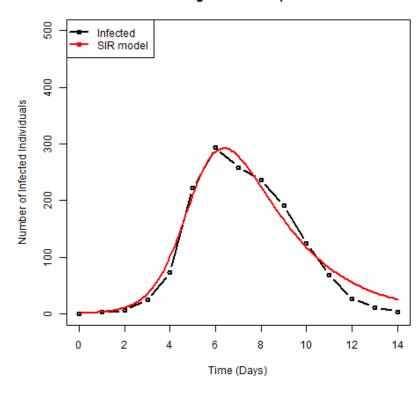


Boarding school flu epidemic

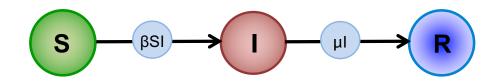
$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = \beta SI - \mu I$$

$$\frac{dR}{dt} = \mu I$$



Compartmental models: SIR model

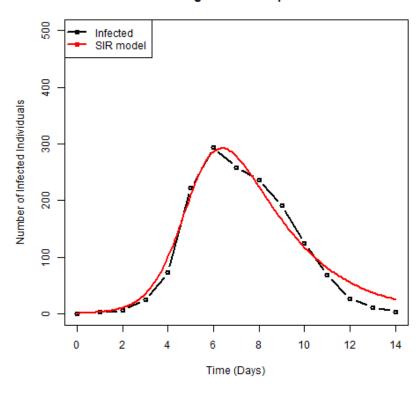


Boarding school flu epidemic

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = \beta SI - \mu I$$

$$\frac{dR}{dt} = \mu I$$



Involves assumptions
(homogeneous mixing, infected individuals immediately infectious, etc)

But... not bad for a two-parameter model

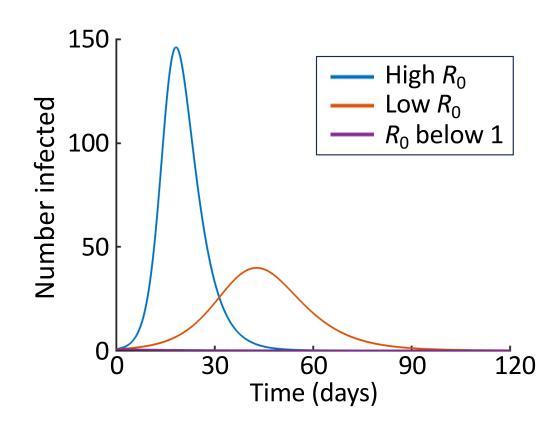
Compartmental models: SIR model

Basic reproduction number, R_0

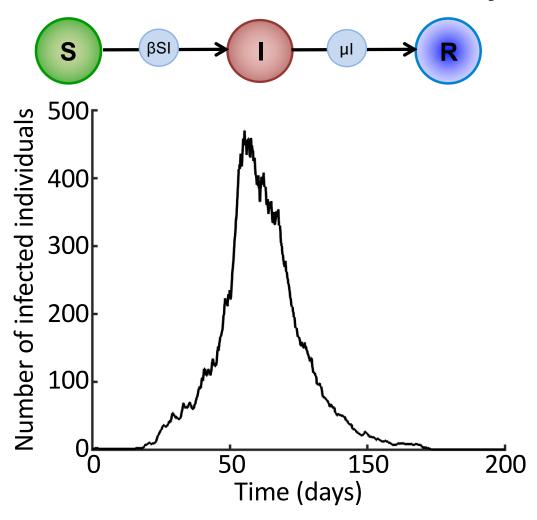
• R_0 – Number of cases of disease arising from each primary case (in an entirely susceptible population)

 R_0 = Infection rate x Duration of infection

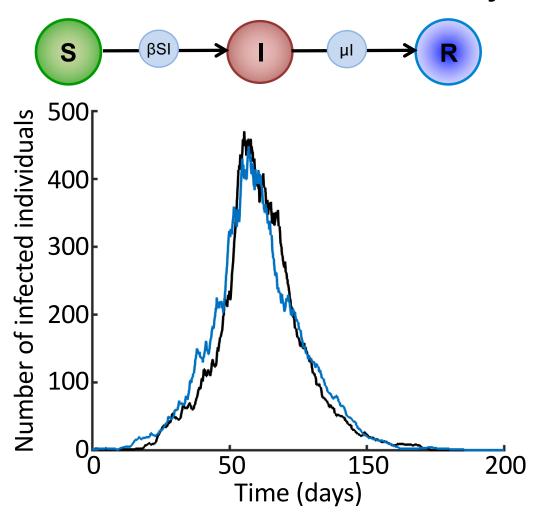
$$R_0 = \beta N \times 1/\mu$$



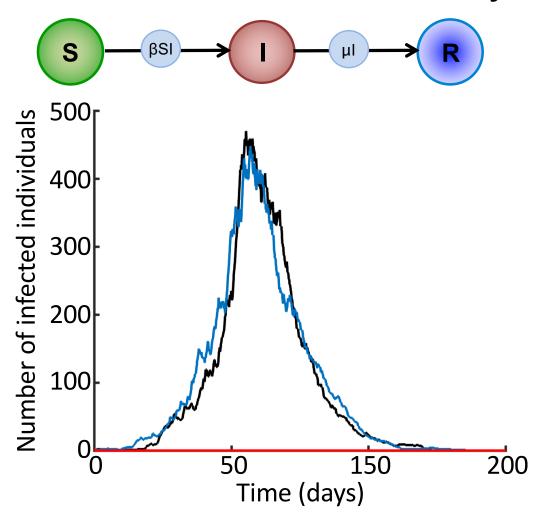
1. Infectious disease outbreaks are inherently random



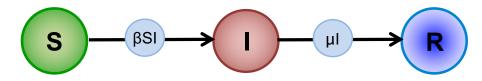
1. Infectious disease outbreaks are inherently random



1. Infectious disease outbreaks are inherently random



1. Infectious disease outbreaks are inherently random



How to run one simulation of stochastic SIR model (using Gillespie direct method):

- Assume that events occur at exponentially distributed time intervals. The time until the next event therefore follows an exponential distribution with rate parameter $\beta SI + \mu I$.
- The probability that the next event is an infection is:

Prob(infection) =
$$\frac{\beta SI}{\beta SI + \mu I}$$
. Similarly, Prob(removal) = $\frac{\mu I}{\beta SI + \mu I}$

1. Infectious disease outbreaks are inherently random



How to run one simulation of stochastic SIR model (using Gillespie direct method):

- 1. Initialise the number of individuals in each of the S, I and R classes in the model, and set the outbreak time t = 0.
- 2. Steps 2-4 should be repeated while the outbreak is still ongoing (i.e. l > 0). First calculate two random numbers r_1 , r_2 each uniformly distributed in (0,1).
- 3. Calculate the time of the next event from an exponential distribution. Set

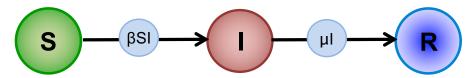
$$t = t + \frac{1}{\beta IS + \mu I} \ln \left(\frac{1}{r_1} \right).$$

4. Choose whether the next event is an infection event or removal event. If

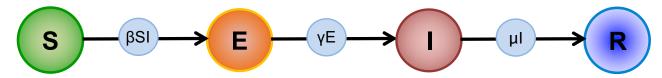
$$r_2 < \frac{\beta IS}{\beta IS + \mu I},$$

then the next event is an infection event, and so set S = S - 1 and I = I + 1. Otherwise set I = I - 1 and R = R + 1.

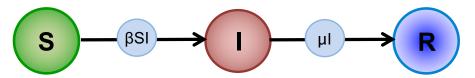
2. Different epidemiology



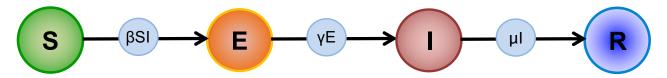
Delay between infection and becoming infectious:



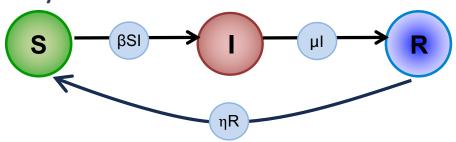
2. Different epidemiology



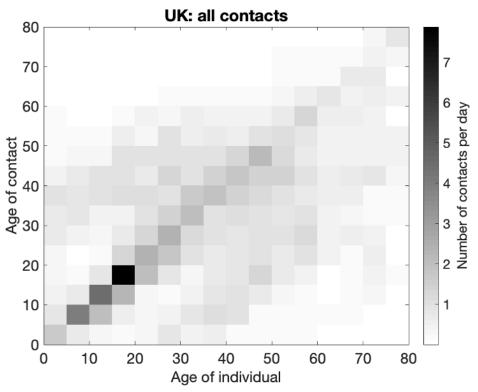
Delay between infection and becoming infectious:

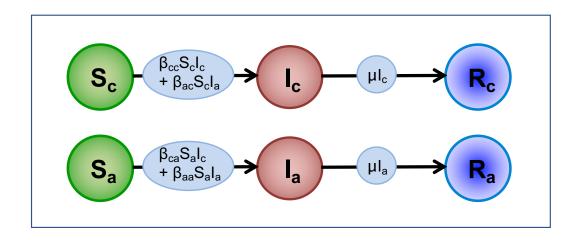


Waning immunity:



3. Age structure





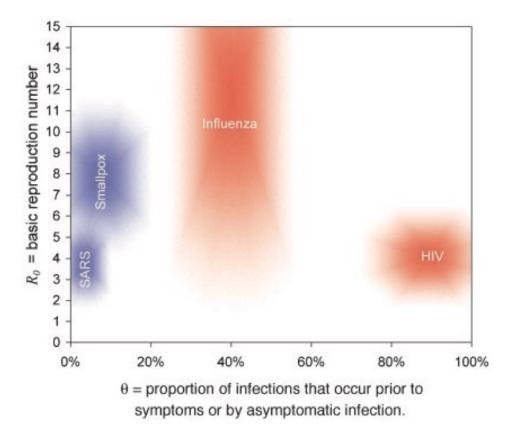
Contents lists available at ScienceDirect

