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Next term…

- Case study in mathematical modelling

- Work in a group of around 5-6 students on a modelling research project 

[last year: cycle races, Alzheimer’s modelling etc…]

- Work on project throughout Hilary term

- Deliver group presentation (20% of final mark)

- Write individual project report (80% of final mark)



Now!
- Today: 2-hour introduction to infectious disease modelling

- Tomorrow: Assign groups and start infectious disease modelling “mini project”

- Next Monday 2-4: Work on group mini project, prepare slides

- Next Tuesday 3-4: Report back on your mini project (3-5 slides per group; please email 

slides to me by noon next Tuesday – robin.thompson@maths.ox.ac.uk)

- This is an opportunity to practise group work (not assessed)

- In the next 2 hours, I will give you some suggestions for possible mini projects to do over 

the next week: your group can do one of these, all of these, or something different!

- Have fun!!!



Beginning End

Middle

Beginning

• Will initial cases lead to 
a major epidemic?

• Which interventions 
reduce the epidemic 
risk?

Middle

• How effective are 
current interventions?

• Which interventions 
optimally balance 
benefits and costs?

End

• How should 
interventions be lifted?

• Is the epidemic over?

Modelling for real-time outbreak response

Before

• Where is an outbreak 
most likely to occur?

• Where should 
surveillance resources 
be deployed?

Before



Outline
1. Introduction to common infectious disease outbreak models

• Compartmental models

• Renewal equation models

2. Early in an outbreak: Assessing the risk of major epidemics 
• Estimating the probability of a major epidemic [stochastic compartmental model]

• Possible mini project

3. During an epidemic: Assessing the effectiveness of current interventions
• Inferring current transmissibility [renewal equation model]

• Possible mini project

4. At the end of an epidemic: Assessing when the epidemic is over
• End-of-outbreak probability estimation [compartmental model and renewal equation model]

• Possible mini project



Outbreak waves have a characteristic “shape”
Flu in a school in 1978 Foot and mouth in the UK 2001 Plague in Mumbai in 1906

Ebola in West Africa in 2014-15

First compartmental models 
(early 20th century) 

aimed to capture this shape



Compartmental models: SIR model

S I RβSI μI

d𝑆
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Compartmental models: SIR model

S I RβSI μI

d𝑆
d𝑡

= −β𝑆𝐼

d𝐼
d𝑡
= β𝑆𝐼 − µ𝐼

d𝑅
d𝑡

= µ𝐼

Involves assumptions 
(homogeneous mixing, infected individuals

immediately infectious, etc)

But… not bad for a two-parameter model



Compartmental models: SIR model
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• R0 – Number of cases of disease 
arising from each primary case 
(in an entirely susceptible population)

R0 = Infection rate x Duration of infection

R0 = βN  x  1/μ

  



1. Infectious disease outbreaks are inherently random
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Compartmental models: Extensions to SIR model
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1. Infectious disease outbreaks are inherently random
Compartmental models: Extensions to SIR model
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1. Infectious disease outbreaks are inherently random
Compartmental models: Extensions to SIR model



S I RβSI μI

1. Infectious disease outbreaks are inherently random
Compartmental models: Extensions to SIR model

How to run one simulation of stochastic SIR model (using Gillespie direct method):

- Assume that events occur at exponentially distributed time intervals. The time until the next event 
therefore follows an exponential distribution with rate parameter 𝛽𝑆𝐼 + 𝜇𝐼.

- The probability that the next event is an infection is:

 Prob infection = !"#
!"#$%#

.            Similarly,  Prob removal = %#
!"#$%#



S I RβSI μI

1. Infectious disease outbreaks are inherently random
Compartmental models: Extensions to SIR model

How to run one simulation of stochastic SIR model (using Gillespie direct method):

1. Initialise the number of individuals in each of the S, I and R classes in the model, and set the outbreak time t = 0.

2.  Steps 2-4 should be repeated while the outbreak is still ongoing (i.e. I > 0).  First calculate two random numbers r1, r2 
each uniformly distributed in (0,1).

