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1. Introduction

This is a course on “surfaces”. Roughly speaking, surface is a shape that looks locally like
a 2-dimensional disc — even if it may curve or twist when viewed as a whole (We will see a
precise definition of a surface later on). Here are two examples of surfaces, a sphere and a
torus:

Our goal is to study and relate three classes of surfaces:

(1) Topological surfaces (topological 2-manifolds),
(2) Riemann surfaces (complex 1-manifolds).
(3) Smooth surfaces (smooth real 2-manifolds),

(a) embedded in R3,
(b) abstractly (i.e.possibly without a choice of embedding into any Rn),

Whether a surface locally looks like the disc continuously, holomorphically, or smoothly
distinguishes the cases (1), (2), and (3) respectively.

2. Topological Surfaces

2.1. Background from topology. A5: Topology is essential for this course. We will recall
some basic notions (several references for these, see for instance Wilson A. Sutherland. Intro-
duction to metric and topological spaces. Oxford University Press, Oxford, second edition,
2009. Companion web site: www.oup.com/uk/companion/metric. ).

Definition 2.1. A topological space is a set X together with a collection T of subsets of X,
called open sets in X, such that:

(i) ∅ ∈ T and X ∈ T ,
(ii) If U, V ∈ T , then U ∩ V ∈ T ,
(iii) If Ui ∈ T for i ∈ I, for an index set I (could be finite or infinite), then

⋃
i Ui ∈ T .

We say that T is a topology for X. We sometimes use the notation (X, T ) for a topological
space X with a topology T .

• X is compact if every open cover of X has a finite subcover. A topological space is
called locally compact if every point has a compact neighbourhood.

• A map f : X → Y of topological spaces is continuous if whenever V ⊆ Y is open,
then f−1(V ) ⊆ X is open.

www.oup.com/uk/companion/metric.
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• X is Hausdorff if whenever x, y ∈ X, and x ̸= y, there are open subsets U, V of X
with U ∩ V = ∅ such that x ∈ U and y ∈ V .

• f : X → Y is a homeomorphism if it is continuous and invertible with continuous
inverse. In this case, X and Y are called homeomorphic.

• If X is a topological space with topology TX and Y ⊆ X, the subspace topology on Y
is TY = {Y ∩ U | U ∈ TX}.

Definition 2.2. Given a topological space (X, T ), a basis for T is a subcollection B ⊂ T
such that every set in T is a union of sets from B.

Many topological properties can be verified by just checking basis elements: for instance,
to check a map f : (X, TX) → (Y, TY ) of topological spaces is continuous, it suffices to check
that f−1(B) is open in TX for each set B in some basis BY for TY . Although a topology may
admit many different bases, it is often preferable in practice to work with one that uses as
few sets as possible.

• A topological space X is called second countable if it has a countable basis for its
topology. Every compact metric space is second countable.

You need to be familiar with these topological notions and with the basic constructions,
such as the construction of a quotient topological space.

2.2. Topological Surfaces.

Definition 2.3. A topological surface (or just surface) X is a Hausdorff topological space
such that each x ∈ X has an open neighbourhood U ⊆ X with a homeomorphism φ : U → V
to an open subset V ⊆ R2. The triple (U, V, φ) is a chart on X.

Remarks 2.4. (a) In older books, a surface is called closed if it is compact.
(b) It is better to also requireX to be second countable or paracompact (global topological

conditions). As they are automatic for compact surfaces, which is what we mostly
care about, for simplicity we won’t worry about this.

(c) More generally, we can define a topological manifold of dimension n to be a (sec-
ond countable) Hausdorff topological space X, locally homeomorphic to Rn. Then,
surfaces are topological manifolds of dimension 2. We will see later that compact
surfaces can be completely classified. But for n > 2, classifying compact topological
n-manifolds is very difficult.

Example 2.5. Any open subset X of R2 is a topological surface which can be covered by
one chart (U, V, φ) with U = V = X, and φ = id.

Example 2.6. The 2-sphere is

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} .

We can cover this by two charts (U1, V1, φ1), (U2, V2, φ2) with U1 = {S2 \ (0, 0,−1)}, U2 =
{S2 \ (0, 0, 1)}, V1 = V2 = R2, and φi : Ui → Vi given by

φ1(x, y, z) =
1

1 + z
(x, y)

φ2(x, y, z) =
1

1− z
(x, y) .

Note that you can not cover S2 with one chart, you need at least two. So, S2 is locally
homeomorphic to R2. It is Hausdorff (and second countable), as it is a subspace of R2 which
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is both. So, S2 is a topological surface. Moreover, it is compact by Heine-Borel, as closed
and bounded in R3.

x

y

z
10,0.2)

(Y2-

--
-&
X

92[x,y ,2)

*

*10,0 . -1)

Figure 2.1. The 2-sphere S2

2.3. Building surfaces as quotient topological spaces.

Definition 2.7. Let X be a topological space, and ∼ an equivalence relation on X. Write
X/ ∼ for the set of ∼ equivalence classes [x] of points x in X. Write π : X → X/ ∼ for the
surjective projection π : x 7→ [x].

The quotient topology on X/ ∼ is defined by U ⊆ X/ ∼ is open iff π−1(U) ⊆ X is open in
X.

Warning : If ∼ is not well chosen, then X/ ∼ may not be a nice topological space. For
example, X Hausdorff does not imply X/ ∼ Hausdorff (in fact, X/ ∼ is Hausdorff iff {(x, y) ∈
X ×X : x ∼ y} is closed in X ×X).

X compact does imply X/ ∼ is compact.

Example 2.8. Take X = [0, 1]. Define an equivalence relation ∼ on X by x ∼ x, 0 ∼ 1,
1 ∼ 0. Think of it as gluing 0 to 1. Then, X/ ∼ is the circle.

:
:D · 0 =1

&

Figure 2.2. The circle as a quotient of the interval

Example 2.9. Take X = [0, 1]2. Define an equivalence relation ∼ on X by (x, 0) ∼ (x, 1)
and (0, y) ∼ (1, y), for all x, y ∈ [0, 1]. (We leave out (x, y) ∼ (x, y) and (x, 1) ∼ (x, 0), etc. If
we just write some relations in an equivalence relation, we mean ∼ is the weakest equivalence
relation inducing these relations). Draw this as in Figure 2.3.

The same kind of arrows means identify these sides in this direction. ThenX/ ∼ is a surface
homeomorphic to the torus T 2 = (S1)2. Indeed, X/ ∼ = ([0, 1]/ ∼)× ([0, 1]/ ∼) ∼= S1 × S1,
where 0 ∼ 1 as in Example 2.8.
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a

= 6-
Figure 2.3. The torus T 2 as a quotient of [0, 1]2

To convince yourself that X/ ∼ is a surface, that is, it is locally homeomorphic to R2:

• Any point (0, y)/ ∼ has an open neighbourhood homeomorphic to an open ball in R2,
as illustrated below.

Al
-
=-D

Figure 2.4. Open neighbourhood of a point (0, y)/ ∼

• Any point (0, 0)/ ∼ has an open neighbourhood homeomorphic to an open ball in R2.
Note that all 4 vertices of X are identified in X/ ∼, as illustrated below.

D

=·
⑧ ①

Figure 2.5. Open neighbourhood of a point (0, 0)/ ∼

Later, we will define notation which describes the diagram in Figure 2.3 as ab−1a−1b. In
fact, we can make other topological surfaces by identifying sides of X = [0, 1]2.

Example 2.10. In Figure 2.6 we illustrate X/ ∼ ∼= S2.
Note that only 2 vertices get identified.
Later notation: aa−1bb−1.

Example 2.11. In Figure 2.7 we illustrate X/ ∼ ∼= RP2, the real projective space.
RP2 = S2/± 1, (x, y, z) ∼ (−x,−y,−z).
This is a non-orientable surface (explained later)
Later notation: abab.
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Figure 2.6. S2 as a quotient of [0, 1]2

D
Do①

·
Figure 2.7. RP2 as a quotient of [0, 1]2 and as a quotient of S2

One can think of RP2 as a half-sphere with opposite points on the equator identified. Note
that RP2 cannot be embedded in R3 (since it is not orientable), so it is difficult to visualize.

Example 2.12. In Figure 2.8 we illustrate X/ ∼ ∼= K, the Klein bottle.

self-intersection in 1R3

D

a

= 6-I Y

Figure 2.8. The Klein bottle

Note that all 4 vertices get identified by ∼.
Later notation: ab−1ab.
The Klein bottle is also non-orientable, it cannot be embedded in R3.

Examples 2.8-2.12 are all different (non-homeomorphic) surfaces.
Generally, we do not need to work with squares: we can take any polygon X in the plane

with an even number of sides, and identify sides in pairs, then X/ ∼ will be a compact
surface. One needs to do a little work to decide which subsets of vertices are identified. In
the example below in Figure 2.9, all 6 vertices are identified. Later notation: abc−1a−1cb.

Every point in X/ ∼ locally looks like in Figure 2.10. Note that X/ ∼ is a surface which
is compact, as X is.

Another example is provided in Figure 2.11 – later notation: ab−1ca−1cb. In this example,
vertices are identified in 2 groups of 3.
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Figure 2.9. The compact surface abc−1a−1cb

i
Figure 2.10. Local neighbourhoods of points in the surface abc−1a−1cb

↓

·
Don DoE (B

a2
+

M/pp
* y

2

C

Figure 2.11. The compact surface ab−1ca−1cb

Learn how to calculate which groups of vertices are identified:

jj↓ -Ea · X** O

⑰E (B
a2
+

M/pp
* y

2

C &
Figure 2.12. Calculating groups of vertices identified

Proceed with this process until all closes up, and you have got one group of vertices
identified by ∼. Do this for all vertex groups.
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We may not always start with a polygon. Generally, we may also allow curved sides. For
instance, we can start with a 2-gon:

a
a

D

- z

=>X = 1P-
D ↑

a
-1

a

Figure 2.13. Surfaces from curved 2-gons

Here is some notation for describing polygons with side identifications. Label sides by
a, b, c, . . . or a−1, b−1, c−1, . . ., where identified sides get the same label a, b, c, . . . and have
a, b, c, . . . for sides with clockwise arrows and a−1, b−1, c−1, . . . for sides with anti-clockwise
arrows.

Then, starting from some vertex (it does not matter which), list the labels on the sides
in clockwise order. For instance, for Figure 2.14 below, we get abc−1a−1cb, or equivalently
c−1a−1cbab – cyclic permutations do not make any difference.

b
8 &8

aCot *

& &

* -J
- 2
a

⑧ *D O

- 2
C

Figure 2.14. The surface abc−1a−1cb is also the surface c−1a−1cbab

This is called a planar model for a surface. It provides a very succinct way to describe
surfaces.