Journal of Theoretical Biology

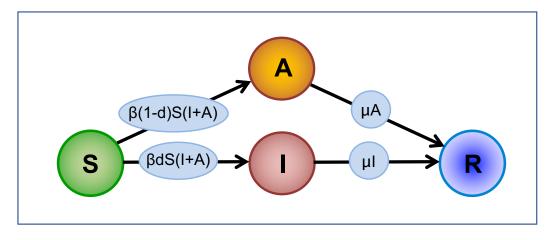
Estimating local outbreak risks and the effects of non-pharmaceutical interventions in age-structured populations: SARS-CoV-2 as a case study

Francesca A. Lovell-Read a,*, Silvia Shen a,b, Robin N. Thompson c,d

4. Asymptomatic transmission

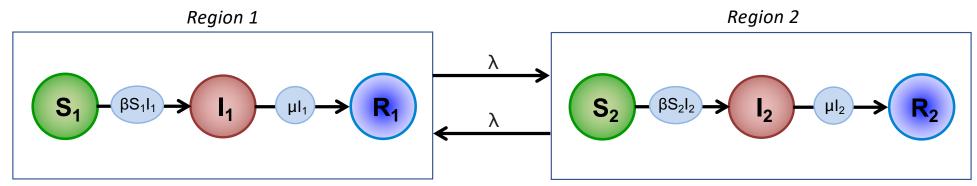


Fraser et al. (PNAS, 2004)



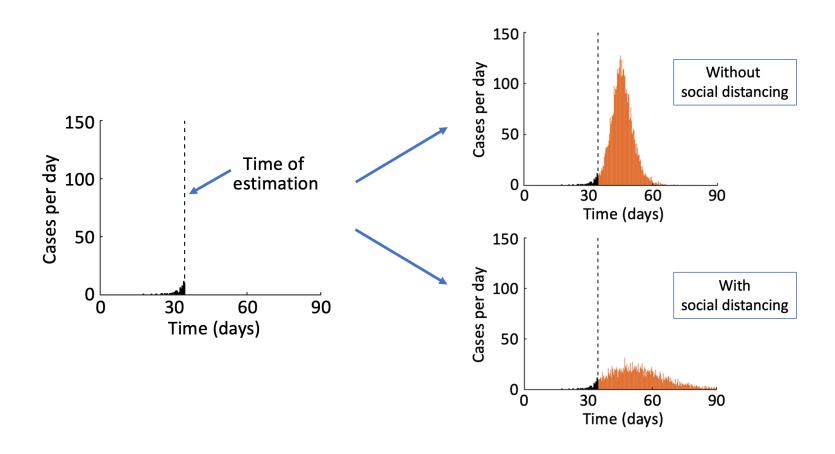
5. Spatial structure





Compartmental models: Testing interventions

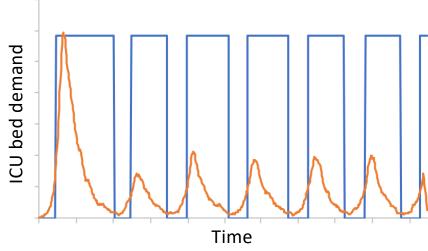
Models can be used to test counterfactual ("what if") interventions

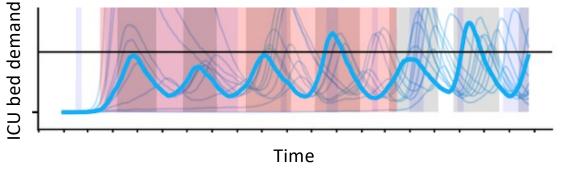


Compartmental models: Testing interventions

Interventions with increasing complexity can be tested

Reduce R₀ periodically via social distancing to keep healthcare demand "manageable"

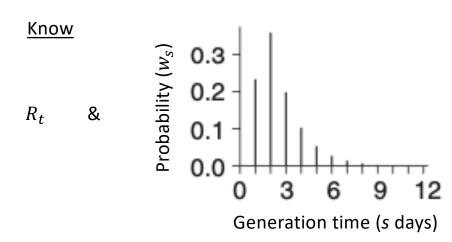


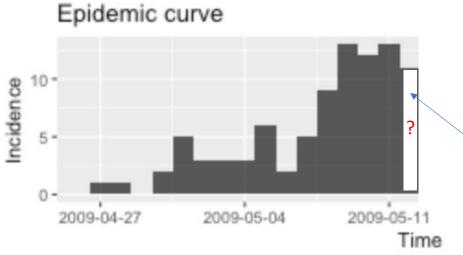


Adapted from research on COVID-19 by Imperial and LSHTM

Avoid need to divide hosts into compartments; simply count infections

Avoid need to divide hosts into compartments; simply count infections

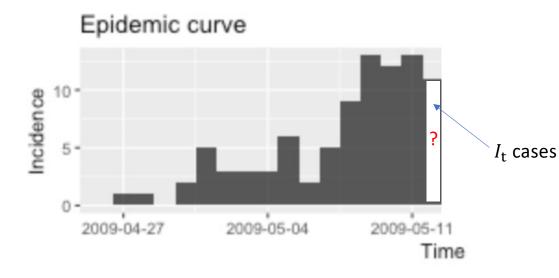


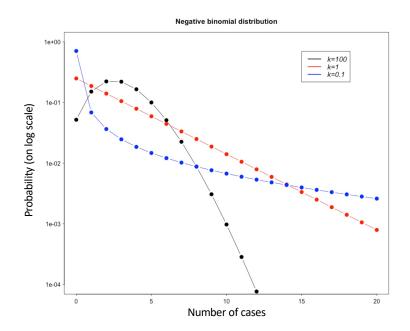


$$E(I_t \mid R_t, \{w_s\}, \{I_0, I_1, I_2, \dots, I_{t-1}\}) = R_t \sum_{s=1}^t I_{t-s} w_s$$

 $I_{\rm t}$ cases \longrightarrow Draw from Poisson distribution or NB distribution

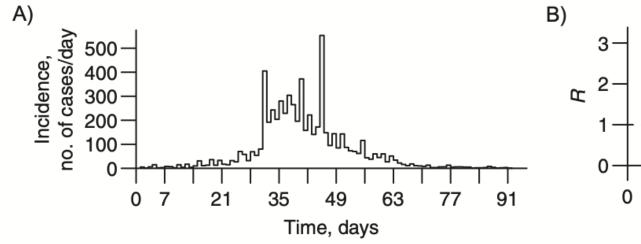
Can account for superspreading events

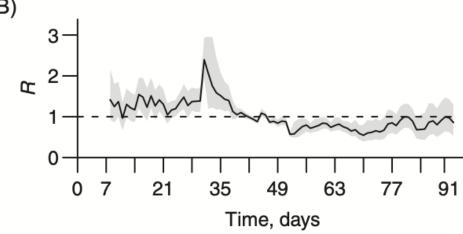




Draw from Poisson distribution or NB distribution

Commonly used to infer R_t (more later in talk)



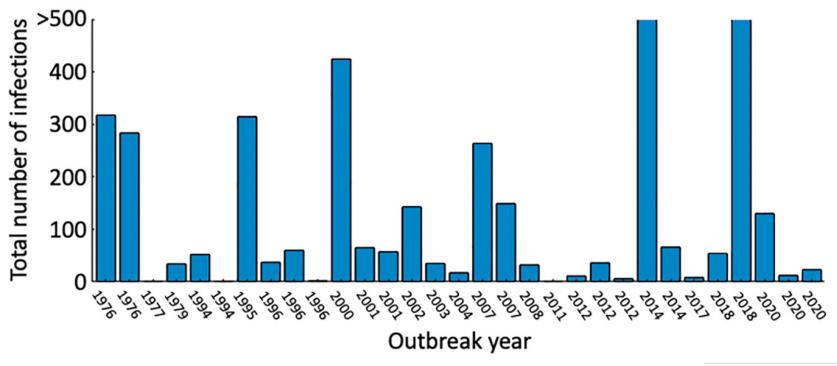


Outline

- 1. Introduction to common infectious disease outbreak models
 - Compartmental models
 - Renewal equation models
- 2. Early in an outbreak: Assessing the risk of major epidemics
 - Estimating the probability of a major epidemic [stochastic compartmental model]
 - Possible mini project
- 3. During an epidemic: Assessing the effectiveness of current interventions
 - Inferring current transmissibility [renewal equation model]
 - Possible mini project
- 4. At the end of an epidemic: Assessing when the epidemic is over
 - End-of-outbreak probability estimation [compartmental model and renewal equation model]
 - Possible mini project

Early in an outbreak

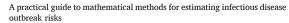
When a pathogen first arrives in a new host population, will initial cases fade out, or will they lead to a major epidemic?

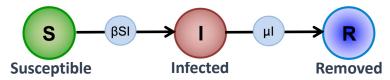


Contents lists available at ScienceDirect

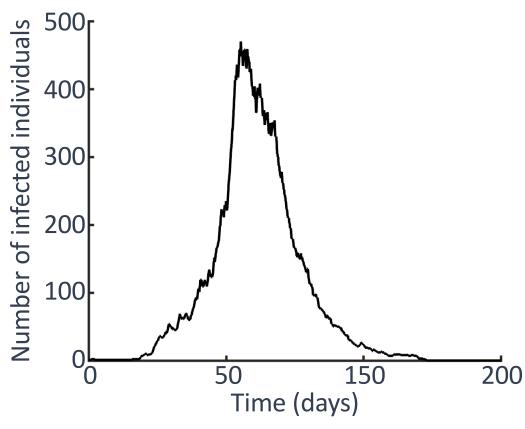
Journal of Theoretical Biology

journal homepage: www.elsevier.com/locate/yjtt

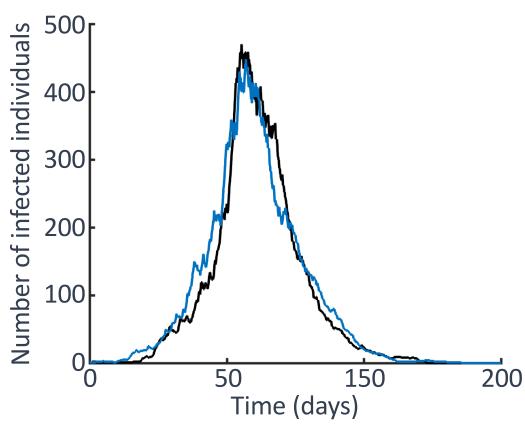




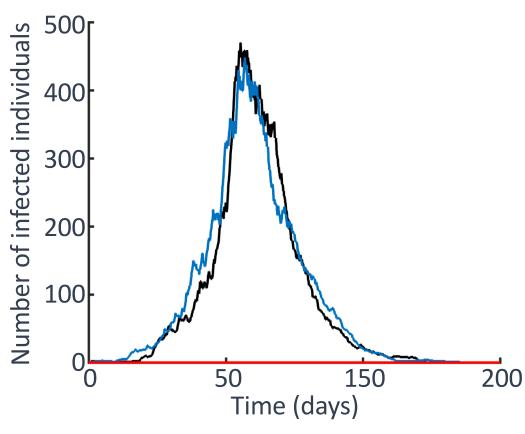
When a pathogen first arrives in a new population, there are two possibilities for what happens next

