
Professor Arguz B3.2 Geometry of Surfaces MT 2025

Initial problem sheet. Solutions

1. Define an equivalence relation on the unit interval [0, 1] by x ∼ y if either
x = y or x = 0 and y = 1. Show that the set of equivalence classes with the
quotient topology is homeomorphic to the unit circle.

Solution. Map [0, 1]/ ∼→ S1 by x 7→ (cos 2πx, sin 2πx). This maps 0, 1 to
(1, 0), and is otherwise injective. It is clearly a homeomorphism.

2. Let X be the space of equivalence classes of points in R2\{0} under the
equivalence relation (x1, x2) ∼ (λx1, λ

−1x2) for some λ ∈ R\{0}. Show by
considering the equivalence classes of (0, 1) and (1, 0) that the space X is not
Hausdorff in the quotient topology.

Solution. Write [x, y] for the equivalence class of (x, y). Then [1, 0] ̸= [0, 1].
Let U, V be open neighbourhoods of [1, 0] and [0, 1] in X. Then there exist
δ, ϵ ∈ (0, 1) such that [x, y] ∈ U for (x, y) ∈ Bδ(1, 0) and [x, y] ∈ U for
(x, y) ∈ Bδ(0, 1). Thus if 0 < γ < min(δ, ϵ) then [1, γ] ∈ U and [γ, 1] ∈ V .
But taking λ = γ−1 shows that [1, γ] = [γ, 1], so U ∩ V = ∅. Thus X is not
Hausdorff.

Remark. X does have the property that every x ∈ X has an open neigh-
bourhood homeomorphic to an open set in R. So not being Hausdorff is the
only thing preventing X being a topological manifold.

Can you draw a picture of X?

3. A connected surface X is obtained by taking n copies of a sphere with
two disjoint open discs removed, and identifying the 2n boundary circles in
pairs. Show that the Euler characteristic of X must vanish.

Solution. The sphere with two disjoint open discs removed is an annulus
[0, 1]×S1. There is an obvious division into V = 2 vertices, and E = 3 edges,
and F = 1 faces, such that each boundary circle has 1 vertex and 1 edge.

When n copies of the annulus are glued together, the result has V ′ faces, E ′

edges, and F ′ faces, where

V ′ = nV − n = n, E ′ = nE − n = 2n, F ′ = nF = n,

and we subtract −n from V ′, E ′ to avoid double-counting the edges and
vertices on the boundry circles. Hence X has Euler characteristic χ(X) =
V ′ − E ′ + F ′ = n− 2n+ n = 0.
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4. A connected surface Y is obtained by taking 2n copies of a sphere with
three disjoint open discs removed, and identifying the 6n boundary circles in
pairs. What values can the Euler characteristic take?

Can you make this surface this way?

Solution. Follow the method of question 3. The sphere with three disjoint
open discs removed has a division into V = 4 vertices, and E = 6 edges, and
F = 1 faces, such that each boundary circle has 1 vertex and 1 edge. When
2n copies of this are glued together, the result has V ′ faces, E ′ edges, and F ′

faces, where

V ′ = 2nV − 3n = 5n, E ′ = 2nE − 3n = 9n, F ′ = 2nF = 2n,

so χ(X) = V ′ − E ′ + F ′ = 5n− 9n+ 2n = −2n.

If X is connected and oriented it has g holes with 2−2g = −2n, so g = n+1.
When n = 1 this gives a surface with genus 2 as in the picture. We can cut
it into two spheres with 3 holes by a plane through the centre of both holes.

5. Let S be the set of all straight lines in R2 (not necessarily through 0).
Show that there is a natural way to make S into a topological surface. Show
that S is homeomorphic to the open Möbius band M .

Solution 1.
Lines in R2 are given by an equation ax + by = c. We only care about
(a, b, c) ∈ R3 up to rescaling by R \ 0, so that is a point [a : b : c] ∈ RP2.
But we do not want a, b to vanish simultaneously, so we get RP2 minus the
point [0 : 0 : 1]. But RP2 minus a point is homeomorphic to RP2 minus a
disc, which we saw (in Exercise 2) is an open Möbius band.