Note that different words can describe the same (i.e. homeomorphic) surfaces, and it is
not trivial to decide when they do.

2.4. Cellular decompositions and triangulations. Let n ∈ {0, 1, 2, . . .}. Denote by

Dn = {x ∈ Rn | ∥x∥ ≤ 1}, the closed unit disc,

D̊n = {x ∈ Rn | ∥x∥ < 1}, the interior of Dn, and

∂Dn = {x ∈ Rn | ∥x∥ = 1}, the boundary of Dn.

Definition 2.13. Let X be a compact surface. A cellular decomposition of X is a finite
collection of continuous maps, called cells, given by:

(i) Maps vi : D
0 → X called 0-cells or vertices,

(ii) Maps ej : D
1 → X called 1-cells or edges, and

(i) Maps fk : D
2 → X called 2-cells or faces,

satisfying the following conditions:

(a) Each map restricted to the interior D̊n is a homeomorphism onto its image.
(b) The image of ∂Dn is contained in the images of the cells of dimension strictly less

than n.
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(c) X is the disjoint union of the images of the interiors of the cells.

Remark 2.14. Definition 2.13 essentially coincides with what Hitchin’s lecture notes refer
to subdivision. In that setting, a subdivision of X is given by the collection of subsets
vi(D

0), ej(D̊
1), and fk(D̊

2), referred to as vertices, edges and faces, respectively, but the
specific data of the mapss vi, ej , fk is not recorded.

What this means: A cellular decomposition or subdivision of X is a division of X into
polygons (the faces), with edges and vertices. Each edge ends at two vertices. However,
the maps ei, fj are not required to be injective when restricted to the boundaries of their
domains. So, an edge can end at the same vertex at both ends. A face can have repeated
edges and vertices in its boundary.

Vertex

·.......
:edg

2---

Figure 2.15. A cellular decomposition of a surface

O
...........

Figure 2.16. Repeated vertices and edges in cellular decompositions

A planar model of X, as introduced in the previous section, is simply a cellular decomposi-
tion (or subdivision) of X with a single face. A triangulation of X is a cellular decomposition
(or subdivision) in which every face is adjacent to three edges and three vertices (allowing
repetitions). Equivalently, a triangulation may be viewed as a decomposition of X into closed
triangles whose edges are identified in pairs.

⑧

N-
⑧ &

-

Figure 2.17. Triangle and triangulation

Here is a fact we will not prove in this course:

Theorem 2.15. Every compact surface admits a triangulation.

We will later discuss the construction of triangulations in the case where X is a smooth
surface or a Riemann surface.
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2.5. The Euler characteristic.

Definition 2.16. Let X be a compact surface. Choose a cellular decomposition (or subdi-
vision) of X with V vertices, E edges and F faces. The Euler characteristic of X is:

χ(X) = V − E + F ∈ Z .

Theorem 2.17. The Euler characteristic χ(X) depends only on X as a topological space,
and not on the choice of subdivision.

Sketch of the proof: (not examinable) The Euler charcteristic is invariant under the fol-
lowing two processes:

(A) Subdividing an edge into two edges, by adding a vertex at an interior point.
(B) Subdividing a face into two faces, by connecting two vertices by a new edge.

⑧⑧
& &

& &

O
⑧

⑧ Y

& 6

& O

& O

V +-VV 1 - V+ 1

Ev E + 1E +E + 2

↑ F F+ F + 1

Figure 2.18. Moves between triangulations

Claim: Any two subdivisions ofX can be linked by a finite sequence of moves A,B and their
inverses, together with continuous deformations. So, χ(X) is independent of the subdivision.

Alternatively: One can define the homology groups Hi(X), depending only on X as a
topological space (see section 3.1 in Allen Hatcher. Algebraic topology. Cambridge University
Press, Cambridge, 2002.) and show that χ(X) = dimH0(X)− dimH1(X) + dimH2(X).

X = 52 X = TE
⑳ - iy ⑧

---1
111

I ·
⑧ ⑧yg

V =3E = 2 T= 1 x(S4 = 2 v =2 E = 2 F = 2 x(T4 =0

X = IRP
?
o 88X=&

- -PPo ·Klein bottleT% 2 oo EI
· o

V=2 E =2 F= 2 V=1 E =2 F =2

X/IRP)= 1 x(k)=0

Figure 2.19. Euler characteristics of S2, T 2, RP2, and K

Example 2.18. Consider the sphere X = S2. We have V = 3, E = 2, F = 1. So, χ(X) = 2
– see Figure 2.19.

Example 2.19. Consider the torus X = T 2. We have V = 1, E = 2, F = 1. So, χ(X) = 0–
see Figure 2.19.
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Example 2.20. Consider the real projective plane X = RP2. We have V = 2, E = 2, F = 1.
So, χ(X) = 1 – see Figure 2.19.

Example 2.21. Consider the Klein bottle X = K. We have V = 1, E = 2, F = 1. So,
χ(X) = 0 – see Figure 2.19. Note that χ(T 2) = χ(K) = 0, but T 2 ≇ K.

2.6. Connected sums. LetX,Y be compact, connected surfaces. The connected sum X#Y
is a compact, connected surface obtained by cutting out small open discs D̊ ⊂ X, D̊′ ⊂ Y and
gluing the S1 boundaries of X \ D̊ and Y \ D̊′ (Technically, this depends on the orientation
you glue the boundary S1, but we ignore this).

X#Y

⑳Ein
Figure 2.20. Connected sums of surfaces

Note that X#S2 ∼= X, as it is obtained by cutting out a disc and gluing a disc.
Choose triangulations of X,Y such that the discs cut out are faces. Then,

VX#Y = VX + VY − 3

EX#Y = EX + EY − 3

FX#Y = FX + FY − 2 .

So, we obtain
χ(X#Y ) = χ(X) + χ(Y )− 2 . (2.1)

YX

=
Figure 2.21. Gluing triangulations in a connected sum

Example 2.22. The surface Σg of genus g ≥ 0, or sphere with g holes, is the multiple
connected sum of g copies of T 2 if g > 0 (it is just S2 if g = 0).

From (2.1), since χ(S2) = 2, χ(T 2) = 0, we see by induction that

χ(Σg) = 2− 2g . (2.2)

Note that this distinguishes Σg, for different g.

We can take connected sums of planar models:
If X is represented by a word a1 . . . a2k and Y by a word b1 . . . b2ℓ, then X#Y is represented

by a1 . . . a2kb1 . . . b2ℓ.
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E G
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= 3 T #T' #Th

Figure 2.22. The genus g = 3 surface Σ3

and
o as bee be

↓ba InY
WanaX"

,
i Y/

- ...
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↑

&

"
Y1$ ->

%
=> -

n #Y
Glue boundaries

:
Cut out S

diacs Dand Do-an
"I
be of candd an "ode""

Figure 2.23. Connected sum of planar models

So -VD

W= /11
* PDX

IRP'I disc IRP'I disa

Figure 2.24. Proof of RP2#RP2 ∼= K

Example 2.23. There is a homeomorphism RP2#RP2 ∼= K, Klein bottle.
As illustrated in Figure 2.24, cut K along the red S1 into two Möbius strips (white and

green regions), which are each RP2 \ disc.

- -
Figure 2.25. Proof of RP2#RP2#RP2 ∼= T 2#RP2
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Example 2.24. There are homeomorphisms K#RP2 ∼= RP2#RP2#RP2 ∼= T 2#RP2: The
first homeomorphism here follows from the previous example. For the second one, note
that RP2#RP2#RP2 ∼= S2#RP2#RP2#RP2. Regard this as S2 with 3 discs removed, with
boundaries glued as shown. Note that taking a connected sum of a surface with RP2 amounts
to removing a disc from it and then gluing in a Möbius strip.

Now to see RP2#RP2#RP2 ∼= T 2#RP2, as illustrated in Figure 2.25 cut along purple lines
into two regions as shown. Green region is RP2 \ disc and white region is T 2 \ disc. So,
RP2#RP2#RP2 ∼= T 2#RP2.

Note that T 2#RP2 ∼= K#RP2, but T 2 ≇ K, so we can not do cancellation in connected
sums.

2.7. Orientations and orientability.

Definition 2.25. The Möbius strip M is [0, 1]× [0, 1]/ ∼ where (0, y) ∼ (1, 1− y).

----------

M

--------

Figure 2.26. The Möbius strip

⑫
Figure 2.27. The Möbius strip

A surface X is called orientable if it does not contain any open subset homeomorphic to
M .

Equivalent pointof view : An orientation on X is a consistent notion of ”clockwise” every-
where on X.The Möbius strip has no orientation, as if we take a notion of clockwise and
deform ariund the loop, it turns into anticlockwise. figure If X cannot be oriented, there is
some loop in X, deforming round which turns clockwise into anticlockwise, and a neighbour-
hood of this loop is a Möbius strip.

For a planar model, X is orientable iff every pair of glued edges are oriented one clockwise
and one anticlockwise (i.e. in the word like ab−1c−1a−1bc, each symbol a, b, c, . . . appears
once as a and once as a−1 etc). Since otherwise a strip drawn from a =⇒ a or a−1 =⇒ a−1

is a Möbius strip.

Examples 2.26. • S2 = aa−1bb−1 is orientable.
• T 2 = ab−1a−1b is orientable.
• RP2 = abab is not orientable.
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a ja
To

e O

/////////
· &

I

or a
2

Figure 2.28. A Möbius strip in a non-orientable surface

• K = ab−1ab is not orientable.
Note that χ(T 2) = χ(K) = 0, but one can distinguish T 2 and K as one is orientable and

one is not.

A connected sum X#Y is orientable iff X and Y are both orientable.

2.8. The classification of surfaces.

Theorem 2.27. Let X be a compact, connected surface. Then, either:

(a) X is orientable, and then X is homeomorphic to a surface Σg for g ≥ 0 (recall Σ0
∼= S2

and Σg is the connected sum of g copies of T 2’s for g ≥ 1), and χ(X) = 2− 2g, or
(b) X is not orientable, and then X is homeomorphic to a connected sum of h copies of

RP2 for h ≥ 1, X = RP2# . . .#RP2 and χ(X) = 2− h.

We sketch a proof below (this is not examinable). See Hitchin’s notes for details.
Sketch of the proof

Step 1: X admits a triangulation, by Theorem 2.15 in §2.13.
Step 2: X admits a planar model: Take a subdivision of X with minimal number of faces

– such a subdivision exists, since any triangulation is one. If a subdivision contains
more than one face, two adjacent faces can be glued together along a common edge,
thereby reducing the total number of faces. Hence, the minimal number of faces is in
fact 1.