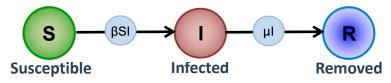


When a pathogen first arrives in a new population, there are two possibilities for what happens next



When a pathogen first arrives in a new population, there are two possibilities for what happens next

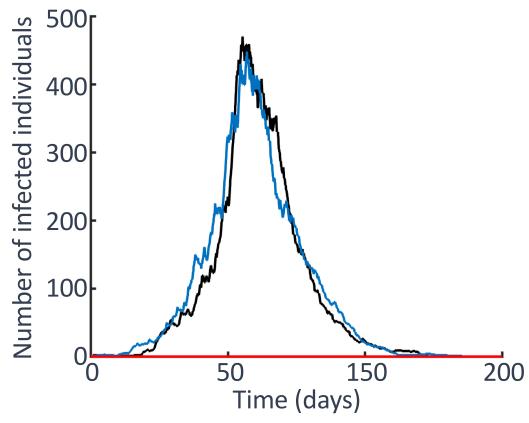


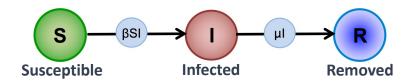


Epidemic Risk: the probability that an imported case leads to a major epidemic

If ER = 0; a major epidemic will not occur

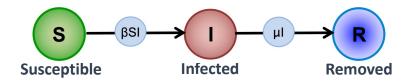
If ER = 1; a major epidemic will definitely occur





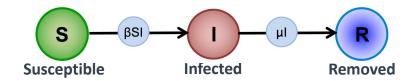
- Assume we start with one infected individual
- Denote q_i = Prob(no major epidemic starting from i infected individuals)
- Want to find $1 q_1$

A practical guide to mathematical methods for estimating infectious disease



Two possibilities for the next event: infection or recovery

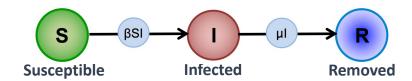
$$q_1 = \mathbb{P}(\text{infection}) \times q_2 + \mathbb{P}(\text{recovery}) \times q_0$$



Two possibilities for the next event: infection or recovery

$$q_1 \approx \mathbb{P}(\text{infection}) \times q_1^2 + \mathbb{P}(\text{recovery})$$

Assessing the risk of a major epidemic



Two possibilities for the next event: infection or recovery

$$q_1 \approx \mathbb{P}(\text{infection}) \times q_1^2 + \mathbb{P}(\text{recovery})$$

$$q_1 = \frac{1}{R_e}$$
 or 1 $ER = 1 - q_1 = 1 - \frac{1}{R_e}$

INTERFACE

royalsocietypublishing.org/journal/rsif

Research

Will an outbreak exceed available resources for control? Estimating the risk from invading pathogens using practical definitions of a severe epidemic

R. N. Thompson^{1,2}, C. A. Gilligan³ and N. J. Cunniffe³

Contents lists available at ScienceDirect

Journal of Theoretical Biology

A practical guide to mathematical methods for estimating infectious disease outbreak risks

Interventions targeting non-symptomatic cases can be important to prevent local outbreaks: SARS-CoV-2 as a case study

Francesca A. Lovell-Read^{1,†}, Sebastian Funk³, Uri Obolski^{4,5}, Christl A. Donnelly^{2,6} and Robin N. Thompson^{1,3,7,8}

Iournal of Theoretical Biology

interventions in age-structured populations: SARS-CoV-2 as a case study Estimating local outbreak risks and the effects of non-pharmaceutical

Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks

Robin N. Thompson**, Christopher A. Gilligan, Nik J. Cunniff

Sustained transmission of Ebola in new locations: more likely than previously thought

> THE LANCET Infectious Diseases

Robin N Thompson, Katri Jalava, *Uri Obolski

INTERFACE

royalsocietypublishing.org/journal/rsif

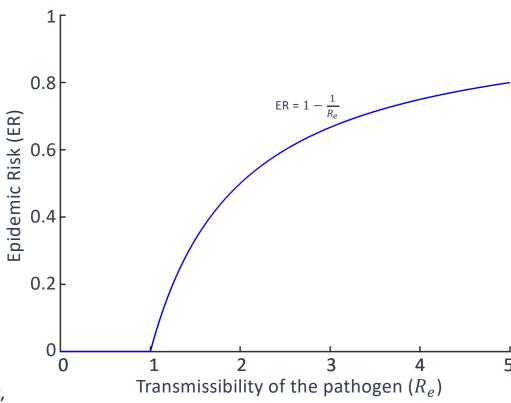
9

Reducing transmission in multiple settings is required to eliminate the risk of major Ebola outbreaks: a mathematical modelling study

Abbie Evans¹, William Hart¹, Stefano Longobardi², Rajat Desikan³, Anna Sher⁴ and Robin Thompson¹

Quantifying infectious disease epidemic risks: A practical approach for seasonal pathogens

Alexander R Kaye , Giorgio Guzzetta, Michael J Tildesley, Robin N Thompson



Heterogeneity in reporting rates

 $q_{i,j} = \text{Prob}(\text{no major epidemic} \mid i \text{ fast reporters}, j \text{ slow reporters})$

$$q_{1,0} = \frac{\alpha\beta}{\beta + \gamma^{(1)}} q_{2,0} + \frac{(1-\alpha)\beta}{\beta + \gamma^{(1)}} q_{1,1} + \frac{\gamma^{(1)}}{\beta + \gamma^{(1)}} q_{0,0},$$

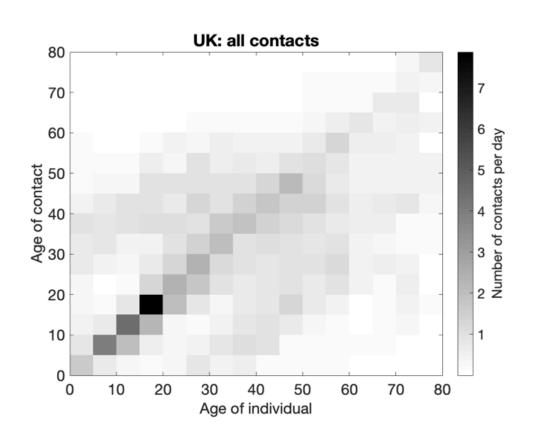
$$q_{0,1} = \frac{\alpha\beta}{\beta + \gamma^{(2)}} q_{1,1} + \frac{(1 - \alpha)\beta}{\beta + \gamma^{(2)}} q_{0,2} + \frac{\gamma^{(2)}}{\beta + \gamma^{(2)}} q_{0,0}.$$

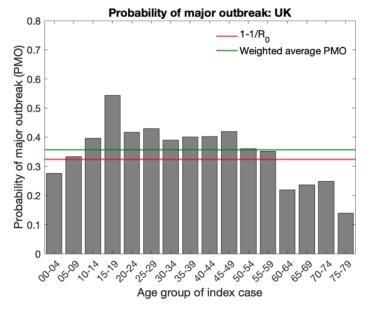
Arti

Novel Coronavirus Outbreak in Wuhan, China, 2020: Intense Surveillance Is Vital for Preventing Sustained Transmission in New Locations

Age structure

 $q_{i,j,k,...}$ = Prob(no major epidemic | i in age group 1, j in age group 2, k in age group 3,)



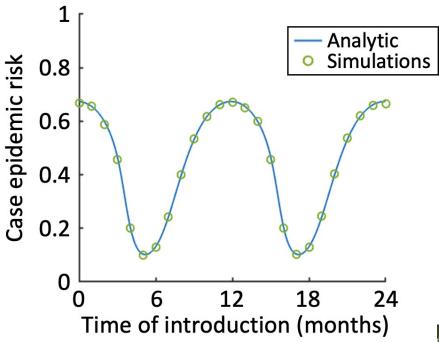


Estimating local outbreak risks and the effects of non-pharmaceutical interventions in age-structured populations: SARS-CoV-2 as a case study

Francesca A. Lovell-Read a,*, Silvia Shen a,b, Robin N. Thompson c,d

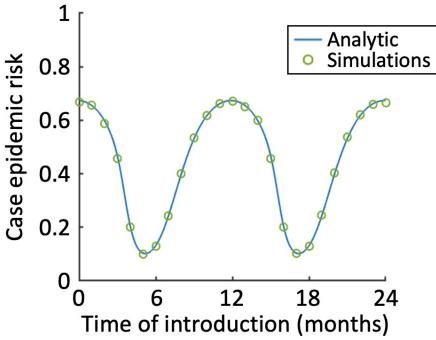
Time-dependence

$$q(1,t) = q(2,t+\Delta t)\beta(t)N\Delta t + q(0,t+\Delta t)\mu\Delta t + q(1,t+\Delta t)(1-\beta(t)N\Delta t - \mu\Delta t).$$