Solution 2.
Given a line L, nearby lines differ from L by a tilting angle and by vary-
ing the distance of the line from the origin. So we declare that the angle
and the (appropriately signed) distance define continuous local coordinates.
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Indeed, for the subset of all non-vertical lines we can define a tilting angle
θ ∈ (−π/2, π/2) with respect to the positive x-axis and a signed distance
r ∈ R from the origin (with signs as explained in the footnote), and for
the subset of all non-horizontal lines we instead use the tilting angle ψ with
respect to the negative y-axis (turn the picture by 90 degrees). One could
work with these two patches and compare the coordinates (so ψ = π− θ and
the signed distance may or may not flip sign). But it’s easier to think of the
vertical lines as left- and right-limits of the coordinates (θ, r).

Indeed, consider all lines at absolute distance 1 from the origin: so all the
lines tangent to the unit circle. The tangent at (1, 0) is vertical, the lines
tangent just above at (1− positive, positive) ∈ S1 have (θ, r) ≃ (−π/2,+1),
whereas the lines tangent just below at (1 − positive, negative) ∈ S1 have
(θ, r) ≃ (π/2,−1). So we should identify

(−π/2,+1) ∼ (π/2,−1)

with the vertical tangent line at (1, 0). Similarly, at (−1, 0) we deduce that
we should identify

(π/2,+1) ∼ (−π/2,−1)

with the vertical tangent line at (−1, 0). The fact that we used radius |r| =
1 is irrelevant, the same argument works for any positive radius. Finally,
for |r| = 0, we have the space of lines through 0, described by the tilting
angles [−π/2, π/2] where −π/2 and π/2 both correspond to the vertical y-
axis. So we identify (−π/2, 0) ∼ (π/2, 0), consistently with the previous
identifications.

In conclusion:

S = [−π/2, π/2]× R/ ((π/2, r) ∼ (−π/2,−r) for all r ∈ R).
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Using the homeomorphism R → (−π/2, π/2), x 7→ tan−1(x), we see that
S is the quotient of the square [−π/2, π/2] × (−π/2, π/2) by the same re-
lation as above. Adding (π/2, π/2) and rescaling by 1/π shows that S is
homeomorphic to M .

6. Consider the quotient
S = R2/G

where G = Z2 acts1 by (n,m) • (x, y) = ((−1)mx + n, y +m) on R2, where
n,m ∈ Z. Show that S is homeomorphic to the Klein bottle.

Solution. Locally, near p ∈ S we pick a representative (x, y) ∈ R2 so
p = [x, y]. Then a small enough open disc Dp around p (for example, of
radius 1/100) will have no two points lying in the same G-orbit. Thus the
quotient map f : R2 ⊃ Dp 7→ {[q] : q ∈ Dp} ⊂ S is bijective, and by definition
f, f−1 are continuous, so f is a homeomorphism. So S is a topological surface,
and we declare that the two coordinates of R2 near (x, y) are local smooth
coordinates near p. Two different choices of representative (x, y), ((−1)mx+
n, y + m) yield local coordinates which differ by a smooth map, namely
R2 → R2, (X, Y ) 7→ ((−1)mX + n, Y +m). So S is a smooth surface.

Notice that there is a representative of each point of the orbit space R2/G
inside the unit square [0, 1] × [0, 1]. In the interior, no two points lie in the
same G-orbit, whereas on the boundaries the identifications coming from the
G-action prescribe precisely the gluing of edges of a square used in the lecture
notes to define the Klein bottle as a topological surface. So R2/G can be
homeomorphically identified with K, by mapping each G-orbit in R2 to a
representative of that G-orbit lying in the unit square.

7. A figure 8 loop consists of two circles touching at a point. Show that a
torus can be obtained by attaching a disc onto a figure 8 loop.

Solution. Recall from the notes that the torus arises from the square by
identifying parallel edges. The two pairs of parallel edges form two loops,
which touch at a point (corresponding to the four identified vertices of the
square). Let’s call those loops A,B (oriented by, say, going clockwise around
the boundary of the square). The closed square is homeomorphic to a closed
disc, so T 2 is obtained by attaching the closed disc D2 by going around the
loops A,B,A−1, B−1, where A−1 means you go around the loop A in the
opposite direction.

1G = Z2 as a set, but as a group G = Z ⋊ Z is a semi-direct product.
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