Step 3: X admits a planar model with a single vertex, unless X = S2; otherwise, one can cut
and paste to reduce the number of vertices. For example, an edge can be contracted,
as illustrated below.

=> ⑧& O

Figure 2.29. Contracting an edge

Hence: X has a subdivision with 1 vertex, 1 face and n edges, and can be obtained
by sides of a 2n-gon. Then, χ(X) = 2 − n, so χ(X) ≤ 2. [Special case: for X = S2

we have 2 vertices, 1 face and 1 edge. So, χ(X) = 2 – we can not shrink the edge to
reduce the number of vertices in this case.]

Step 4: If X is not orientable, then the planar model has two glued edges with same orien-
tation. We can draw a Möbius strip M = RP2 \ (disc) joining these. Hence, we can
write X = Y#RP2 with χ(Y ) = χ(X) + 1, nY = nX − 1.
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S

·X =5
Figure 2.30. Step 3: X = S2

=o>
08
-

-

·-
=

Figure 2.31. Step 4: Möbius strip in non-orientable surface

Step 5: If X is orientable, one can show that X = Y#T 2, so that χ(Y ) = χ(X) + 2, nY =
nX − 2, or X = S2, by cutting and pastimg planar models.

Step 6: Induction on n now implies that, either

X = #gT
2, for some g ≥ 0, if X is orientable, and

X = (#gT
2)#(#kRP2), for some g, k ≥ 0 if X is orientable.

In the latter case, since T#RP2 ∼= RP2#RP2#RP2, by Example 2.24, we obtain
X = #2g+kRP2. This completes the proof.

Remark 2.28. For surfaces, knowing the Euler characteristic χ(X) and whether the surface
is orientable or not completely determines it, up to homeomorphism. Things get far more
complicated in higher dimensions — no such neat classification exists.

3. Riemann surfaces

A Riemann surface is a topological surfaceX with an extra geometric structure, a complex structure
or holomorphic atlas A. This gives a notion of holomorphic function U → C, for U ⊆ X open,
and more generally a notion of holomorphic map f : X → Y for Riemann surfaces X,Y .

A2: Complex analysis generalizes to Riemann surfaces. Riemann surfaces are 1-dimensional
complex manifolds and generalize to n-dimensional complex manifolds locally modelled on
Cn.

3.1. The definition of Riemann surface.

Definition 3.1. Let X be a topological surface. A complex chart on X is a triple (U, V, φ)
such that U ⊆ X, V ⊆ C are open and φ : U → V is a homeomorphism.

In Definition 3.1 since φ : U → V is a homeomorphism, φ−1 : V → U is also a homeomor-
phism. Notation for complex charts varies in different books: one can also write as pairs
(U,φ), or as (V, φ−1), since V = φ(U) and U = φ−1(V ).

As C ∼= R2, by definition of surfaces, every point x ∈ X on a surface X admits a complex
chart with x ∈ U for some open U ⊂ X. Think of φ as a holomorphic coordinate on U ⊆ X.
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We call two charts (U1, V1, φ1) and (U2, V2, φ2) compatible if φ2 ◦ φ−1
1 : φ1(U1 ∩ U2) →

φ2(U1∩U2) is a holomorphic map between open subsets of C, with holomorphic inverse (note
that φ1(U1 ∩ U2) ⊆ V1 ⊆ C and φ2(U1 ∩ U2) ⊆ V2 ⊆ C). The map φ2 ◦ φ−1

1 is called a
transition function.

Note: φ2 ◦ φ−1
1 is automatically a homeomorphism, so being holomorphic implies it has a

holomorphic inverse by a theorem in complex analysis.

YuUz

-
42/(2) 42

I K
Vz

~
92/VenUz)

Figure 3.1. Riemann surface

A holomorphic atlas A = {(Ui, Vi, φi) : i ∈ I, for some index set I } is a family of complex
charts on X, such that:

(i) (Ui, Vi, φi) and (Uj , Vj , φj) are compatible for all i, j ∈ I,
(ii) X =

⋃
i∈I Ui .

A Riemann surface (X,A) is a topological surface X with a holomorphic atlas A. Usually,
we omit A from notation, and just say X is a Riemann surface. (Sometimes one requires A
to be a maximal atlas, that is, not a proper subset of any other atlas. Any atlas is contained
in a unique maximal atlas. This makes the definition a bit more canonical.)

Let X,Y be Riemann surfaces with holomorphic atlases A = {(Ui, Vi, φi) : i ∈ I}, and
B = {(U ′

j , V
′
j , φ

′
j) : j ∈ J}. We call a continuous map holomorphic if for all i ∈ I and j ∈ J ,

φ−1
i (Ui ∩ f−1(U ′

j))
φ′
j◦f◦φ

−1
i−−−−−−−→ V ′

j

is a holomorüphic map between open subsets of C (note that φ−1
i (Ui ∩ f−1(U ′

j)) ⊆ Vi ⊆ C,
and Vj ⊆ C ). That is, f is holomorphic when written in local holomorphic coordinates φi

on X and φ′
j on Y .

Example 3.2. X = C is a Riemann surface with atlas A = {(C,C, idC)} with one chart.
Aside: we could also take A = {(C,C, f)}, where f(x+ iy) = x− iy, or f(x+ iy) = x+2iy

etc. These give non-equivalent Riemann surface structures on X = C. The atlas A in (X,A)
is essential data. It is not enough that there exists an atlas, we need a particular choice.

Example 3.3. We make X = C∪{∞} into a topological surface homeomorphic to S2, with
open sets U ⊆ C open, together with sets of the form U ∪ {∞} for U ⊆ C such that C \U is
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Wi

C
X
=C"

- Pi 9N

D &
↑IIIfo

Figure 3.2. Holomorphic map between Riemann surfaces

compact. Then X is a Riemann surface with atlas A = {(U1, V1, φ1), (U2, V2, φ2)}, where

U1 = C = X \ {∞}, V1 = C, φ1 = idC

U2 = (C \ 0) ∪ {∞}, V2 = C, φ2(z) =

{
1
z if z ∈ C \ {0}
0 if z = ∞

The transition function is,

φ2 ◦ φ−1
1 : C \ {0} −→ C \ {0}

z 7−→ z−1 ,

which is holomorphic (no problem of a pole with z−1 as 0 is not in the domain). So,
(U1, V1, φ1), (U2, V2, φ2) are compatible. Moreover, as X = U1 ∪ U2, they cover X. Thus,
(X,A) is a Riemann surface. One may write C ∪ {∞} as CP1 (complex projective line). We
call C ∪ {∞} the Riemann sphere.

Example 3.4. Let ω1, ω2 ∈ C be linearly independent over R. Write

Λ = {mω1 + nω2 : m,n ∈ Z} ,

which is an additive subgroup of C (a lattice). Take X = C/Λ the quotient group, with the
quotient topology. A fundamental domain for the action of Λ on C is the parallelogram as
shown in Figure 3.3. Write vertices o, ω1, ω1 + ω2, ω2. Then X is obtained by identifying
opposite sides of this parallelogram as shown, so topologically X ∼= T 2, a torus. If V ⊆ C

Wz wi+wz>

Th -
T

>
p WI

Figure 3.3. A fundamental domain for the action of Λ on C

is open such that (V + λ) ∩ V = ∅ for all 0 ̸= λ ∈ Λ (this holds if V is a small ball), define



18 HÜLYA ARGÜZ

U = {v + λ : v ∈ V } ⊆ C/Λ, and φ : U → V to be the inverse of the homeomorphism

φ−1 : V −→ U

v 7−→ v + Λ

Then, (U, V, φ) is a complex chart on X. Write A for the set of all charts of this form. If
(U1, V1, φ1), (U2, V2, φ2) are charts of this form, one can show that the transition function
φ2 ◦ φ−1

1 is locally of the form z 7−→ z + λ for λ ∈ Λ, and is holomorphic. Thus the charts in
A are pairwise compatible, and they cover X. So, A is a holomorphic atlas and X = C/Λ is
a Riemann surface.

Aside: as a topological space X ∼= T 2, but as a Riemann surface X depends on the lattice
Λ: if Λ ̸= αΛ′ for α ∈ C \ {0} then C/Λ ≇ C/Λ′.

Proposition 3.5. Any Riemann surface X is orientable.

Sketch of the proof: X has a holomorphic atlas {(Ui, Vi, φi) : i ∈ I}. Recall that X is
orientable if it has a consistent notion of ”clockwise”. On Ui ⊂ X we define clockwise by

--⑳
Figure 3.4. Natural orientation of a Riemann surface

identifying φi : Ui → Vi ⊆ C and using standard notion of ”clockwise” in C. For two charts
(Ui, Vi, φi), (Uj , Vj , φj) as

φj ◦ φ−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj)

is holomorphic, it preserves angles, so it preserves the notion of ”clockwise”. Thus, the notions
of ”clockwise” on Ui, Uj agree on Ui ∩ Uj . As {Ui : i ∈ I} covers X, we have an orientation
on X.

From the classification of surfaces (Theorem 2.27), we have:

Corollary 3.6. Any compact, connected Riemann surface X is homeomorphic to a surface
Σg of genus g ≥ 0.

3.2. Meromorphic functions.

Definition 3.7. Let X be a Riemann surface. A meromorphic function on X is a holomor-
phic function

f : X → C ∪ {∞}
to the Riemann sphere C ∪ {∞} as a Riemann surface.

Remark 3.8. We can also consider holomorphic functions f : X → C, of course. However, if
X is a compact Riemann surface, then

|f | : X → [0,∞)

attains its maximum, and using the maximum modulus theorem in complex analysis, one can
show f is constant. So, holomorphic functions f : X → C are boring for compact X. It is a
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deep theorem, proved in B3.3 using the Riemann-Roch Theorem, that any compact Riemann
surface has non-constant meromorphic functions (in fact, an infinite-dimensional family of
them). So, they are a good thing to study.

Example 3.9. Let p(z), q(z) be non-zero complex polynomials with no common factors.
Define f : C ∪ {∞} → C ∪ {∞} by

f(z) =

{
p(z)
q(z) if z ∈ C and q(z) ̸= 0,

∞ if z ∈ C and q(z) = 0.

f(∞) =


∞ if deg(p) > deg(q),

0 if deg(p) < deg(q),
leading coefficient p
leading coefficient q if deg(p) = deg(q).

Then, f : C∪{∞} → C∪{∞} is a non-constant meromorphic function. One can show (in
B3.3) that every meromorphic function on C ∪ {∞} is of this form.

Aside: Transcendental holomorphic functions such as ez : C → C do not extend to holomor-

phic functions C∪{∞} → C∪{∞}. E.g. e
1
z has an ”essential singuarity” at z = 0. We can’t

define f(z) = e
1
z if z ̸= 0 and f(0) = ∞, as this would not be continuous f : C → C ∪ {∞}.