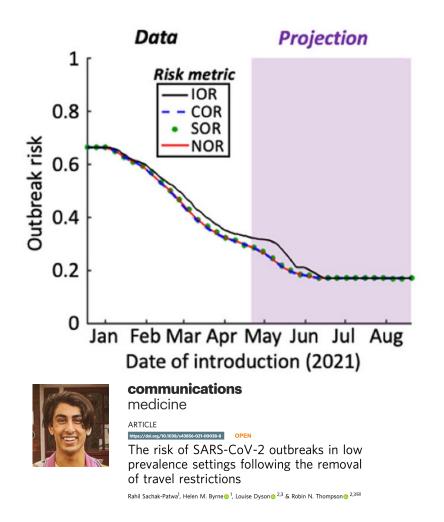


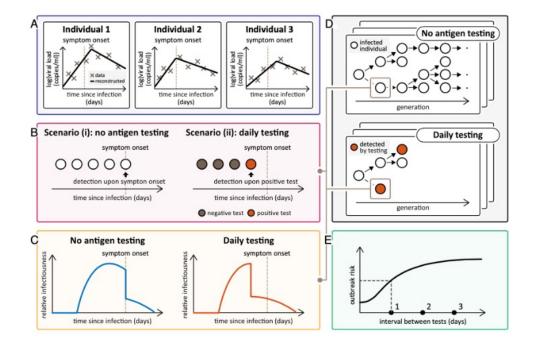
Time-dependence

$$\begin{split} q(1,t) &= q(2,t+\Delta t)\beta(t)N\Delta t + q(0,t+\Delta t)\mu\Delta t + q(1,t+\Delta t)(1-\beta(t)N\Delta t - \mu\Delta t). \\ &\frac{\mathrm{d}q_1(t)}{\mathrm{d}t} = -\beta(t)q_1(t)^2 + (\beta(t)+\mu(t))q_1(t) - \mu(t). \end{split}$$



Other factors (vaccination, within-host dynamics)





PNAS

RESEARCH ARTICLE BIOPHYSICS AND COMPUTATIONAL BIOLOGY APPLIED MATHEMATICS

Analysis of the risk and pre-emptive control of viral outbreaks accounting for within-host dynamics: SARS-CoV-2 as a case study

William S. Hart^{ah,1} , Hyeongki Park^b, Yong Dam Jeong^{hc}, Kwang Su Kim^{hd}, Raiki Yoshimura^h, Robin N. Thompson^{ne,6,2} , and Shingo Iwami^hahijik²

Assessing Epidemic Risks – Summary

models can be used to
estimate the Epidemic
Risk (the probability that
an imported case leads to
a major epidemic)

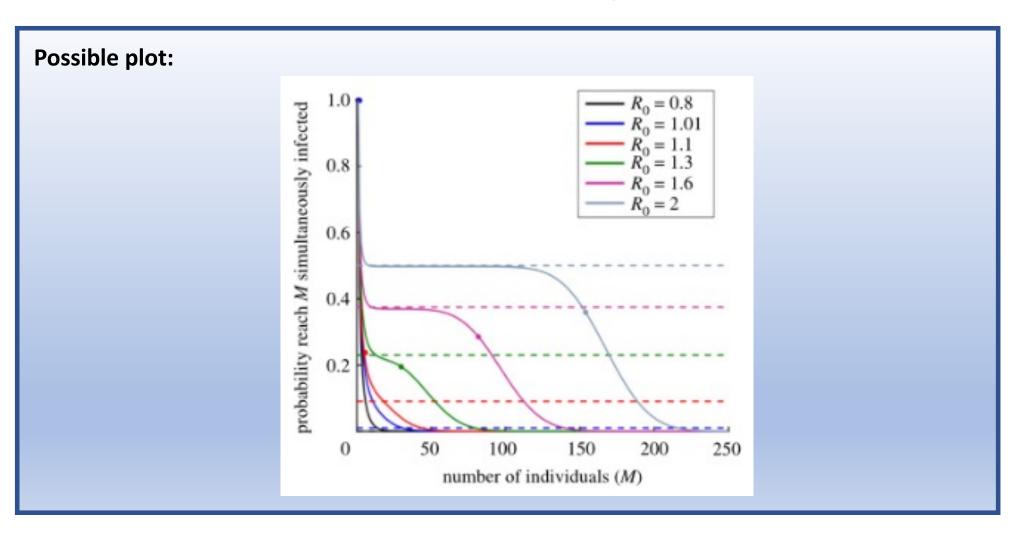
can be generated
analytically, informed by
using outbreak data, and
adjusted in real-time

Estimates can be extended to include a range of features, including heterogeneity in reporting rates, age structure and temporal heterogeneity

1. Using mathematical models to estimate outbreak risks

- Read "A practical guide to mathematical models for estimating infectious disease outbreak risks" by Southall et al.
- Derive the probability of a major outbreak starting from 1 infected individual for the stochastic SIR model (the "theoretical" result).
- Simulate the stochastic SIR model lots of times (each time starting from 1 infected individual), and calculate the proportion of simulations that are "major outbreaks" according to a definition of your choice (e.g. total number of infections exceeding 50 before disease dies out and I hits 0).
- Consider different possible definitions of a major outbreak, and investigate when the simulation-based probability of a major outbreak is matched by the theoretical value.

Possible definitions include: total infections exceeding x, maximum concurrent I exceeding x, outbreak lasting for more than x days, etc....



2. Using mathematical models to estimate outbreak risks

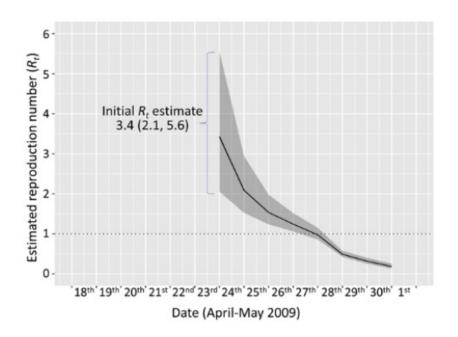
- Read "A practical guide to mathematical models for estimating infectious disease outbreak risks" by Southall *et al.*
- Derive the probability of a major outbreak starting from 1 infected for the stochastic SIR model. Test against model simulations (proportion of simulations in which at least 50 infections occur, say). Plot the probability of a major outbreak as a function of R_0 .
- Derive the probability of a major outbreak for another model of your choice for example, the children-adults model in Southall *et al.* (section 4.2 of that paper; can you reproduce Fig 4?).
- Longer term extension: Consider the probability of a major outbreak for a model with multiple age groups (derive equations, solve them numerically). Contact matrices that can be used to inform infection rates between ages are available for different countries in the supplementary material of "Projecting social contact matrices in 152 countries using contact surveys and demographic data" by Prem *et al.*

Outline

- 1. Introduction to common infectious disease outbreak models
 - Compartmental models
 - Renewal equation models
- 2. Early in an outbreak: Assessing the risk of major epidemics
 - Estimating the probability of a major epidemic [stochastic compartmental model]
 - Possible mini project
- 3. During an epidemic: Assessing the effectiveness of current interventions
 - Inferring current transmissibility [renewal equation model]
 - Possible mini project
- 4. At the end of an epidemic: Assessing when the epidemic is over
 - End-of-outbreak probability estimation [compartmental model and renewal equation model]
 - Possible mini project

During an outbreak

Can we quantify pathogen transmissibility in real-time?

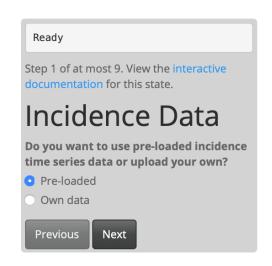


- Estimating changes in disease transmissibility (to e.g. assess the efficacy of current interventions)

$$\begin{aligned} \mathbf{P}(I_{t-\tau}^{\text{local}}, I_{t-\tau+1}^{\text{local}}, ..., I_t^{\text{local}} \mid I_0, ..., I_{t-\tau-1}, w_s, R_t) \\ &= \prod_{k=t-\tau}^t \frac{(R_t \Lambda_k(w_s))^{I_k^{\text{local}}} \text{exp}(-R_t \Lambda_k(w_s))}{I_k^{\text{local}}!} \end{aligned}$$

$$\mathbf{P}(R_t \mid I_0, I_1, I_2, ..., I_{t-\tau-1}, I_{t-\tau}^{\text{local}}, I_{t-\tau+1}^{\text{local}}, ..., I_t^{\text{local}}, w_s)$$

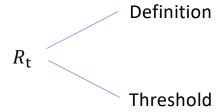
$$\propto \mathbf{P}(I_{t-\tau}^{\text{local}}, I_{t-\tau+1}^{\text{local}}, ..., I_t^{\text{local}} \mid I_0, ..., I_{t-\tau-1}, w_s, R_t) \mathbf{P}(R_t)$$