3.  Calculate the time of the next event from an exponential distribution. Set 
𝑡 = 𝑡 + !

"#$%	'#
ln !

(!
.

4.  Choose whether the next event is an infection event or removal event. If

𝑟) <
𝛽𝐼𝑆

𝛽𝐼𝑆 + 	𝜇𝐼
,

then the next event is an infection event, and so set S = S – 1 and I = I + 1. Otherwise set I = I – 1 and R = R + 1.



S I RβSI μI

S E RβSI γE I RμI

2. Different epidemiology
Compartmental models: Extensions to SIR model

Delay between infection and becoming infectious:



S I RβSI μI

S E RβSI γE I RμI

2. Different epidemiology
Compartmental models: Extensions to SIR model

Delay between infection and becoming infectious:

S I RβSI μI

ηR

Waning immunity:



3. Age structure
Compartmental models: Extensions to SIR model

Sc Ic Rc
βccScIc
+ βacScIa μIc

Sa Ia Ra
βcaSaIc
+ βaaSaIa μIa



4. Asymptomatic transmission
Compartmental models: Extensions to SIR model

Fraser et al. (PNAS, 2004)

S I RβdS(I+A) μI

A
β(1-d)S(I+A) μA



5. Spatial structure
Compartmental models: Extensions to SIR model

S1 I1 R1βS1I1 μI1 S2 I2 R2βS2I2 μI2

λ

λ

Region 1 Region 2



Compartmental models: Testing interventions

Models can be used to test counterfactual (“what if”) interventions



Compartmental models: Testing interventions

Interventions with increasing complexity can be tested
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distancing to keep healthcare 

demand “manageable”

Adapted from research on COVID-
19 by Imperial and LSHTM



Renewal equation models

Avoid need to divide hosts 
into compartments; simply 

count infections



Renewal equation models

Avoid need to divide hosts 
into compartments; simply 

count infections

? 𝐼* cases
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Renewal equation models

Can account for super-
spreading events

? 𝐼* cases Draw from Poisson distribution or NB distribution

Number of cases
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Renewal equation models

Commonly used to infer 𝑹𝒕 
(more later in talk)



Outline
1. Introduction to common infectious disease outbreak models

• Compartmental models

• Renewal equation models

2. Early in an outbreak: Assessing the risk of major epidemics 
• Estimating the probability of a major epidemic [stochastic compartmental model]

• Possible mini project

3. During an epidemic: Assessing the effectiveness of current interventions
• Inferring current transmissibility [renewal equation model]

• Possible mini project

4. At the end of an epidemic: Assessing when the epidemic is over
• End-of-outbreak probability estimation [compartmental model and renewal equation model]

• Possible mini project



Early in an outbreak

When a pathogen first arrives in a new host population,
will initial cases fade out, or will they lead to a major epidemic?



Det

Assessing the risk of a major epidemic



When a pathogen first arrives 

in a new population, there are 

two possibilities for what 

happens next
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Assessing the risk of a major epidemic
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When a pathogen first arrives 

in a new population, there are 

two possibilities for what 

happens next

Susceptible Infected Removed
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Susceptible Infected Removed
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Epidemic Risk: the probability that an imported 
case leads to a major epidemic

If ER = 0; a major epidemic will not occur
If ER = 1; a major epidemic will definitely occur

Assessing the risk of a major epidemic



• Assume we start with one infected individual

• Denote qi = Prob(no major epidemic starting from i infected 

individuals)

• Want to find 1 – q1

Susceptible Infected Removed

Assessing the risk of a major epidemic



Susceptible Infected Removed

Two possibilities for the next event: infection or recovery

𝑞! = ℙ(infec'on)	×	𝑞" + ℙ(recovery)	×	𝑞#

Assessing the risk of a major epidemic



Susceptible Infected Removed

Two possibilities for the next event: infection or recovery

𝑞! ≈ ℙ(infec'on)	×	𝑞!" + ℙ(recovery)

