Initial problem sheet (Not to be handed in)

- 1. Define an equivalence relation on the unit interval [0,1] by $x \sim y$ if either x = y or x = 0 and y = 1. Show that the set of equivalence classes with the quotient topology is homeomorphic to the unit circle.
- **2.** Let X be the space of equivalence classes of points in $\mathbb{R}^2\setminus\{0\}$ under the equivalence relation $(x_1, x_2) \sim (\lambda x_1, \lambda^{-1} x_2)$ for some $\lambda \in \mathbb{R}\setminus\{0\}$. Show by considering the equivalence classes of (0, 1) and (1, 0) that the space X is not Hausdorff in the quotient topology.
- **3.** A connected surface X is obtained by taking n copies of a sphere with two disjoint open discs removed, and identifying the 2n boundary circles in pairs. Show that the Euler characteristic of X must vanish.
- **4.** A connected surface Y is obtained by taking 2n copies of a sphere with three disjoint open discs removed, and identifying the 6n boundary circles in pairs. What values can the Euler characteristic take?

Can you make this surface this way?

- **5.** Let S be the set of all straight lines in \mathbb{R}^2 (not necessarily through 0). Show that there is a natural way to make S into a topological surface. Show that S is homeomorphic to the open Möbius band M.
- 6. Consider the quotient

$$S = \mathbb{R}^2/G$$

where $G = \mathbb{Z}^2$ acts¹ by $(n, m) \bullet (x, y) = ((-1)^m x + n, y + m)$ on \mathbb{R}^2 , where $n, m \in \mathbb{Z}$. Show that S is homeomorphic to the Klein bottle.

7. A figure 8 loop consists of two circles touching at a point. Show that a torus can be obtained by attaching a disc onto a figure 8 loop.

 $^{{}^{1}}G = \mathbb{Z}^{2}$ as a set, but as a group $G = \mathbb{Z} \times \mathbb{Z}$ is a semi-direct product.