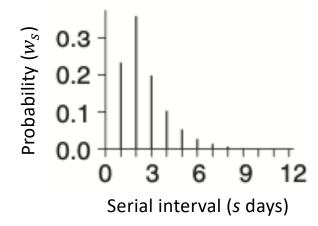
Thompson et al., Epidemics, 2019

Two important quantities

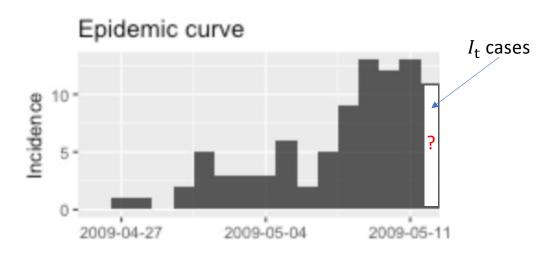
Time dependent reproduction number

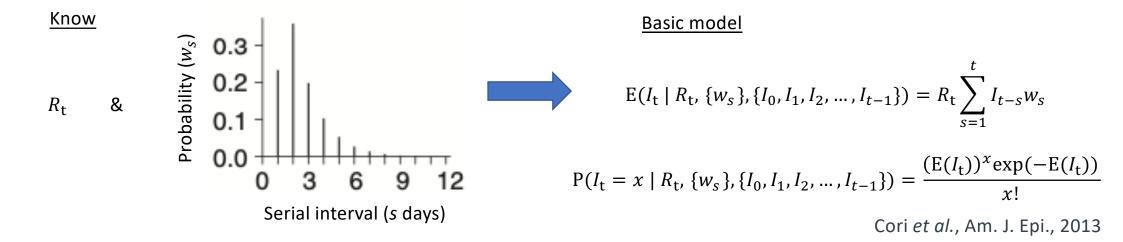


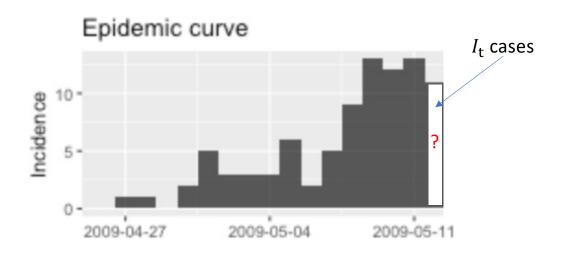
Generation time/ serial interval



Renewal equation model



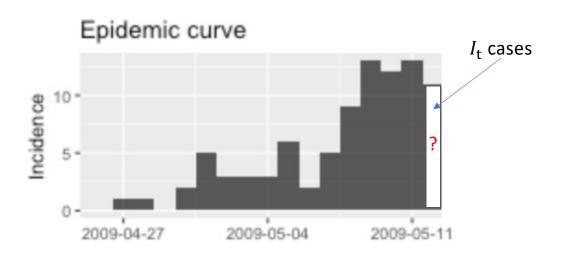




Bayes'rule:
$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

$$P(I_{t} = x \mid R_{t}, \{w_{s}\}, \{I_{0}, I_{1}, I_{2}, \dots, I_{t-1}\})$$

$$P(R_t | I_t = x, \{w_s\}, \{I_0, I_1, I_2, \dots, I_{t-1}\})$$

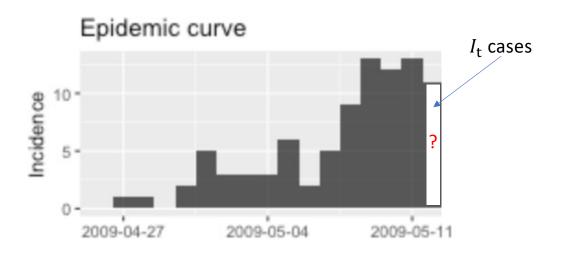


Bayes'rule:
$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

$$P(I_{t} = x \mid R_{t}, \{w_{s}\}, \{I_{0}, I_{1}, I_{2}, \dots, I_{t-1}\})$$

$$P(R_{t} \mid I_{t} = x, \{w_{s}\}, \{I_{0}, I_{1}, I_{2}, \dots, I_{t-1}\})$$

Generates estimates of $R_{\rm t}$ that are highly sensitive to randomness in $I_{\rm t}$ Solution: Consider constant $R_{\rm t}$ over a window $\{t-\tau,t-\tau$ +1,... $t\}$

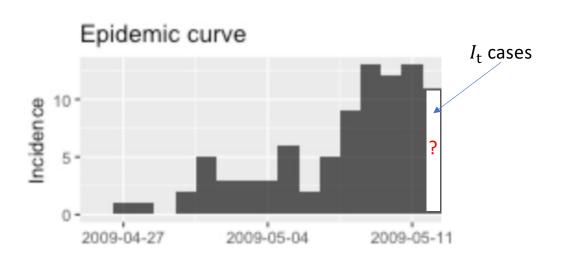


Bayes'rule:
$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

$$P(I_{t-\tau} = x_{t-\tau}, ..., I_t = x_t | R_t, \{w_s\}, \{I_0, I_1, I_2, ..., I_{t-\tau-1}\})$$

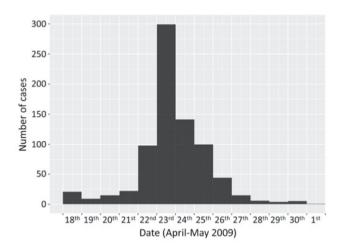
$$P(R_t | I_{t-\tau} = x_{t-\tau}, ... I_t = x_t, \{w_s\}, \{I_0, I_1, I_2, ..., I_{t-\tau-1}\})$$

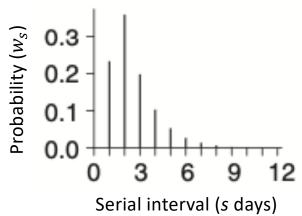
Solution: Consider constant $R_{\rm t}$ over a window $\{t-\tau, t-\tau+1, ... t\}$



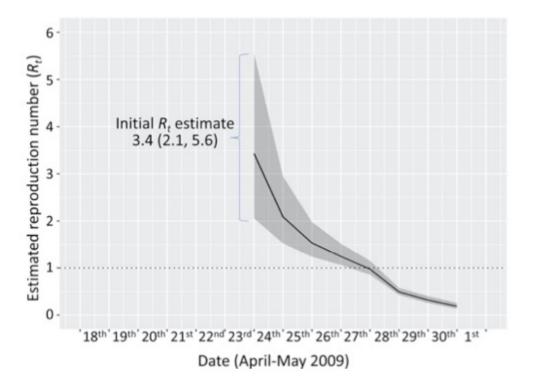
Special case: If the prior for R_t is a gamma distribution with shape parameter α and rate parameter β , then the posterior for R_t is also a gamma distribution with

Shape parameter: $\alpha+\sum_{k=0}^{\tau}I_{t-k}$ Rate parameter: $\beta+\sum_{k=0}^{\tau}I_{t-k}\sum_{s=1}^{t-k-1}I_{t-k-s}w_s$



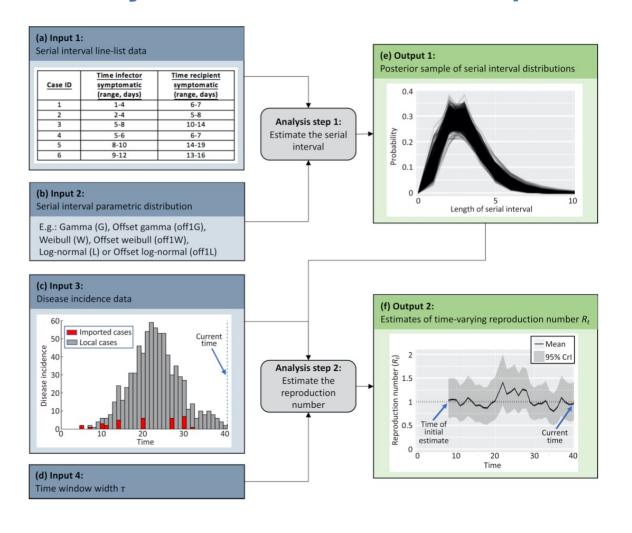


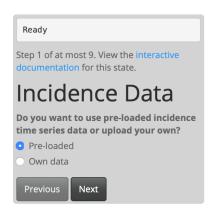
Window length: τ days



Cori *et al.*, Am. J. Epi., 2013 Thompson *et al.*, Epidemics, 2019

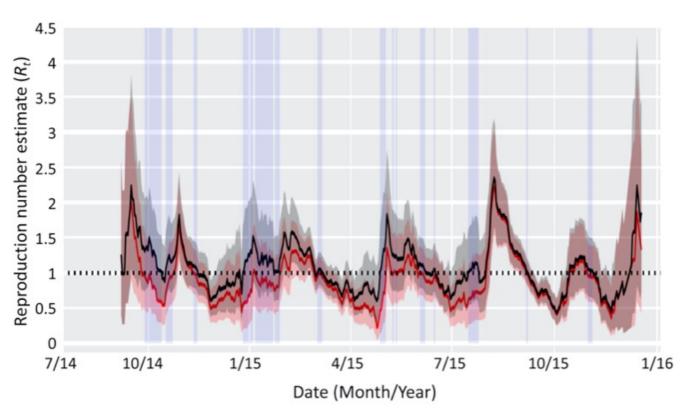
Uncertainty in the serial interval, imported cases





Imported cases

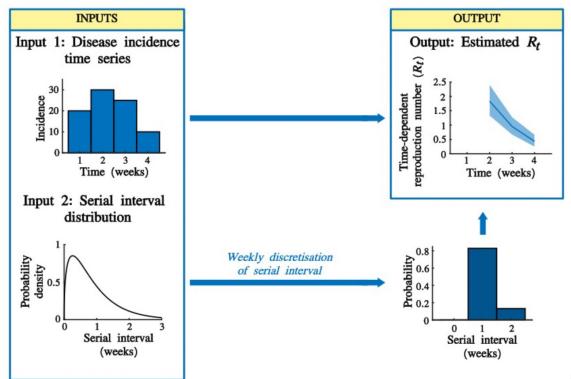
Imported cases have not been infected locally



Temporally aggregated data

Data are often not reported daily

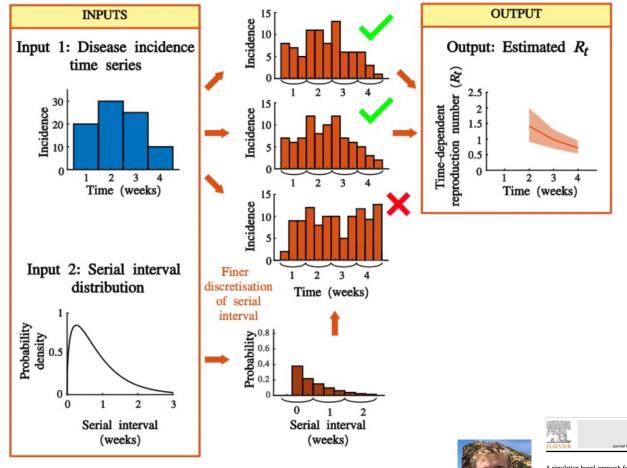
$$\mathbb{E}(I_{\mathsf{t}} \mid R_{\mathsf{t}}, \{w_s\}, \{I_0, I_1, I_2, \dots, I_{t-1}\}) = R_{\mathsf{t}} \sum_{s=1}^{t} I_{t-s} w_s$$



A simulation-based approach for estimating the time-dependent reproduction number from temporally aggregated disease incidence time

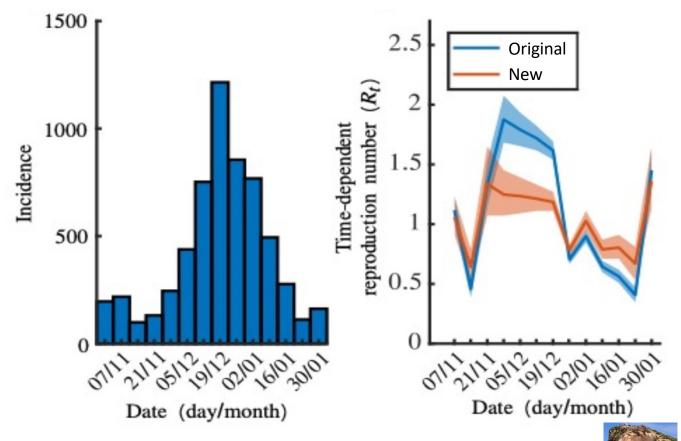
Data are often not reported daily

Temporally aggregated data



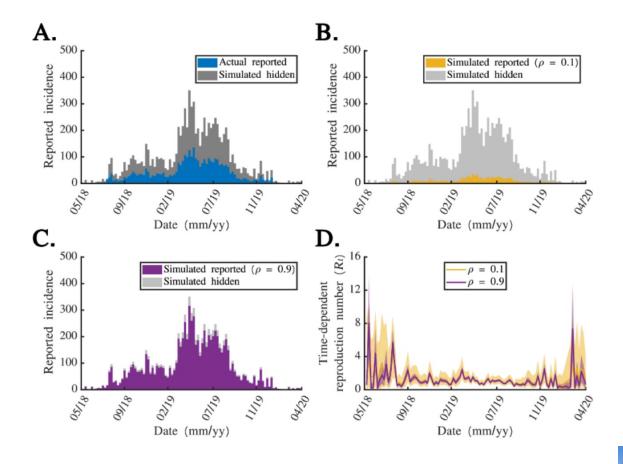
reproduction number from temporally aggregated disease incidence time