Assessing the risk of a major epidemic



Susceptible Infected Removed

Two possibilities for the next event: infection or recovery

𝑞9 =
1
𝑅:
	 or	 1 𝐸𝑅 = 1 − 𝑞9 = 1 −

1
𝑅:

𝑞! ≈ ℙ(infec'on)	×	𝑞!" + ℙ(recovery)

Assessing the risk of a major epidemic
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𝑞1,3 = Prob no	major	epidemic	 𝑖	fast	reporters, 𝑗	slow	reporters)

Heterogeneity in reporting rates



𝑞1,3,4,… = Prob no	major	epidemic	 𝑖	in	age	group	1, 𝑗	in	age	group	2, 𝑘	in	age	group	3, … . )

Age structure



Time-dependence



Time-dependence



Other factors (vaccination, within-host dynamics)



Assessing Epidemic Risks – Summary

Stochastic compartmental 
models can be used to 
estimate the Epidemic 

Risk (the probability that 
an imported case leads to 

a major epidemic)

Estimates can be extended to 
include a range of features, 
including heterogeneity in 

reporting rates, age structure 
and temporal heterogeneity

Epidemic Risk estimates 
can be generated 

analytically, informed by 
using outbreak data, and 

adjusted in real-time



Possible mini project

1.  Using mathematical models to estimate outbreak risks

- Read “A practical guide to mathematical models for estimating infectious disease outbreak 
risks” by Southall et al.

- Derive the probability of a major outbreak starting from 1 infected individual for the 
stochastic SIR model (the “theoretical” result). 

- Simulate the stochastic SIR model lots of times (each time starting from 1 infected 
individual), and calculate the proportion of simulations that are “major outbreaks” according 
to a definition of your choice (e.g. total number of infections exceeding 50 before disease 
dies out and I hits 0).

- Consider different possible definitions of a major outbreak, and investigate when the 
simulation-based probability of a major outbreak is matched by the theoretical value.

Possible definitions include: total infections exceeding x, maximum concurrent I exceeding x, outbreak 
lasting for more than x days, etc…. 



Possible mini project

Possible plot:



Possible mini project

2.  Using mathematical models to estimate outbreak risks

- Read “A practical guide to mathematical models for estimating infectious disease outbreak 
risks” by Southall et al.

- Derive the probability of a major outbreak starting from 1 infected for the stochastic SIR 
model. Test against model simulations (proportion of simulations in which at least 50 
infections occur, say). Plot the probability of a major outbreak as a function of 𝑅!.

- Derive the probability of a major outbreak for another model of your choice – for example, 
the children-adults model in Southall et al. (section 4.2 of that paper; can you reproduce Fig 
4?).

- Longer term extension: Consider the probability of a major outbreak for a model with 
multiple age groups (derive equations, solve them numerically). Contact matrices that can be 
used to inform infection rates between ages are available for different countries in the 
supplementary material of “Projecting social contact matrices in 152 countries using contact 
surveys and demographic data” by Prem et al. 



Outline
1. Introduction to common infectious disease outbreak models

• Compartmental models

• Renewal equation models

2. Early in an outbreak: Assessing the risk of major epidemics 
• Estimating the probability of a major epidemic [stochastic compartmental model]

• Possible mini project

3. During an epidemic: Assessing the effectiveness of current interventions
• Inferring current transmissibility [renewal equation model]

• Possible mini project

4. At the end of an epidemic: Assessing when the epidemic is over
• End-of-outbreak probability estimation [compartmental model and renewal equation model]

• Possible mini project



Can we quantify pathogen transmissibility in real-time?

During an outbreak



Thompson et al., Epidemics, 2019

- Estimating changes in disease transmissibility (to 
e.g. assess the efficacy of current interventions)



Two important quantities
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Renewal equation model

?