Example 3.10. Let ω1, ω2 ∈ C be linearly independent over R. Write

Λ = {mω1 + nω2 : m,n ∈ Z} ,
and X = C/Λ, as in Example 3.4. Define the Weierstrass ℘-function,

℘(z) =

{
1
z2

+
∑

0̸=ω∈Λ
(

1
(z−ω)2

− 1
ω2

)
if z ∈ C \ Λ,

∞ if z ∈ Λ.

One can prove:

• The sum converges uniformly on compact subsets of C\Λ to a holomorphic function.
• ℘(z) is meromorphic with a double pole at each ω ∈ Λ, ℘(z) = 1

(z−ω)2
+O(1), where

O(1) stands for all the terms that remain bounded as z → ω (i.e. there is no first
order pole of ℘(z)).

• ℘(z) = ℘(z + ω), for all z ∈ C and ω ∈ Λ (it’s doubly periodic).

Hence, it descends to a meromorphic function

℘ : C/Λ −→ C ∪ {∞} ,
with one pole at 0 + Λ. One can use this to build other meromorphic functions on C/Λ, e.g.
℘′, ℘′′, 1

℘+c , . . .

3.3. Branch points and ramification points. Recall some facts from complex analysis:
Let U ⊆ C be open and f : U → C be holomorphic. If f is not locally constant, the zeroes

of f are isolated in U . Thus, the zeroes of df
dz are also isolated.

For any a ∈ U , as f has a Taylor series at a, if f is not locally constant there is a unique

m ≥ 1 such that dmf
dzm (a) ̸= 0 and dkf

dzk
(a) = 0, for k = 1, . . . ,m− 1.

Definition 3.11. Let X,Y be Riemann surfaces and f : X → Y a holomorphic map, which
is not locally constant on X. Let x ∈ X with f(x) = y ∈ Y , and choose charts (U, V, φ) on
X and (U ′, V ′, φ′) on Y with x ∈ U , y ∈ U ′. Then,

φ′ ◦ f ◦ φ−1 : φ(U ∩ f−1(U ′)) −→ V ′
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is holomorphic and not locally constant. Note that φ(x) ∈ φ(U ∩ f−1(U ′)). We call x a
ramification point and y a branch point of f , if d

dz (φ
′ ◦ f ◦ φ−1)|φ(x) = 0.

One can check that Definition 3.11 is independent of the choice of charts. The ramification index

νf (x) of x ∈ X is the unique m ≥ 1 with
(

d
dz

)m
(φ′ ◦ f ◦ φ−1)|φ(x) ̸= 0 and

(
d
dz

)k
(φ′ ◦ f ◦

φ−1)|φ(x) ̸= 0, for k = 1, . . . ,m− 1. Then, νf (x) > 1 iff x is a ramification point.

Ramification points are isolated inX, since zeroes of df
dz are isolated. Thus, ifX is compact,

then f has finitely many ramification points. If f : X → Y has ramification index m at x
with f(x) = y, one can choose holomorphic coordinates w on X near x and z on Y near y
with x at w = 0 and y at z = 0, such that f : w 7→ z = wm. That is, a ramification point
x ∈ X is a point where f looks locally like the function w 7→ wm in holomorphic coordinates
for m > 1. Notice that if y′ is close to y, then f−1(y′) contains m points close to x, with
m = νf (x), as a small ε ̸= 0 has m-many mth roots.

Definition 3.12. Let X,Y be compact Riemann surfaces with Y connected, and f : X → Y
be holomorphic and not locally constant. Then, f has finitely many ramification points
x1, . . . , xk and so finitely many branch points y1, . . . , yk with f(xi) = yi (The yi need not be
distinct). There is a number d = deg(f), called the degree of f , such that if y ∈ Y \{y1, . . . , yk}
then |f−1(y)| = d. This holds as onX\{x1, . . . xk}, f looks locally like a holomorphic function

f(z) with df
dz ̸= 0, so it is locall invertible and locally maps d sheets to 1 sheet as illustrated

in Figure 3.6. The number d is locally constant on Y \ {y1, . . . , yk} as X is compact, and
globally constant as Y \ {y1, . . . , yk} is connected. So, deg f is well-defined.

fo(y)d = 4
·

X

*
·

:!
# 1 ! I

I I" I

I "!I !Y
>Y

"
13YI

Figure 3.5. A degree d = 4 holomorphic map between Riemann surfaces

= d

-

*

Figure 3.6. Local degree d map

In fact, for all y ∈ Y , we have

d =
∑
x∈X

f(x)=y

νf (x) . (3.1)
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This holds for y ∈ Y \ {y1, . . . yk} as νf (x) = 1 except at x1, . . . , xk. At a ramification point
xi, as y → yi, νf (xi) points in f−1(y) come together at xi, so replace 1 + . . .+ 1 by νf (xi) in
the sum in (3.1).

Theorem 3.13. Let X,Y be compact, connected Riemann surfaces, and f : X → Y a non-
constant holomorphic map of degree d, with ramification points x1, . . . , xk. Then,

χ(X) = d · χ(Y )−
k∑

i=1

(νf (xi)− 1) .

This is known as the Riemann-Hurwitz formula.

Proof. Let yi = f(xi), so y1, . . . , yk are the (not necessarily distinct) branch points of f .
Choose a triangulation of Y whose vertices include the branch points y1, . . . , yk of f .

Over the interiors of edges and faces, f is locally invertible, and maps d points to one point.
So, we can lift the triangulation of Y to a triangulation of X, in which each edge and face
lifts to d edges and faces. Each vertex y lifts to f−1(y) points, where

∑
x∈f−1(y) νf (x) = d.

Hence,

|f−1(y)| =
∑

x∈f−1(y)

1 = d−
∑

x∈f−1(y)

(νf (x)− 1) .

Let the triangulation of Y have V,E, F vertices, edges, faces. Thus,

χ(X) = (dV −
k∑
i=i

(νf (xi)− 1))− dE + dF

= d(V − E + F )−
k∑

i=1

(νf (xi)− 1)

= d · χ(Y )−
k∑

i=1

(νf (xi)− 1) .

□

&2-② X

&-
&

*

- Yi
Y·-

Figure 3.7. Lifting triangulations

Remark 3.14. Given a meromorphic function f : X → C ∪ {∞} = S2, one can use this to
construct a triangulation of X – compare Theorem 2.15.
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3.4. An example. Let w1, w2 ∈ C be linearly independent over R,
Λ = {mw1 + nw2 : m,n ∈ Z} ,

and X = C/Λ as in Example 3.4.
Define ℘ : X → C ∪ {∞} as in Example 3.10, by

℘(z) =

{
1
z2

+
∑

0 ̸=ω∈Λ
(

1
(z−ω)2

− 1
ω2

)
if z ∈ C \ Λ,

∞ if z ∈ Λ.

Observe: there is a unique point 0 + Λ in X with ℘(0 + Λ) = ∞. As this is a double pole,
℘(0 + Λ) = 1

z2
+ O(1). Using 1

z as the coordinate on C ∪ {∞} near ∞, we see that ℘ has a
ramification index 2 at 0 + Λ. Hence, the degree of ℘ is

d =
∑
x∈X

℘(x)=∞

ν℘(x) = 2 .

What about other ramification points ? These occur when ℘′(z) = 0. Since ℘(z) = ℘(−z)
and ℘(z) = ℘(w1+z), we have ℘(w1

2 +z) = ℘(w1
2 −z), i.e. ℘ is even around w1

2 , so ℘′(w1
2 ) = 0.

Hence, w1
2 +Λ is a ramification point of ℘, of ramification index ν℘(

w1
2 +Λ) ≥ 2. Similarly,

w2
2 + Λ and w1+w2

2 + Λ are ramification points.

We have χ(X) = 0 as X ∼= T 2, χ(C ∪ {∞}) = 2 as C ∪ {∞} ∼= S2. So, Riemann-Hurwitz
gives

0 = 2 · 2−
k∑

i=1

(νf (xi)− 1) .

Hence, 0+Λ, w1
2 +Λ, w2

2 +Λ and w1+w2
2 +Λ are the only ramification points, and all have

ramification index 2. Note that one can also see that the ramification index equals 2, as the
ramification index is less than or equal to degree, by using d =

∑
x : f(x)=y νf (x).

Wa
.

We+Wz
·

%.
⑧

· z
Pole

Figure 3.8. Zeroes and poles of the p function

3.5. Building Riemann surfaces as branched double covers. In Example 3.4, X =
C/Λ is a compact Riemann surface with a meromorphic map f : X → C ∪ {∞} of degree 2
with ramification points x1, . . . , x4 ∈ X and branch points y1, . . . , y4 ∈ C ∪ {∞}. In fact,
we can build X as a Riemann surface just out of C ∪ {∞} and y1, . . . , y4. Choose ”cuts” in
C ∪ {∞} from y1 to y2 and y3 to y4. Take 2 copies (C ∪ {∞})a, (C ∪ {∞})b, cut both along
the line segments y1 → y2, y3 → y4, and glue the cut edges together swapping over the ′a′

and ′b′ copies.
We can also do this using any even number of ramification points y1, . . . , y2n in C ∪ {∞}.

That is, we can define a compact, connected Riemann surface X with a holomorphic map
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- Xix2 X
------ i

f
*

*

Ku[a]· is in in

Figure 3.9. X = C/Λ as a double cover of C ∪ {∞} branched at 4 points

f : X → C ∪ {∞} of degree 2 with branch points at y1, . . . y2n. This X is unique up to
isomorphism. Such Riemann surfaces are called hyperelliptic.

I
A

b·
Figure 3.10. Recovering X = C/Λ from 4 points in C ∪ {∞}

Here is a more algebraic way to define X. For simplicity, take y1, . . . , y2n−1 ∈ C and
y2n = ∞. Define

X = {(w, x) ∈ C2 : w2 = (x− y1) · · · (x− y2n−1)} ∪ {(∞,∞)} .
One can show that X has the natural structure of a Riemann surface, such that f : X →
C ∪ {∞}, f(w, x) = x, is degree 2 meromorphic with branch points y1, . . . y2n.

Note that w =
√
(x− y1) · · · (x− y2n−1) is also a rational function on X. Hyperelliptic

surfaces occur in problems involving hyperelliptic integrals
∫

dx√
(x−y1)···(x−y2n−1)

.

4. Smooth surfaces

4.1. Abstract smooth surfaces. We define smooth surfaces as for Riemann surfaces, but
replace ”C, holomorphic” by ”R2, smooth”.