Temporally aggregated data



A simulation-based approach for estimating the time-dependent reproduction number from temporally aggregated disease incidence time

Stochastic under-reporting

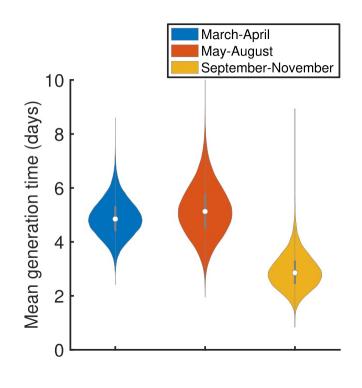


Isaac Ogi-Gittins 12, Nicholas Steyn3, Jonathan Polonsky⁵, William S. Hart⁴, Mory Keita^{7,6}, Steve Ahuka-Mundeke⁸, Edward M. Hill^{9,10} and Robin

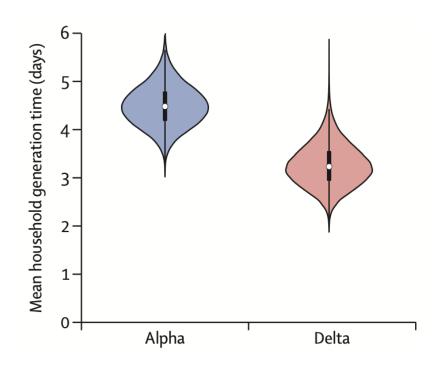
N. Thompson⁴

Simulation-based inference of the time-dependent temporally aggregated and under-reported disease

Warning: model inputs may change during an epidemic



Hart et al. (eLife, 2022)



Hart et al. (Lancet Inf Dis, 2022)

Estimating changes in pathogen transmissibility – Summary

Bayesian inference
methods can be used to
estimate reproduction
numbers in real-time
during epidemics; these
approaches were used
worldwide for COVID-19

is important (e.g.
imported vs local cases)
and methods can be
adapted for use with
temporally aggregated
data

Care is needed to ensure that model inputs are accurate

3. Using mathematical models to infer changes in disease transmission during an outbreak

- Write code that takes the following as inputs: i) disease incidence time series; ii) discrete serial interval distribution; iii) parameters of the (gamma distributed) prior for R_t ; iv) window length τ ; and generates a plot of R_t vs t (for $t > \tau$) including 95% credible intervals.
- Download data for i and ii from EpiEstim App (https://shiny.dide.imperial.ac.uk/epiestim/).
- Compare results generated by your code from results generated using EpiEstim App (if you prefer, rather than using the app you could use the R software package EpiEstim and use inbuilt datasets from that package).
- Find a disease dataset online and apply your code to a new dataset.
- Longer term project. Extend the model to differentiate between imported cases and local cases as described in "Improved inference of time-varying reproduction numbers during infectious disease outbreaks" by Thompson *et al.*

Key references:

- "New framework and software to estimate time-varying reproduction numbers during epidemics" by Cori et al.
- "Improved inference of time-varying reproduction numbers during infectious disease outbreaks" by Thompson *et al.*

Outline

- 1. Introduction to common infectious disease outbreak models
 - Compartmental models
 - Renewal equation models
- 2. Early in an outbreak: Assessing the risk of major epidemics
 - Estimating the probability of a major epidemic [stochastic compartmental model]
 - Possible mini project
- 3. During an epidemic: Assessing the effectiveness of current interventions
 - Inferring current transmissibility [renewal equation model]
 - Possible mini project
- 4. At the end of an epidemic: Assessing when the epidemic is over
 - End-of-outbreak probability estimation [compartmental model and renewal equation model]
 - Possible mini project

At the end of an outbreak

When can an outbreak be declared over?

The New York Times

Sierra Leone Declared Free of Ebola Transmissions

People in Freetown, Sierra Leone, on Saturday, after the country passed 42 days without an Ebola case. Aurelie Marrier D'Unienvil/Associated Press

Uganda declares end to latest ebola outbreak

By Elias Biryabarema

April 26, 2025 8:30 AM GMT+1 · Updated 4 days ago

WHO recommended criteria for declaring the end of the Ebola virus disease outbreak

Technical information note - updated 4 March 2020

The acute phase of the outbreak is defined by the propagation of the virus within communities through transmission of the virus from one person to another. This phase will be considered to have been interrupted when no confirmed or probable Ebola virus disease (EVD) cases are detected for a period of 42 days (i.e. twice the maximum incubation period for Ebola infections) since the last potential exposure to the last case occurred.

PHILOSOPHICAL TRANSACTIONS B

royalsocietypublishing.org/journal/rstb

Rigorous surveillance is necessary for high confidence in end-of-outbreak declarations for Ebola and other infectious diseases

Robin N. Thompson^{1,2,3}, Oliver W. Morgan⁴ and Katri Jalava⁵

How long is it necessary to wait before declaring an outbreak over?

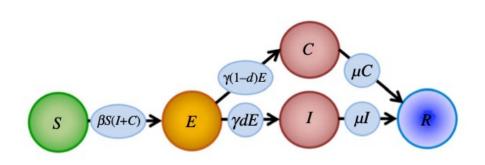
PHILOSOPHICAL TRANSACTIONS B

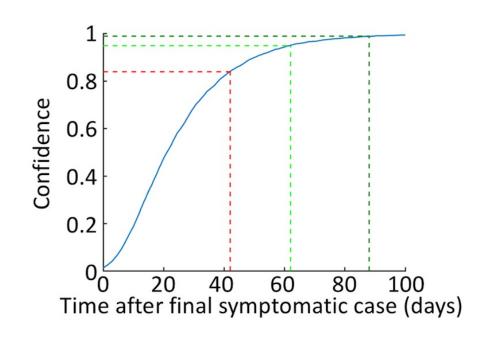
royalsocietypublishing.org/journal/rstb

Rigorous surveillance is necessary for high confidence in end-of-outbreak declarations for Ebola and other infectious diseases

Robin N. Thompson^{1,2,3}, Oliver W. Morgan⁴ and Katri Jalava⁵

Initial analysis:





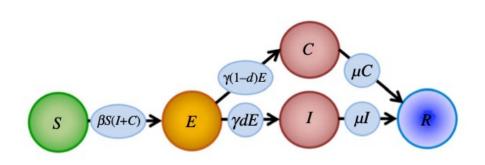
PHILOSOPHICAL TRANSACTIONS I

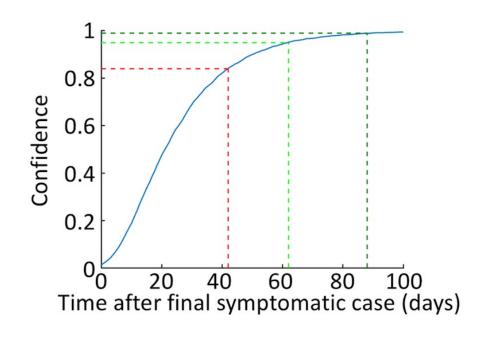
royalsocietypublishing.org/journal/rstb

Rigorous surveillance is necessary for high confidence in end-of-outbreak declarations for Ebola and other infectious diseases

Robin N. Thompson^{1,2,3}, Oliver W. Morgan⁴ and Katri Jalava⁵

Initial analysis:





PHILOSOPHICAL TRANSACTIONS

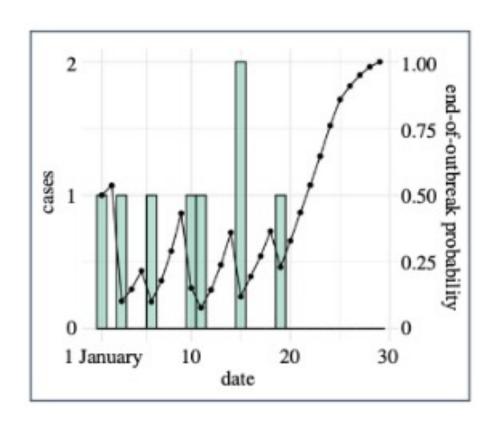
royalsocietypublishing.org/journal/rstb

Rigorous surveillance is necessary for high confidence in end-of-outbreak declarations for Ebola and other infectious diseases

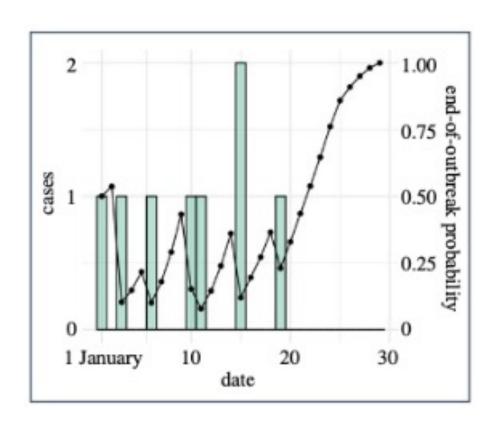
Research

Robin N. Thompson^{1,2,3}, Oliver W. Morgan⁴ and Katri Jalava⁵

Provides a "general rule" based on the time since the last observed case



End-of-outbreak declarations based solely on the time since the previous observed case fail to reflect outbreak-specific effects on the end-of-outbreak probability



End-of-outbreak declarations based solely on the time since the previous observed case fail to reflect outbreak-specific effects on the end-of-outbreak probability

IDEA: Take a specific disease incidence time series and calculate:

P(no future cases)

Objective Determination of End of MERS Outbreak, South Korea, 2015

Hiroshi Nishiura, Yuichiro Miyamatsu, Kenji Mizumoto

Author affiliations: The University of Tokyo, Tokyo, Japan (H. Nishiura, Y. Miyamatsu, Kenji Mizumoto); Japan Science and Technology Agency, Kawaguchi Saitama, Japan (H. Nishiura, Y. Miyamatsu, K. Mizumoto)

International Journal of Infectious Diseases 110 (2021) 15-20

Contents lists available at ScienceDirect

International Journal of Infectious Diseases

journal homepage: www.elsevier.com/locate/ijid

A hospital-related outbreak of SARS-CoV-2 associated with variant Epsilon (B.1.429) in Taiwan: transmission potential and outbreak containment under intensified contact tracing, January-February 2021

Andrei R. Akhmetzhanov^{a,*}, Sung-mok Jung^{b,c}, Hao-Yuan Cheng^d, Robin N. Thompson^{e,f}

Nishiura *et al.* derived an outbreakspecific approximation of the end-ofoutbreak probability under a branching process transmission model

International Journal of Infectious Diseases 105 (2021) 286-292

Contents lists available at ScienceDirect

International Journal of Infectious Diseases

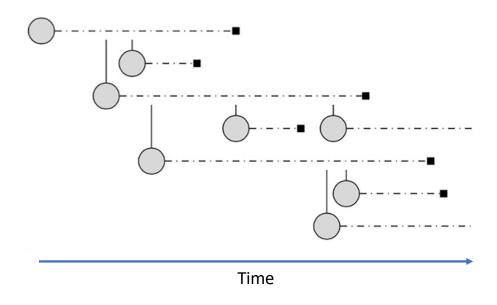
journal homepage: www.elsevier.com/locate/ijid

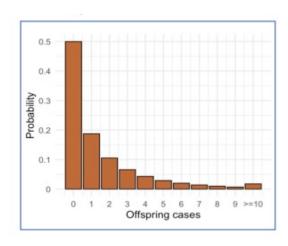
Localized end-of-outbreak determination for coronavirus disease 2019 (COVID-19): examples from clusters in Japan

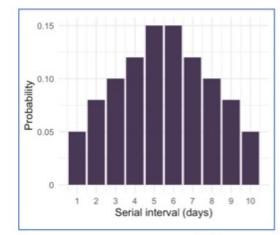
Natalie M. Linton^{a,b}, Andrei R. Akhmetzhanov^{a,c}, Hiroshi Nishiura^{a,b,*}

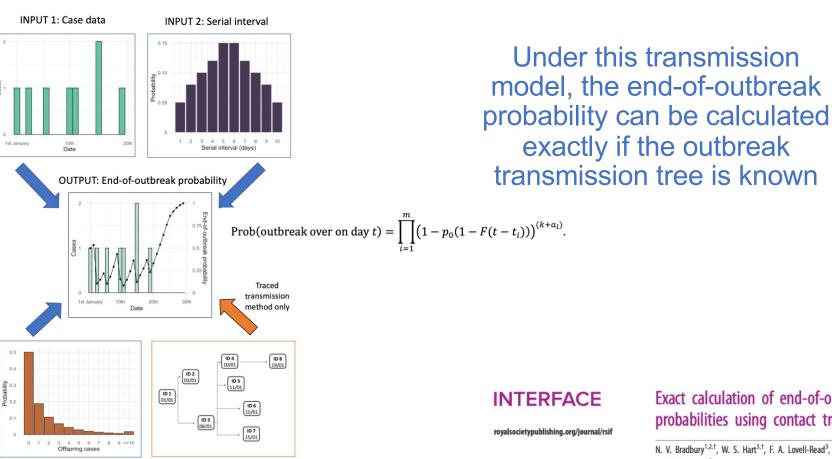
- a Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido, 060-8638, Japan
- ^b Kyoto University School of Public Health, Yoshidakonoecho, Sakyoku, Kyoto, 606-8501, Japan
- ^c College of Public Health, National Taiwan University, 17 Xu-Zhou Road, Taipei, 10055, Taiwan

Transmission model









INPUT 4: Transmission tree

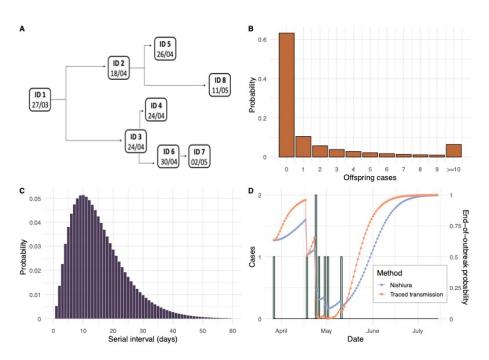
INPUT 3: Offspring distribution

royalsocietypublishing.org/journal/rsif

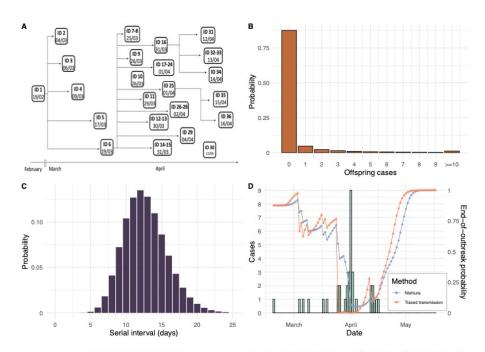
Exact calculation of end-of-outbreak probabilities using contact tracing data

N. V. Bradbury^{1,2,†}, W. S. Hart^{3,†}, F. A. Lovell-Read³, J. A. Polonsky⁴ and R. N. Thompson³

Ebola in DRC (2017)



Nipah in Bangladesh (2004)



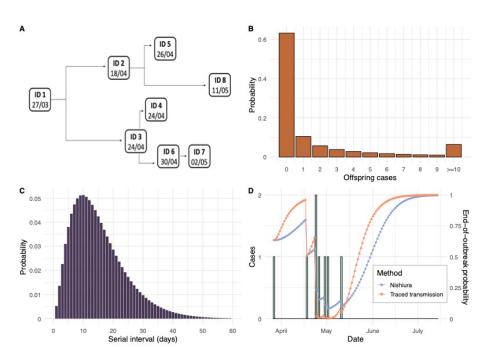
INTERFACE

royalsocietypublishing.org/journal/rsif

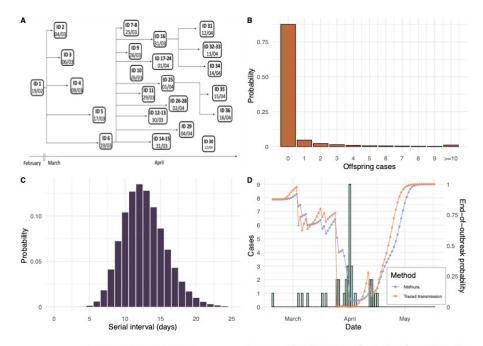
Exact calculation of end-of-outbreak probabilities using contact tracing data

N. V. Bradbury $^{1,2,\uparrow}$, W. S. Hart $^{3,\uparrow}$, F. A. Lovell-Read 3 , J. A. Polonsky 4 and R. N. Thompson 3

Ebola in DRC (2017)



Nipah in Bangladesh (2004)



INTERFACE

royalsocietypublishing.org/journal/rsif

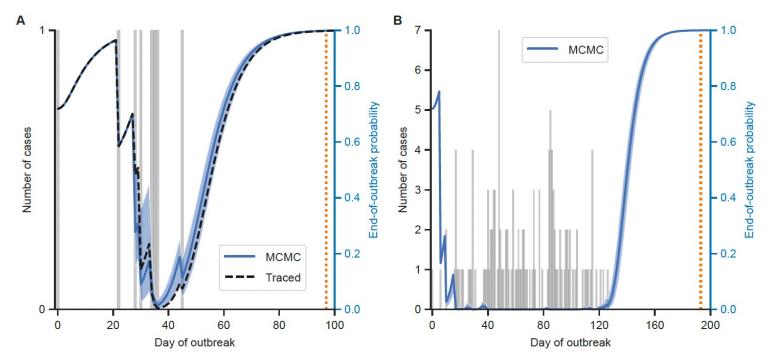
Exact calculation of end-of-outbreak probabilities using contact tracing data

N. V. Bradbury^{1,2,†}, W. S. Hart^{3,†}, F. A. Lovell-Read³, J. A. Polonsky⁴ and R. N. Thompson³

Problem: Transmission tree is often unknown...

If the transmission tree is unknown, then the end-of-outbreak probability can be considering "all possible transmission trees":

 $\mathbb{P}(\text{no future cases}) = \sum_{i} \mathbb{P}(\text{no future cases} \mid \text{transmission tree } i) \times \mathbb{P}(\text{transmission tree } i)$



SCIENCE ADVANCES | RESEARCH ARTICLE

Optimizing the timing of an end-of-outbreak declaration Hart *et al.*

- WHO declares Ebola outbreaks over after 42 "case-free" days
- Simple rules of thumb for end-of-outbreak declarations can be tested using repeated model simulation (of e.g. stochastic compartmental models) but these are not "outbreak specific"
- Under a branching process model, Nishiura et al. derived an approximation to the end-of-outbreak
 probability
 - The end-of-outbreak probability can be calculated exactly under the same model, if the transmission tree is known (Bradbury et al.)
- If the transmission tree is not known, an unbiased estimate of the end-of-outbreak probability can be calculated by enumerating over all possible transmission trees (or using MCMC to estimate the transmission tree; Hart et al.)