𝐼* cases

Basic model

E(𝐼*	|	𝑅*, 	{𝑤, }, {𝐼-, 𝐼!, 𝐼), … , 𝐼+.!}) = 𝑅*7
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E(𝐼*) 6exp(−E(𝐼*))
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Cori et al., Am. J. Epi., 2013



?

𝐼* cases

Cori et al., Am. J. Epi., 2013

Bayes7rule: 	 P 𝐴	 𝐵) =
P 𝐵	 𝐴)𝑃(𝐴)

𝑃(𝐵)

P(𝐼* = 𝑥	|	𝑅*, 	{𝑤, }, {𝐼-, 𝐼!, 𝐼), … , 𝐼+.!}) P(𝑅*	|𝐼* = 𝑥,	{𝑤, }, {𝐼-, 𝐼!, 𝐼), … , 𝐼+.!})



?

𝐼* cases

Cori et al., Am. J. Epi., 2013

P(𝐼* = 𝑥	|	𝑅*, 	{𝑤, }, {𝐼-, 𝐼!, 𝐼), … , 𝐼+.!}) P(𝑅*	|𝐼* = 𝑥,	{𝑤, }, {𝐼-, 𝐼!, 𝐼), … , 𝐼+.!})

Bayes7rule: 	 P 𝐴	 𝐵) =
P 𝐵	 𝐴)𝑃(𝐴)

𝑃(𝐵)

Generates estimates of 𝑅* that are highly sensitive to randomness in 𝐼*
Solution: Consider constant 𝑅* over a window {𝑡 − 𝜏, 𝑡 − 𝜏+1,… 𝑡}



?

𝐼* cases

Cori et al., Am. J. Epi., 2013

P(𝐼*.8 = 𝑥*.8, … , 𝐼* = 𝑥*|	𝑅*, 	{𝑤, }, {𝐼-, 𝐼!, 𝐼), … , 𝐼+.8.!}) P(𝑅*	|	𝐼+.8 = 𝑥*.8, … 𝐼* = 𝑥*, 	{𝑤, }, {𝐼-, 𝐼!, 𝐼), … , 𝐼+.8.!})

Bayes7rule: 	 P 𝐴	 𝐵) =
P 𝐵	 𝐴)𝑃(𝐴)

𝑃(𝐵)

Solution: Consider constant 𝑅* over a window {𝑡 − 𝜏, 𝑡 − 𝜏+1,… 𝑡}



?

𝐼* cases

Cori et al., Am. J. Epi., 2013

Special case: If the prior for 𝑅* is a gamma distribution with shape parameter 𝛼 and rate parameter 𝛽, then the 
posterior for 𝑅* is also a gamma distribution with
 
 Shape parameter: 𝛼 + ∑4/-8 𝐼+.4
 Rate parameter: 𝛽 + ∑4/-8 𝐼+.4 ∑,/!+.4.! 𝐼+.4.,𝑤,
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Window length: 𝜏 days

Thompson et al., Epidemics, 2019
Cori et al., Am. J. Epi., 2013



Uncertainty in the serial interval, imported cases

Thompson et al., Epidemics, 2019



Imported cases

Thompson et al., Epidemics, 2019

Imported cases have 
not been infected 

locally



Data are often not 
reported daily

E(𝐼#	|	𝑅#, 	{𝑤$ }, {𝐼% , 𝐼! , 𝐼& , … , 𝐼'(!}) = 𝑅#0
$)!