Definition 4.1. Let X be a topological surface. A (smooth) chart on X is a triple (U, V, φ)

with U ⊆ X, V ⊆ R2 open and φ : U → V a homeomorphism.
Two charts (U1, V1, φ1) and (U2, V2, φ2) are compatible if

φ2 ◦ φ−1
1 : φ1(U1 ∩ U2) −→ φ2(U1 ∩ U2)

is a smooth map between open subsets of R2, with smooth inverse. Here, smooth, or

C∞, means all partial derivatives
∂k+ℓ(φ2◦φ−1

1 )

∂xk∂yℓ
exist for all k, ℓ ≥ 0. A (smooth) atlas

A = {(Ui, Vi, φi) : i ∈ I} on X is a family of smooth charts on X, such that
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(i) (Ui, Vi, φi) and (Uj , Vj , φj) are compatible, for all i, j ∈ I,
(i) X =

⋃
i∈I Ui .

A (smooth) surface (X,A) is a topological surface X with a smooth atlas A.

One can also define smooth maps f : X → Y between smooth surfaces X,Y , by f contin-
uous and

φ−1
j ◦ f ◦ φ−1

i : φ−1
i (φi ∩ f−1(U ′

j)) −→ V ′
j

is smooth between open subsets of R2, for all charts (Ui, Vi, φi) on X and (U ′
j , V

′
j , φ

′
j) on Y .

Remarks 4.2. (a) One can generalize the above to smooth manifolds of dimension n by

taking V ⊆ Rn open, not V ⊆ R2 – see C3.3 Differentiable Manifolds.
(b) Every Riemann surface is a smooth surface, by identifying C ∼= R2, and then transition

functions φj ◦ φ−1
i are holomorphic =⇒ φj ◦ φ−1

i smooth, so a holomorphic atlas is
also a smooth atlas.

4.2. Smooth surfaces in R3.

Definition 4.3. A smooth surface in R3 is a subset X ⊂ R3 such that each point x ∈ X has

an open neighbourhood x ∈ U ⊆ X and a map r : V → X ⊂ R3 from V ⊆ R2 open, such
that:

(i) r : V → U is a homeomorphism.
(ii) r(u, v) = (x(u, v), y(u, v), z(u, v)) has derivatives of all orders.
(iii) At each (u, v) ∈ V , ru = ∂

∂u and rv = ∂
∂v are linearly independent in R3.

We call r satisfying (i)− (iii) a local parametrization of the surface.

If X ⊂ R3 is a smooth surface, define

A = {(U, V, φ) : for U, V and r as above φ = r−1 : U → V } .
Then, each (U, V, φ) is a chart, and one can show that any two such charts are compatible
(needs the Inverse Function Theorem). Then, A is a smooth atlas on X and makes X into
an abstract smooth surface.

Example 4.4. (a) S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}, the unit sphere is a smooth
surface in R3.

Z
*

S2
⑧

*
Y

-...... *
X

Figure 4.1. The unit sphere S2 ⊂ R3

(b) The hyperboloids

H+ = {(x, y, z) ∈ R3 : x2 + y2 − z2 = 1}
H− = {(x, y, z) ∈ R3 : x2 + y2 − z2 = −1}
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are smooth surfaces in R3. But the cone C = {(x, y, z) ∈ R3 : x2 + y2 − z2 = 0} is
not : no chart exists around (0, 0, 0).

2 A Z

**
H
+

H- C

Figure 4.2. The hyperboloids H+, H−, and the cone C in R3

Definition 4.5. Let X be a surface in R3 and x ∈ X. Let r : V → X ⊂ R3 be a local
parametrization of R3, with r(u, v) = x. The tangent space TxX is the vector subspace

TxX = ⟨ru|(u,v), rv|(u,v)⟩ .
Note that ru|(u,v), rv|(u,v) are linearly independent by definition.

The two unit normals to X at x are

±n = ± ru ∧ rv
|ru ∧ rv|

= ±1 .

Then TxX ⊂ R3 and {±n} are independent of the choice of the parametrization r, since any
other parametrization r̂ is locally of the form

r̂(u, v) = r(û(u, v), v̂(u, v)) ,

for (û, v̂) : (open in R2) → (open in R2) smooth and invertible. Then,

(
r̂u
r̂v

)
=

(
A B
C D

)(
ru
rv

)
,

where

(
A B
C D

)
=

(
∂û
∂u

∂û
∂v

∂v̂
∂u

∂v̂
∂v

)
is invertible, as (û, v̂) is smooth and invertible, so TxX and

{±n} are independent of choices.

TxX = {w ∈ R3 : w · n = 0} ,
orthogonal subspace to unit normal n.

4.3. The first fundamental form. Let X be a surface in R3. Using the usual notion of
distance in R3, we can define lengths of curves γ in X, and areas of regions U ⊆ X. We will
do this using the first fundamental form of X.

Note: If X is an abstract smooth surface not embedded in R3, we can not define lengths
of curves or areas of regions without choosing an extra structure, a Riemann metric, which
is what the first fundamental form really is.

Definition 4.6. Let X ⊂ R3 be a smooth surface. Let r : V → X be a smooth parametriza-
tion, for V ⊆ R2 open. Define smooth functions E,F,G : V → R by

E = ru · ru, F = ru · rv = rv · ru, G = rv · rv ,
The first fundamental form of X is the expression

g = Edu2 + 2Fdudv +Gdv2 .
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lines u = est
2 a

TnX ↓
-·In =

crordinatepaca

Figure 4.3. Tangent space and unit normals to a surface in R3

-
X

Figure 4.4. Curves and regions on a surface in R3

This is the quadratic form Q(v, v) = v · v on TxX ⊂ R3 in the basis ru, rv.

We can write g =
(
du dv

)(E F
F G

)(
du
dv

)
, for

(
E F
F G

)
a symmetric, positive definite

matrix of functions.

Remark 4.7. You probably wonder ”What are du, dv, du2, dudv, dv2 ? ” To do this properly:
du, dv are smooth sections of the cotangent bundle T ∗X → X, and g, du2, dudv, dv2 are

sections of the tensor product ⊗2T ∗X → X. Beyond the scope of this course, explained in
C3.3.

For now : du, du2, . . . are formal symbols which make sense if you have a choice of local
coordinates on X. They behave as you expect under change of coordinates. E.g. if you have
two coordinates (u, v), (x, y) on X with u = u(x, y), v = v(x, y), then du = ∂u

∂xdx + ∂u
∂ydy,

dv = ∂v
∂xdx+ ∂v

∂ydy, du
2 =

(
∂u
∂x

)2
dx2 + 2∂u

∂x
∂u
∂ydxdy +

(
∂u
∂y

)2
dy2, etc. You may think of du as

the ”derivative of u”, but without taking partial derivatives w.r.t. particular coordinates. At
x ∈ X, du lies in the vector space T ∗

xX = ⟨du, dv⟩ dual to TxX.

We can use the first fundamental form to compute lengths of curves in X.

Definition 4.8. Let X ⊂ R3 be a smooth surface, and let γ : [a, b] → X ⊂ R3 be a smooth
curve. Suppose r : V → X is a local parametrization of X, and γ factors through r, i.e.
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γ(t) = r(u(t), v(t)). Then, the length of γ is

ℓ(γ) =

∫ b

a

∣∣∣dγ
dt

∣∣∣dt = ∫ b

a

∣∣∣ d
dt
(r(u(t), v(t)))

∣∣∣dt (4.1)

=

∫ b

a

( ∣∣∣∣rududt + rv
dv

dt

∣∣∣∣2 ) 1
2

dt

=

∫ b

a

(
E(u, v)

(
du

dt

)2

+ 2F

(
du

dt

)(
dv

dt

)
+G(u, v)

(
dv

dt

)2) 1
2

dt .

So, we can write lengths of curves using the first fundamental form Edu2 + 2Fdudv +Gdv2.
Note that formally(

E(u, v)

(
du

dt

)2

+ 2F

(
du

dt

)(
dv

dt

)
+G(u, v)

(
dv

dt

)2) 1
2

dt = (Edu2 + 2Fdudv +Gdv2)
1
2 ,

if we cancel the dt’s.

We can also write areas in terms of first fundamental forms:

Definition 4.9. Let X ⊂ R3 be a smooth surface, of finite area, and suppose X is covered
by a single parametrization r : V → X ⊂ R3. Then,

area(X) =

∫
V
|ru ∧ rv|dudv (4.2)

=

∫
V
(|ru|2|rv|2 − |ru · rv|2)

1
2dudv

=

∫
V
(EG− F 2)

1
2dudv

=

∫
V
det

∣∣∣∣ (E F
F G

) ∣∣∣∣ 12dudv
4.4. Riemann metrics on abstract surfaces.

Definition 4.10. Let X be a smooth surface with atlas A = {(Ui, Vi, φi) : i ∈ I}. A
Riemann metric g on X is the data

Eidu
2 + 2Fidudv +Gidv

2 ,

on Vi where Ei, Fi, Gi : Vi → R are smooth functions, for each i ∈ I satisfying:

(a)

(
Ei Fi

Fi Gi

)
is a positive definite matrix at each point of Vi.

(b) Let i, j ∈ I, and write the map

φj ◦ φ−1
i : φi(Ui ∩ Uj) −→ φj(Ui ∩ Uj) ,

as (u, v) 7→ (ũ, ṽ). Then,

Ejdũ
2 + 2Fjdũdṽ +Gjdṽ

2 = Ejdu
2 + 2Fjdudv +Gjdv

2 ,

with dũ = ∂ũ
∂udu+ ∂ũ

∂v dv and dṽ = ∂ṽ
∂udu+ ∂ṽ

. ∂vdv. That is,

Ei|open set = Ej

(
∂ũ

∂u

)2

+ 2Fj
∂ũ

∂u

∂ṽ

∂u
+Gj

(
∂ṽ

∂u

)2

, etc.
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Then, we can define lengths of curves γ : [a, b] → X and areas of regions X ′ ⊂ X by formulae
(4.1) and (4.2) in §4.3.

Any surface X ⊂ R3 has the natural structure of an abstract smooth surface, as in §4.2,
and has a natural Riemannian metric as in §4.3. But Riemannian metrics on surfaces do
not have to come from embeddings in R3 – indeed, some surfaces (e.g. RP2,K) can not be
embedded in R3, but every smooth surface admits Riemannian metrics.

Remark 4.11. For an abstract surface X, one can define a tangent space TxX at each x ∈ X,

with basis ∂
∂u ,

∂
∂v if u, v are local coordinates on X near x, but can make TxX coordinate

independent. The cotangent space is T ∗
xX = (TxX)∗ with basis du, dv. One can interpret a

Riemannian metric g as giving a positive definite quadratic form v 7→ gx(u, v) on each tangent
space TxX varying smoothly with x, which determines the (squared) lengths of vectors. In
the dual basis du, dv one can write g = Edu2 + 2Fdudv +Gdv2.