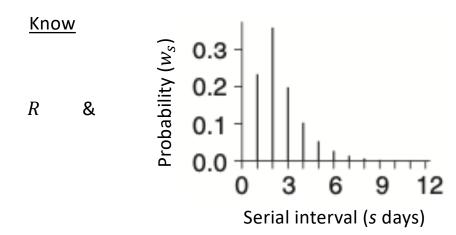
An alternative (easier) modelling framework

Instead of using compartmental models or individual-based branching processes, an alternative modelling framework involves renewal equations

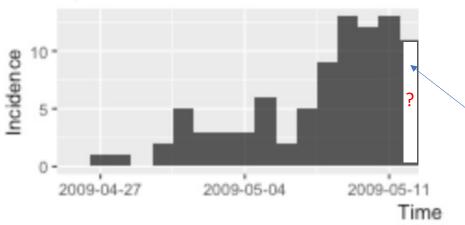
[same model as described earlier, but assuming constant *R*]

An alternative (easier) modelling framework

Instead of using compartmental models or individual-based branching processes, an alternative modelling framework involves renewal equations



Epidemic curve



$$E(I_{t} | R, \{w_{s}\}, \{I_{0}, I_{1}, I_{2}, \dots, I_{t-1}\}) = R \sum_{s=1}^{t} I_{t-s} w_{s}$$

 $I_{\rm t}$ cases \longrightarrow Draw from Poisson distribution or NB distribution

An alternative (easier) modelling framework

Instead of using compartmental models or individual-based branching processes, an alternative modelling framework involves renewal equations

End of outbreak probability:

$$\prod_{j=t}^{\infty} \exp \Biggl(-R \sum_{s=1}^{j-1} I_{j-s} w_s \Biggr)$$

Poisson model

$$\prod_{j=t}^{\infty} \left(\frac{k}{k + R \sum_{s=1}^{j-1} I_{j-s} w_s} \right)^k$$

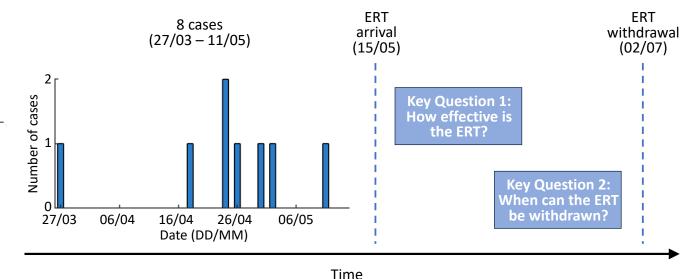
NB model

Case study: Ebola virus disease in DRC

1. Estimate *R* (and *k*) pre-ERT

$$L\left(R
ight) = rac{1}{M_{1}} \prod_{t=2}^{49} rac{\left(R \sum_{s=1}^{t-1} I_{t-s} w_{s}
ight)^{I_{t}} \exp\left(-R \sum_{s=1}^{t-1} I_{t-s} w_{s}
ight)}{I_{t}!}$$

2. Calculate risk of future cases each day if the ERT is withdrawn



Risk of withdrawing ERT on day t

$$=1-\int_0^\infty \operatorname{Prob} \ (ext{no cases from day} \, t \, ext{onwards} |R) \, L(R) \mathrm{d}R,$$

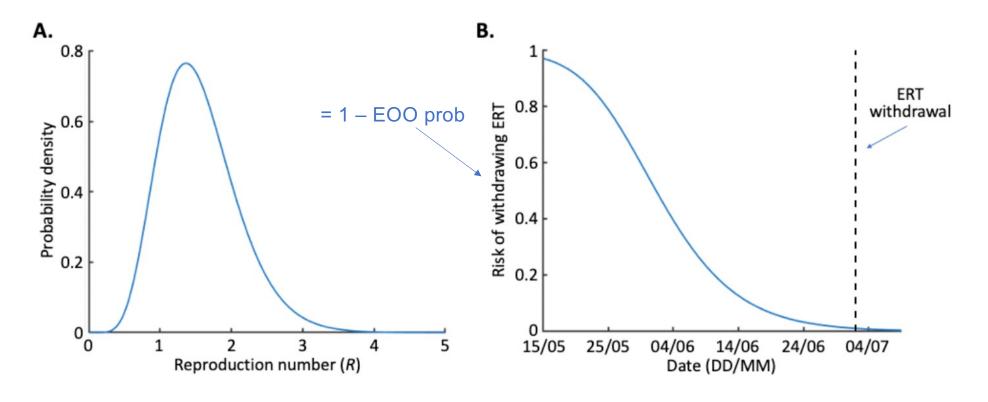
nature communications 3

Articl

https://doi.org/10.1038/s41467-024-49888-5

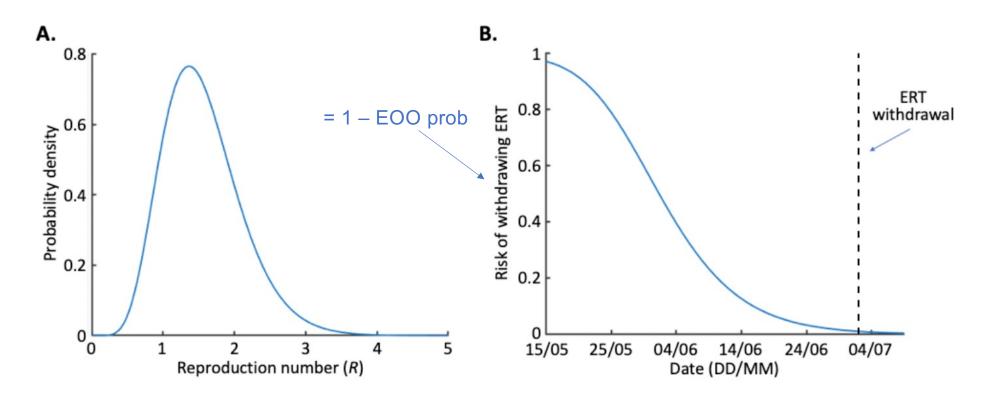
Using real-time modelling to inform the 2017 Ebola outbreak response in DR Congo

Case study: Ebola virus disease in DRC



Using real-time modelling to inform the 2017 Ebola outbreak response in DR Congo

Case study: Ebola virus disease in DRC



- ERT effective at limiting transmission
- ERT was only withdrawn when it was safe to do so

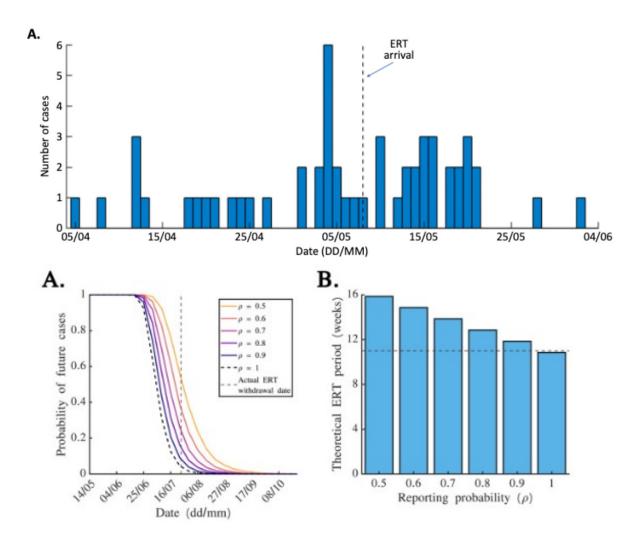
nature communications 6

Article

https://doi.org/10.1038/s41467-024-49888-

Using real-time modelling to inform the 2017 Ebola outbreak response in DR Congo

Effect of under-reporting



Infectious Disease Modelling

Real-time inference of the end of an outbreak: Temporally aggregated disease incidence data and under-reporting

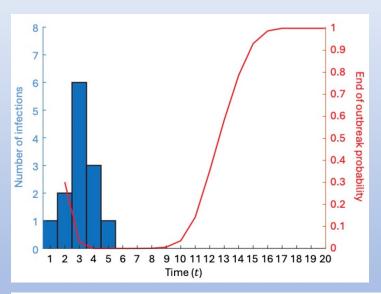
 $\frac{\text{I. Ogi-Gittins}}{\text{B. Lambert}}^{9}, \text{ I. Polonsky}}^{3}, \text{ M. Keita}^{4.5}, \underline{\text{S. Ahuka-Mundeke}}^{6}, \underline{\text{W.S. Hart}}^{7}, \underline{\text{M.J. Plank}}^{8}, \\ \text{B. Lambert}^{9}, \text{ E.M. Hill}^{10.11}, \text{ R.N. Thompson}^{7} \nearrow \boxtimes$

- Renewal equation models provide a framework for inferring the end-of-outbreak probability straightforwardly (obtaining outbreak-specific estimates)
- Estimates can be informed by outbreak data and adjusted as additional data arise
 - An outbreak can be declared over when the inferred end-of-outbreak probability falls below a threshold reflecting a policy-makers' appetite for risk
 - Superspreading events can be accounted for by assuming a NB distributed number of cases each day
 - Effective disease surveillance is essential to declare outbreaks over quickly and accurately following the final case

Possible mini project

4. Using mathematical models to determine when an outbreak is over

Write code that takes the following as inputs: i) a disease incidence time series; ii) a discrete serial interval distribution; iii) the value of R; iv) (for NB distribution only) the value of k; and generates estimates of the probability that no cases will occur in future (using the renewal equation method).



- Can you reproduce this figure? (for number of cases each day drawn from a Poisson distribution)
- Can you apply your methods to other datasets (e.g. the datasets suggested under project idea 3)? How long is it necessary to wait to be confident that an outbreak is over for different outbreaks/diseases?

Figure 5.5: Calculation of the end-of-outbreak probability using a renewal equation model. Blue bars represent the number of infections each day, and the red line represents the end-of-outbreak probability estimate based on the infections arising prior to the current day. The end-of-outbreak probability was calculated assuming that $R_t = 1.2$ for all values of t and $\{w_s\}_{s=1}^{11} = \{0.05, 0.1, 0.2, 0.2, 0.15, 0.1, 0.1, 0.05, 0.02, 0.02, 0.01\}$ with $w_s = 0$ for $s \ge 11$.

Summary

- Infectious disease models exist in a range of forms (here: compartmental models and renewal equations)
 - Certain models may be more suitable to answer specific questions
- Compartmental models are flexible and can easily include different epidemiology
 - Renewal equations simply track case numbers
 - Epidemiological models can be used to answer different questions at different outbreak stages (e.g., early in an outbreak = assess PMO, middle of an outbreak = estimate R_t , late in outbreak = assess when outbreak has finished).

https://www.maths.ox.ac.uk/groups/mathematical-biology/infectious-disease-modelling

- Assign groups
- Get started on an infectious disease modelling mini project (come up with some interesting plots to show next week ☺)
 - Finish project (and 2-3 slides) next Monday
 - Report back on Tuesday

Can each group please send 2-3 slides to me by 10am next Tuesday?