'

𝐼'($𝑤$

Temporally aggregated data



Temporally aggregated data

Data are often not 
reported daily



Original 
New

Temporally aggregated data



Stochastic under-reporting



Warning: model inputs may change during an epidemic

Hart et al. (eLife, 2022)                                      Hart et al. (Lancet Inf Dis, 2022)



Estimating changes in pathogen transmissibility – Summary

Bayesian inference 
methods can be used to 
estimate reproduction 
numbers in real-time 

during epidemics; these 
approaches were used 

worldwide for COVID-19

Care is needed to ensure that 
model inputs are accurate

Population heterogeneity 
is important (e.g. 

imported vs local cases) 
and methods can be 
adapted for use with 

temporally aggregated 
data



Possible mini project
3. Using mathematical models to infer changes in disease transmission during an outbreak

- Write code that takes the following as inputs: i) disease incidence time series; ii) discrete serial 
interval distribution; iii) parameters of the (gamma distributed) prior for 𝑅'; iv) window length 𝜏; 
and generates a plot of 𝑅' vs 𝑡 (for 𝑡 > 𝜏) including 95% credible intervals.

- Download data for i and ii from EpiEstim App (https://shiny.dide.imperial.ac.uk/epiestim/).

- Compare results generated by your code from results generated using EpiEstim App 
(if you prefer, rather than using the app you could use the R software package EpiEstim and use in-
built datasets from that package).
- Find a disease dataset online and apply your code to a new dataset.
-  Longer term project. Extend the model to differentiate between imported cases and local cases – as 
described in “Improved inference of time-varying reproduction numbers during infectious disease 
outbreaks” by Thompson et al.

Key references:
- “New framework and software to estimate time-varying reproduction numbers during epidemics” by 
Cori et al.
- “Improved inference of time-varying reproduction numbers during infectious disease outbreaks” by 
Thompson et al.

https://shiny.dide.imperial.ac.uk/epiestim/
https://shiny.dide.imperial.ac.uk/epiestim/
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• Compartmental models

• Renewal equation models

2. Early in an outbreak: Assessing the risk of major epidemics 
• Estimating the probability of a major epidemic [stochastic compartmental model]

• Possible mini project

3. During an epidemic: Assessing the effectiveness of current interventions
• Inferring current transmissibility [renewal equation model]
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4. At the end of an epidemic: Assessing when the epidemic is over
• End-of-outbreak probability estimation [compartmental model and renewal equation model]

• Possible mini project



When can an outbreak be declared over?

At the end of an outbreak



When can outbreaks be declared over?



When can outbreaks be declared over?



How long is it necessary to 
wait before declaring an 

outbreak over?

When can outbreaks be declared over?



Initial analysis:

When can outbreaks be declared over?



Initial analysis:

When can outbreaks be declared over?

Provides a “general rule” based on the 
time since the last observed case



When can outbreaks be declared over?

End-of-outbreak declarations 
based solely on the time 

since the previous observed 
case fail to reflect outbreak-
specific effects on the end-

of-outbreak probability



When can outbreaks be declared over?

End-of-outbreak declarations 
based solely on the time 

since the previous observed 
case fail to reflect outbreak-
specific effects on the end-

of-outbreak probability

IDEA: Take a specific 
disease incidence time 
series and calculate: 
P(no future cases)



When can outbreaks be declared over?

Nishiura et al. derived an outbreak-
specific approximation of the end-of-

outbreak probability under a 
branching process transmission 

model



When can outbreaks be declared over?

Time

Transmission 
model



When can outbreaks be declared over?

Under this transmission 
model, the end-of-outbreak 

probability can be calculated 
exactly if the outbreak 

transmission tree is known



When can outbreaks be declared over?

Ebola in DRC (2017) Nipah in Bangladesh (2004)



When can outbreaks be declared over?

Ebola in DRC (2017) Nipah in Bangladesh (2004)

Problem: Transmission tree is often unknown…



When can outbreaks be declared over?

If the transmission tree is unknown, then the 
end-of-outbreak probability can be considering 

“all possible transmission trees”:

ℙ no	future	cases =
∑(ℙ no	future	cases	|	transmission	tree	𝑖  ×

	ℙ transmission	tree	𝑖

Optimizing the timing of an end-of-outbreak declaration

Hart et al.



When can outbreaks be declared over?