4.5. Examples of first fundamental forms.

Example 4.12. X = {(x, y, z) ∈ R3 : z = 0}, the (x, y)-plane, has parametrization r(u, v) =
(u, v, 0), ru = (1, 0, 0), rv = (0, 1, 0), and first fundamental form (1FF) g = du2 + dv2.

Example 4.13. Let X = {(x, y, z) ∈ R3 : x2 + y2 + z2 = R2} be the sphere of radius R > 0
in R3. Define spherical polar coordinates

r : (o, π)× (0, 2π) −→ X ⊂ R3 by

r(θ, φ) = (R sin θ cosφ,R sin θ sinφ,R cos θ) .

Then,

rθ = (R cos θ cosφ,R cos θ sinφ,−R sin θ),

rφ = (−R sin θ sinφ,R sin θ cosφ, 0),

(1FF) is g = R2(dθ2 + sin2 θdφ2) .

Z

O T

2π

·
x -y

O T·

Figure 4.5. Spherical coordinates on the unit sphere. Think of this as a map
of the Earth’s surface, where (θ, φ) = (lattitude, longitude). The map distorts
distances, angles and areas. Knowing the (1FF) g = R2(dθ2+sin2 θdφ2) allows
you to compute distances, angles, and areas on the Earth’s surface, just using
the map. You don’t need to know how the map is embedded in R3.
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4.6. Isometric surfaces.

Definition 4.14. Let X,Y ⊂ R3 be surfaces in R3. We call X,Y isometric if there is a
smooth homeomorphism f : X → Y which maps curves γ : [a, b] → X to curves f ◦γ : [a, b] →
Y of the same length. That is, isometries preserve lengths of curves. If (X, g) and (Y, h) are
abstract smooth surfaces with Riemannian metrics, we also call f : X → Y and isometry if
it is a smooth homeomorphism which preserves lengths of curves.

Proposition 4.15. A smooth homeomorphism f : X → Y is an isometry iff whenever
r : V → X is a smooth local parametrization, V ⊆ R2 open, then f ◦ r : V → Y is a smooth
local parametrization and r, f ◦r have the same first fundamental form Edu2+2Fdudv+Gdv2.

Proof. ”if”: obvious as lengths of curves are computed using (1FF).
”only if”: Fix (u, v) ∈ V and (u′, v′) ∈ R2. Define γϵ : (0, 1) → V by

γϵ(t) = (u+ ϵtu′, v + ϵtv′) ,

for ϵ > 0 small. Then,

lim
ϵ→0

length(r ◦ γϵ)2

ϵ2
= E(u, v)(u′)2 + 2F (u, v)u′v′ +G(u, v)(v′)2

One can recover E(u, v), F (u, v), G(u, v) by (u′, v′) = (1, 0), (0, 1), (1, 1). If f ◦ r is a smooth
parametrization, then f is length preserving =⇒ f identifies (1FF)s. (One can also show f
must be a smooth local parametrization using Inverse Function Theorem, as otherwise one
would have 0 ̸= (u′, v′) in Ker(df).) □

Two surfaces in R3 can be isometric even if they do not differ by an ambient isometry of
R3.

Example 4.16. Consider the plane P = {(x, y, z) ∈ R3 | z = 0} with parametrization
r(u, v) = (u, v, 0) and the cylinder

C = {(x, y, z) ∈ R3 | x2 + y2 = 1} ,
with parametrization r′(u, v) = (cosu, sinu, v). Both have (1FF) du2 + dv2. So, mapping
r(u, v) 7→ r′(u, v) gives a (local) isometry from P to C.

Explanation: One can make the cylinder C by rolling up a piece of paper P ; ”rolling up”
does not change distances in P .

-

-W
Figure 4.6. Rolling up a piece of paper P into a cylinder C

Remark 4.17. It is an important question when a surface X ⊂ R3 or (X, g) is locally isometric
to the plane P . We will answer this using Gaussian curvature κ : X → R : X is locally
isometric to (R2, du2 + dv2) iff K = 0.
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4.7. The second fundamental form.

Definition 4.18. Let X ⊂ R3 be a smooth surface, and r : V → X be a local parametriza-
tion, for V ⊆ R2 open. As in §??, the unit normal is

n =
ru ∧ rv
|ru ∧ rv|

.

(or minus of this: we now choose a sign, which is equivalent to choosing an orientation on X)

The second fundamental form of X is the expression

II = Ldu2 + 2Mdudv +Ndv2 ,

where L,M,N : V → R are the smooth functions L = ruu · n, M = ruv · n, N = rvv · n.
Since ru · n = rv · n = 0, by differentiating we get alternative expressions

L = −ru · nu, M = −ru · nv = −rv · nu, N = −rv · nv .

We can write

II =
(
du dv

)(L M
M N

)(
du
dv

)
,(

L M
M N

)
a symmetric matrix of functions. The second fundamental form has the same be-

haviour under change of coordinates as the first fundamental form does (although

(
L M
M N

)
does not need to be positive definite). It is a geometric structure of the same kind (section
of ⊗2T ∗X).

Remark 4.19. The second fundamental form (2FF) depends on the embedding X ↪→ R3. It
does not make sense for abstract surfaces (X, g) with Riemannian metrics. Isometric surfaces
in R3 need not have the same (2FF). Changing orientation changes the sign of the (2FF).

Example 4.20. The plane P = {(x, y, z) ∈ R3 | z = 0}, with parametrization r(u, v) =
(u, v, 0) and normal vector n = (0, 0, 1) has (1FF) g = du2 + dv2 and (2FF) II = 0. The
cylinder C = {(x, y, z) ∈ R3 | x2+y2 = 1} with parametrization r(u, v) = (cosu, sin v, v) and
normal n = (cosu, sinu, 0) has g = du2 + dv2 and (2FF) II = −du2. P and C are locally
isometric but have different (2FF)’s.

C

a
-

Figure 4.7. Cylinder
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Definition 4.21. Let X ⊂ R3 be a smooth surface and r : V → X be a local parametrization
for V ⊆ R2 open. Then, we have the (1FF)

g = Edu2 + 2Fdudv +Gdv2 ,

and second fundamental form (2FF)

II = Ldu2 + 2Mdudv +Ndv2 .

Fix x = r(u, v) in X. The principal curvatures κ1, κ2 of X at x are the solutions of

det

(
λ

(
E F
F G

)
−
(
L M
M N

))
= 0 .

(unique if we require κ1 ≤ κ2).
The Gaussian curvature is

κ = κ1κ2 =

det

(
L M
M N

)
det

(
E F
F G

) =
LN −M2

EG− F 2
.

The mean curvature is

H = κ1 + κ2 = Trace

((
L M
M N

)(
E F
F G

)−1)
Warning: Conventions differ. Some authors write H = 1

2(κ1 + κ2).
Note that both κ and H are smooth functions X → R, independent of the choice of local

parametrization r.

We call X a minimal surface if H = 0 (this is a partial differential equation (PDE) on X).
A surface is minimal if it has stationary area with fixed boundary. That is, if you deform the
surface in its interior a little bit, you do not change the area to first order (in general, the
first order change is

∫
X Hn · (normal deformation)).

A bubble spanning a loop of wire is a minimal surface, as surface tension minimizes the
area.

A coordinate independent point of view is to regard g and II as quadratic forms on TxX
for x ∈ X, i.e. g(u1, u2), II(u1, u2) for u1, u2 ∈ TxX.

The shape operator or the Weingarten map is the unique linear map S : TxX → TxX such
that

II(v1, v2) = g(S(v1), v2) ,
for all v1, v2 in TxX.

In coordinates, it has matrix(
E F
F G

)−1
2
(
L M
M N

)(
E F
F G

)−1
2

.

This is a symmetric matrix. Then, κ1, κ2 are eigenvectors of S, and κ = det (S), and
H = Trace(S).

The principal directions v1, v2 in TxX are the unit eigenvectors associated to the eigenval-
ues κ1, κ2 of S. Then, v1 ⊥ v2.

Example 4.22. Let X ⊂ R3 be a smooth surface, and x ∈ X. Then, v1, v2, n at x are an
orthonormal basis of R3. Apply a rotation/reflection and translation such that

x = (0, 0, 0), v1 = (1, 0, 0), v2 = (0, 1, 0), n = (0, 0, 1) .
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Then locally near x,mone can write X as the graph

{(x, y, f(x, y)) | f(x, y) ∈ R2}

of a smooth function f(x, y) with f(0, 0) = fx(0, 0) = fy(0, 0).
We have rx = (1, 0, fx), ry = (1, 0, fy), and

n =
(−fx,−fy, 1)

(1 + f2
x + f2

y )
1
2

.

At x we have g = dx2 + dy2, and

II = fxx(0, 0)dx
2 + 2fxy(0, 0)dxdy + fyy(0, 0)dy

2 .

So,

S =

(
fxx fxy
fxy fyy

)
=

(
κ1 0
0 κ2

)
since S has eigenvalues κ1, κ2 with eigenvectors (1, 0, 0), (0, 1, 0). Thus,

f(x, y) =
1

2
κ1x

2 +
1

2
κ2y

2 +O((x, y)3) .

z ?
N
,
> 0 in&S ~.

YzS= ~2·
%

r
K2<o

Figure 4.8. Left hand figure: κ = κ1κ2 < 0, negative Gaussian curvature,
like a saddle point or Pringle. Necessary for H = 0, minimal. Right hand
figure: κ = κ1κ2 > 0, positive Gaussian curvature, like a paraboloid, sphere,
or ellipsoid (rugby ball) locally – locally convex, not minimal.

Example 4.23. The catenoid is the surface of revolution of the graph

y = cosh v (This is called the catenary) .

Parametrize it as

r(u, v) = (cosu cosh v, sinu cosh v, v)

ru = (− sinu cosh v, cosu cosh v, 0)

rv = (cosu sinh v, sinu sinh v, 1) .
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So, we have

n = (cosu sechv, sinu sechv,−tanhv)

g = cosh2v(du2 + dv2)

II = −du2 + dv2

κ1 =
−1

cosh2v
, v1 = (− sinu, cosu, 0)

κ2 =
1

cosh2v
, v2 = (cosutanhv, sinutanhv, sechv)

κ =
−1

cosh4v
, H = 0

So, the catenoid is a minimal surface.