- WHO declares Ebola outbreaks over after 42 “case-free” days
- Simple rules of thumb for end-of-outbreak declarations can be tested using repeated model 

simulation (of e.g. stochastic compartmental models) – but these are not “outbreak specific”
- Under a branching process model, Nishiura et al. derived an approximation to the end-of-outbreak 

probability
- The end-of-outbreak probability can be calculated exactly under the same model, if the 

transmission tree is known (Bradbury et al.)
- If the transmission tree is not known, an unbiased estimate of the end-of-outbreak probability can 

be calculated by enumerating over all possible transmission trees (or using MCMC to estimate the 
transmission tree; Hart et al.)



An alternative (easier) modelling framework

Instead of using 
compartmental models or 

individual-based branching 
processes, an alternative 

modelling framework 
involves renewal equations
[same model as described 

earlier, but assuming 
constant R]



An alternative (easier) modelling framework
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processes, an alternative 

modelling framework 
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An alternative (easier) modelling framework

Instead of using 
compartmental models or 

individual-based branching 
processes, an alternative 

modelling framework 
involves renewal equations

End of outbreak probability:

Poisson model

NB model



Case study: Ebola virus disease in DRC

Time

ERT 
withdrawal

(02/07)

Key Question 2:
When can the ERT 

be withdrawn?

Key Question 1:
How effective is

the ERT?
27/03

18/04

26/04

11/05

24/04

24/04

30/04 02/05

ERT 
arrival

(15/05)
8 cases 

(27/03 – 11/05)

27/03       06/04      16/04      26/04        06/05
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1.  Estimate R (and k) pre-ERT

2.  Calculate risk of future 
cases each day if the ERT
is withdrawn 



Case study: Ebola virus disease in DRC

= 1 – EOO prob



Case study: Ebola virus disease in DRC

- ERT effective at limiting transmission
- ERT was only withdrawn when it was safe to do so

= 1 – EOO prob



Effect of under-reporting



When can outbreaks be declared over?

- Renewal equation models provide a framework for inferring the end-of-outbreak 
probability straightforwardly (obtaining outbreak-specific estimates)

- Estimates can be informed by outbreak data and adjusted as additional data arise
- An outbreak can be declared over when the inferred end-of-outbreak probability 

falls below a threshold reflecting a policy-makers’ appetite for risk
- Superspreading events can be accounted for by assuming a NB distributed 

number of cases each day
- Effective disease surveillance is essential to declare outbreaks over quickly and 

accurately following the final case



Possible mini project
4. Using mathematical models to determine when an outbreak is over

- Write code that takes the following as inputs: i) a disease incidence time series; ii) a discrete serial 
interval distribution; iii) the value of 𝑅; iv) (for NB distribution only) the value of k; and generates 
estimates of the probability that no cases will occur in future (using the renewal equation method).

-            -  Can you reproduce this figure? (for number of cases 
each day drawn from a Poisson distribution)

-            -  Can you apply your methods to other datasets (e.g. the         
datasets suggested under project idea 3)?  How long is it         
necessary to wait to be confident that an outbreak is over 
for different outbreaks/diseases? 



Summary

- Infectious disease models exist in a range of forms (here: compartmental models 
and renewal equations)

- Certain models may be more suitable to answer specific questions
- Compartmental models are flexible and can easily include different epidemiology

- Renewal equations simply track case numbers
- Epidemiological models can be used to answer different questions at different 
outbreak stages (e.g., early in an outbreak = assess PMO, middle of an outbreak 

= estimate 𝑅b, late in outbreak = assess when outbreak has finished).



https://www.maths.ox.ac.uk/groups/mathematical-biology/infectious-disease-modelling

robin.thompson@maths.ox.ac.uk

- Assign groups
- Get started on an infectious disease modelling mini project (come up with some 

interesting plots to show next week J)
- Finish project (and 3-5 slides) next Monday

- Report back on Tuesday

Can each group please send 3-5 slides to me by noon next Tuesday?