12

B
CX

Figure 4.9. The catenoid

4.8. Tangential derivatives and the Theorema Egregium.

Definition 4.24. Let X ⊂ R3 be a smooth surface, and r : V → X a local parametrization,
(u, v) ∈ V ⊆ R2 open. Define smooth functions Γc

ab : V → R for a, b, c ∈ {u, v}, called
Christoffel symbols, by

ruu = Ln+ Γu
uuru + Γv

uurv (4.3)

ruv = Mn+ Γu
uvru + Γv

uvrv

rvu = Mn+ Γu
vuru + Γv

vurv

rvv = Nn+ Γu
vvru + Γv

vvrv

Note that as ruv = rvu, we have Γc
ab = Γc

ba.

Proposition 4.25. The Christoffel symbols Γc
ab depend only on the 1FF g = Edu2+2Fdudv+

Gdv2. Hence, the Γc
ab are also defined for an abstract surface with Riemannian metric (X, g).

Proof. As E = ruru, F = rurv, we have

Eu = 2ruruu
Ev = 2ruruv
Fu = ruurv + ruruv
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So, we have

E Γu
uu + F Γv

uu = ruruu =
1

2
Eu

F Γu
uu +G Γv

uu = rvruu = Fu − 1

2
Ev

Hence, (
Γu
uu

Γv
uu

)
=

(
E F
F G

)−1( 1
2Eu

Fu − 1
2Ev

)
The proofs for the other Γa

bc are similar. □

Definition 4.26. Let X ⊂ R3 be a smooth surface, and r : V → X a local parametrization.
A vector field on X is a smooth map

a : X −→ R3

x 7−→ TxX ⊂ R3 ,

for each x ∈ X. On V , by abuse of notation, we often write a for a ◦ r : V → R3. We have

a = a ◦ r = eru + frv ,

where e, f : V → R are smooth. Also, write this as

a = e
∂

∂u
+ f

∂

∂v
.

Then vector fields also make sense on abstract smooth surfaces X in local coordinates
(u, v). The tnagential derivatives of a are

∇ua = au − (n · au)n = au + (nu · a)n
∇va = av − (n · av)n = av + (nv · a)n

That is, they are the orthogonal projections of au, av to the tangent spaces TxX. One can
also write them as ∇ ∂

∂u
a,∇ ∂

∂v
a, i.e. we differentiate the vector field a = e ∂

∂u + f ∂
∂v in the

directions of vector fields ∂
∂u ,

∂
∂v . From (4.3), we see that

∇ua = euru + furv + eΓu
uuru + eΓv

uurv + fΓu
vuru + fΓv

vurv

∇va = evru + fvrv + eΓu
uvru + eΓv

uurv + fΓu
vvru + fΓv

uvrv .

That is, for a = e ∂
∂u + f ∂

∂v , we have

∇ ∂
∂u
a = eu

∂

∂u
+ fu

∂

∂v
+ eΓu

uu

∂

∂u
+ eΓv

uu

∂

∂v
+ fΓu

vu

∂

∂u
+ fΓv

vu

∂

∂v

∇ ∂
∂v
a = ev

∂

∂u
+ fv

∂

∂v
+ eΓu

uv

∂

∂u
+ eΓv

uv

∂

∂v
+ fΓu

vv

∂

∂u
+ fΓv

uv

∂

∂v
.

By Proposition 4.25 the Γa
bc depend only on the 1FF, and are also defined on general (X, g).

Hence, ∇u,∇v also make sense on a surface X with Riemannian metric g.
This defines a structure ∇ (”nabla”) called the Levi-Civita connection on (X, g). It differ-

entiates a vector field on X in the direction of another vector field, where vector fields are of
the form e ∂

∂u + f ∂
∂v in coordinates (u, v) on X.

Aside: Let X be a surface and a, b be vector fields on X. We would like to define ∇ba, the
derivative of a in the direction of b. Heuristically, at x ∈ X, we would like

∇ba = lim
ϵ→0

a|x+ϵb − a|x
ϵ

.
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However, a|x+ϵb ∈ Tx+ϵbX and a|x ∈ TxX lie in different vector spaces, so we cannot subtract
them. Heuristically, the job of a connection is to identify nearby tangent spaces TxX = TyX
for x, y close in X, so we can make sense of this.

Proposition 4.27. For any vector field a on X ⊂ R3 we have

∇v∇ua−∇u∇va =
LN −M2

√
EG− F 2

n ∧ a = K
√
EG− F 2 n ∧ a (4.4)

Proof. We have

∇v∇ua = avu − (n · avu)n+ (nu · a)nv .

So,

∇v∇ua−∇u∇va = (nu · a)nv − (nv · a)nu = (nu ∧ nv) ∧ a .

Write nu ∧ nv = λn. Then,

λn · (ru ∧ rv) = (nu ∧ nv) · (ru ∧ rv)

= (nu · ru)(nv · rv)− (nu · rv)(nv · ru)
= LN −M2 .

We also have

n · (ru ∧ rv) =
√

EG− F 2 .

Therefore,

λ =
LN −M2

√
EG− F 2

Note: The right hand side of (4.4) involves no partial derivatives of a. □

Corollary 4.28. Gauss’ Theorema Egregium: The Gaussian curvature κ of a surface X

can be written solely in terms of teh 1FF Edu2 + 2Fdudv + Gdv2 and its first and second
derivatives (one could give an explicit formula, but it is complicated).

Proof. Proposition 4.27 implies that a 7→ ∇v∇ua−∇u∇va is given by κ
√
EG− F 2 (rotation

by 90◦). But ∇u,∇v depend only on 1FF by Proposition 4.25. Also, rotation by 90◦ also
depends on the 1FF (actually, it also depends on orientation, but orientation is used to
determine the order of u, v in ∇v∇u −∇u∇v, so overall formula is orientation independent).

So, κ
√
EG− F 2 only depends on the 1FF, and so does κ. Each ∇u,∇v depends on 1FF and

first derivatives, but taking second derivatives ∇v∇u,∇u∇v induces an extra derivative of
the 1FF. □

This implies that the Gaussian curvature κ is also defined for a surface X with a Riemann-
ian metric g.

4.9. Geodesic curvature and geodesics.

Definition 4.29. Let X ⊂ R3 be an (oriented) smooth surface, and γ : [a, b] → X be a

smooth curve parametrized by arc-length s, i.e. | dds(γ(s))| = 1. Set t = γ′ = dγ
ds and t′ = d2γ

ds2
.

Then, t is the unit tangent vector to γ at γ(s). The geodesic curvature Kg : [a, b] → R of γ is

Kg = t′ · (n ∧ t) ,

where n is the unit normal to X at γ(s) (we need an orientation to choose the sign of n). We
call γ a geodesic if Kg = 0. This is an O.D.E. on γ.
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The geodesic equation is equivalent to

t′ =
d2γ

ds2
= λn ,

for some λ : [a, b] → R. That is, the acceleration of γ(s), as a moving point, is normal to X.

n 1
-o

at

#
-unt

Figure 4.10. Geodesic curvature κg

Note that t, n, n ∧ t form an orthonormal basis. Also, t · t′ = 0 as |t|2 = 1. So,

t′ = λn+Kg n ∧ t ,

for some λ,Kg ∈ R. So, Kg = 0 iff t′ = λn.
Note that the geodesic equation Kg = 0 appears in mechanics: the motion of a small ball

rolling on a frictionless surface without gravity, so the only force is normal to the surface.
Geodesics are locally length-minimizing. That is, if a ≤ t1 ≤ t2 ≤ b with |t1 − t2| small,

then γ([t1, t2]) is the shortest path from γ(t1) to γ(t2) in X.
Let r : V → X be a local parametrization, and write γ(s) = r(u(s), v(s)). Then, t =

u′ru + v′rv, and t′ = u′′ru + v′′rv + ((u′)2ruu +2u′v′ruv + (v′)2rvv) = u′′ru + v′′rv + ((u′)2L+
2u′v′M + (v′)2N)n+ (u′)2(Γu

uuru + Γv
uurv) + 2(u′v′)(Γu

uvru + Γv
uvrv) + (v′)2(Γu

vvru + Γv
vvrv) ,

where the last equality follows by (4.3). Write

n ∧ t = fru + grv .

Then, f, g depend only on 1FF,u’,v’, and orientation, as n∧t is rotation of t by 90◦, and Kg =
(Ef+Fg)(u′′+(u′)2Γu

uu+2u′v′Γu
uv+(v′)2Γu

vv+(Ff+Gg)(v′′+(u′)2Γv
uu+2u′v′Γv

uv+(v′)2Γv
vv))

Hence, by Proposition 4.25, the geodesic curvature κg of γ depends only on γ, 1FF and the
orientation of X (orientation determines the sign). Thus, κg is also well defined for curves in
surfaces (X, g) with Riemannian metrics.

Proposition 4.30. Let X ⊂ R3 be a smooth surface, and r : V → X a local parametrization.
A curve γ(s) = r(u(s), v(s)) parametrized by arc-length s is a geodesic iff

d

ds
(Eu′ + Fv′) =

1

2
(Eu(u

′)2 + 2Fuu
′v′ +Gu((v

′)2)

d

ds
(Fu′ +Gv′) =

1

2
(Ev(u

′)2 + 2Fvu
′v′ +Gv((v

′)2) .

Proof. We have t = ruu
′ + rvv

′, and γ is a geodesic iff t′ is normal, i.e.

t′ · ru = t′ · rv = 0 .

But,

t′ · ru = (t · ru)′ − t · r′u ,



B3.2 GEOMETRY OF SURFACES OXFORD, MT 2025 37

So, the first equation is (t · ru)′ = t · r′u, that is,
d

ds
((u′ru + v′rv) · ru) = (u′ru + v′rv) · (u′ruu + v′ruv) .

That is,
d

ds
(Eu′ + Fv′) =

1

2
(Eu(u

′)2 + 2Fuu
′v′ +Gu(v

′)2 ,

as Eu = (ru · ru)u = 2ruruu, etc. The second equation is similar. □

These geodesic equations also make sense on a surface with Riemannian metric (X, g).
One can use them and results on O.D.E.’s to show that given a point x ∈ X and a direction
at x, there is a unique geodesic through x in this direction.

4.10. The Gauss–Bonnet Theorem.

Theorem 4.31. Local Gauss–Bonnet: Let X ⊂ R3 be an oriented smooth surface, and
r : V → X a local parametrization. Let γ : S1 → r(V ) ⊆ X be a smooth curve parametrized
by arc-length s, which is the boundary of a compact disc shaped region R in r(V ) ⊆ X, and
γ goes anti-clockwise around R. Then,∫

γ
Kgds = 2π −

∫
R
KdA ,

where κg is the geodesic curvature of γ, κ is the Gaussian curvature of X, and
∫
. . . ds and∫

. . . dA are integration w.r.t. arc length and area respectively.

⑤-----------

Figure 4.11. Illustration for the local Gauss-Bonnet theorem (Theorem 4.5)

Proof. (not examinable) Write R = r(D) for D ⊂ V a closed disc-shaped region with smooth
boundary ∂D, so γ(S1) = r(∂D). Parametrize ∂D by arc-length s in X, writing (u(s), v(s)) ∈
∂D. Let P,Q : V → R be smooth. Then, Green’s formula gives∫

∂D
(P (u(s), v(s))u′ +Q(u(s), v(s))v′)ds =

∫
D
(Qu − Pv)dudv . (4.5)

Choose a unit length tangent vector e on r(V ), for instance e =
ru√
E
. Then, ∇ue,∇ve are

tangent vector fields orthogonal to e, so there are smooth functions P,Q : V → R with

∇ue = P n ∧ e

∇ve = Q n ∧ e .

Let t be the unit tangent to γ, and write

t = cos θe+ sin θ n ∧ e ,
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for smooth

θ : ∂D → R
2πZ

.

So, θ is the angle between t and e. Then, the geodesic curvature is Kg = t′ · (n ∧ t) =(
θ′(− sin θ e+cos θ n∧e))+cos θ(u′∇ue+v∇ve)+sin θ n∧ (u′∇ue+v′∇ve

)
·
(
n∧ (cos θ e+

sin θ n ∧ e)

)
= θ′ + Pu′ +Qv′. Hence, the left hand side of (4.5) is∫

∂D
(Kg − θ′)ds =

∫
γ
Kgds− 2π ,

since θ increases from 0 to 2π around S1 = ∂D. For the right hand side of (4.5), we have

∇v∇ue = ∇v(P n ∧ e) = Pv n ∧ e+ P n ∧∇ve = Pv n ∧ e+ PQ n ∧ (n ∧ e) ,

So,

∇v∇ue−∇u∇ve = (Pv −Qu) n ∧ e = K
√
EG− F 2 n ∧ e ,

by Proposition 4.27. Thus the right hand side of (4.5) is∫
D
K
√

EG− F 2dudv =

∫
D
KdA .

Hence, the Theorem follows. □

Remarks 4.32. a) Theorem 4.31 also holds for a smooth disc in a surface X with Rie-
mannian metric g, not embedded in R3. We have shown κg and κ are defined then,
as they depend on the 1FF.

b) We can extend Theorem 4.31 to allow γ piecewise-smooth. For instance, as illustrated
in Figure 4.12 we can have a curvilinear polygon with n vertices, with internal angles
α1, . . . , αn. Then, we get∫

γ
Kgds = 2π − (π − α1)− . . .− (π − αn)−

∫
R
KdA (4.6)

= (2− n)π + α1 + . . .+ αn −
∫
R
KdA ,

since smoothing off a corner adds π − α to
∫
γ KgdA in the limit.

Note: in nice cases, if the sides are geodesics, we have Kg = 0, and

(n− 2)π +

∫
R
KdA = α1 + . . .+ αn .

If K = 0, we get the usual formula for angles of a polygon in R2.

Theorem 4.33. Gauss–Bonnet Theorem Let (X, g) be a compact, smooth surface with a
Riemannian metric g and Gaussian curvature κ., Then,∫

X
KdA = 2πχ(X) .

This says that the total curvature
∫
X KdA is a topological invariant – it is independent of

the metric g.
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Figure 4.12. Curvilinear polygon

Proof. Choose a triangulation of X into smooth triangles ∆1, . . . ,∆2n, each lying in a coor-
dinate neighbourhood of X. There are in total V vertices E = 3n edges, and F = 2n faces,
so

χ(X) = V − E + F = V − n .

Write αij for the internal angles of ∆i, j ∈ {1, 2, 3} as in Figure ??. Then, (4.6) gives

T i
X W⑳

↑Xi ,2 Tis/

Figure 4.13. Illustration for the proof of Theorem 4.6

∫
∂∆i

Kgds = −π + αi1 + αi2 + αi3 −
∫
∆i

KdA .

Adding over i = 1 . . . , 2n gives

2n∑
i=1

∫
∂∆i

Kgds = −2πn+

2n∑
i=1

3∑
j=1

αij −
∫
X
KdA .

Each edge is the boundary of two triangles ∆i1,∆i2 and κg has opposite signs as the edges
are oriented in opposite directions, so the integral of κg along pairs of edges cancel, giving

2n∑
i=1

∫
∂∆i

Kgds = 0 .

Also,
∑

i,j αij = 2πV , as at each vertex the internal angles sum to 2π. Hence,
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Figure 4.14. Illustration for the proof of Theorem 4.6

0 =
2n∑
i=1

∫
∂∆i

Kgds

= −2πn+ 2πV −
∫
X
KdA

= 2π(V − n)−
∫
X
KdA

= 2πχ(X)−
∫
X
KdA .

□

4.11. Critical points and the Euler characteristic.

Definition 4.34. Let X be a smooth surface and f : X → R a smooth function. A point
x ∈ X is a critical point if fu = fv = 0 in local coordinates (u, v).

The Hessian of f at X is

Hess(f) =

(
fuu fuv
fvu fvv

)
.

The critical point is non-degenerate if detHess(f) ̸= 0. Non-degenerate critical points are
isolated. So, there are only finitely many ifX is compact. They are divided into local minima,
saddle points, and local maxima, if Hess(f) has signature (+,+), (+,−), (−,−), respectively.

1)ent
-x

X XX

local minimum saddle point local maximum

Figure 4.15. Non-degenerate critical points

Theorem 4.35. Let X be a compact smooth surface, and f : X → R a smooth function woth
only non-degenerate critical points. Then,

χ(X) = (#local min)− (#saddle points) + (#local max) .
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Proof. We adapt the proof of the Gauss–Bonnet Theorem in ??. Choose a Riemannian metric
g on X. Define a vector a = ∇f on X with zeroes only at the critical points of f . Write
x1, . . . , xk for the critical points. Choose a small disc Di around xi, with i = 1, . . . , k. On
X \ (D1 ∪ . . . supDk), define e = a

|a| , a unit vector field. On each Di, choose a unit vector

field ei.
The proof of Theorem 4.31 also shows: if R ⊂ X is a region with smooth boundary γ = ∂R,

and e is a unit vector field on R, then∫
γ
(Kg − θ′)ds = −

∫
R
KdA ,

where θ is the angle between t = dγ
ds and e. This holds for all closed regions R, not just discs.

Set γi = ∂Di and write γi for γi with the opposite orientation. We have, for R = X \ (D1∪
. . . ∪Dk),

k∑
i=1

∫
γi

(Kg − θ′)ds = −
∫
X\(D1∪...∪Dk)

KdA ,

and for R = Di, ∫
γi

(Kg − θ′i)ds = −
∫
Di

KdA ,

where θ, θi are the angles between t and e, ei, respectively.

&
i
+T45x- simtennotenorte ↑↳

ad
add->F ↑e

↑Try ↑pE
2 ;

E,e &2,-- -- - em

min saddle max

Figure 4.16. Illustration for the proof of Theorem 4.7

As γi has opposite orientation to γi, we have∫
γi

(Kg − θ′)ds = −
∫
γi

(Kg − θ′)ds .

So, adding gives
k∑

i=1

∫
γi

(θ′ − θ′i)ds = −
∫
X
KdA = −2πχ(X) ,

by Gauss–Bonnet.
Now, θ− θi increases by −2π, 2π,−2π for a minimum, saddle, and maximum respectively.

Hence,

2π((#local min)− (#saddle points) + (#local max)) = −2πχ(X) .

□

Examples 4.36. The ”Hairy Ball Theorem” says that if you have a 2-sphere S2 with ”hair”
all over it (e.g. a hamster) you cannot comb the hair so it lies flat everywhere. That is, there
are no vector fields a on S2 with no zeroes, as then a variant of Theorem 4.35 would give



42 HÜLYA ARGÜZ
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Figure 4.17. Blue points: x1, . . . , xk, green discs: Di, green arrows: ei, red
arrows: e

χ(S2) = 0, contradicting χ(S2) = 2. Thinking of a as the wind velocity on the surface of the
Earth, there must be some point with no wind.

A

max
maxf

saddle max

--------Ysaddle

min min

min
.

X = T2 X = Sa X=S
X = 52

x(x) = 2-0+1x(X) = 1 - 1+2X(X)= 1 - 2+ 1 X(X) = 4 - 3 + 2
=O = 2 = 2

= 2

Figure 4.18. Examples illustrating Theorem 4.7

5. The hyperbolic plane

Example 5.1. Let
S2
R = {(x, y, z) ∈ R3 : x2 + y2 + z2 = R2} .

Define coordinates (u, v) on S2\(R, 0, 0) such that (0, 0, R), (x, y, z) and (u, v, 0) are collinear.
This gives

r(u, v) =

(
2R2u

R2 + r2
,

2R2v

R2 + r2
,
Rr2 −R3

R2 + r2

)
,

where r2 = u2 + v2. The first fundamental form is

g =
4R2

(R2 + r2)2
(du2 + dv2) .
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The principal curvatures are κ1 = κ2 =
1
R , so κ = 1

R2 . Observe that g still makes sense if we

take R to be imaginary, so R2 < 0. If R = i =
√
−1, this gives

A

·

(0 .0,R)

·
(x,y,2)

--
- ...............

-
~--
.....

(n.v,d)

&

& X

Y

Figure 5.1. (u, v) coordinates on the sphere S2
R

g =
4

(1− r2)2
(du2 + dv2) ,

with κ = −1. As this blows up when r = 1, we set

X = {(u, v) ∈ R2 : u2 + v2 < 1} ,
with metric

g =
4

(1− u2 − v2)2
(du2 + dv2) .

This is the Poincaré disc model of the hyperbolic plane. It has Gaussian curvature κ =
−1. It is an abstract surface X with Riemannian metric g, which canbe thought of as the
sphere with radius i. An alternative model is the upper half plane model

H = {(x, y) ∈ R2 : y > 0} ,

with metric g = dx2+dy2

y2
. The isometric transformation between them is

u+ iv =
x+ iy − i

x+ iy + i
or x+ iy =

i(1 + u+ iv)

1− (u+ iv)
.

We will usually work with the upper half plane model, as it is simpler. It is helpful to
write z = x+ iy and consider H ⊂ C ⊂ C ∪ {∞}.

Theorem 5.2. Suppose

(
a b
c d

)
is real 2× 2 matrix with det

(
a b
c d

)
> 0. Then,

z 7−→ az + b

cz + d
and z 7−→ b− az

d− cz

are isometries of H. All isometries are of this form.

Proof. See Hitchin’s notes §5. □

Note that R∗ =

{(
a 0
0 a

)
: 0 ̸= a ∈ R

}
acts trivially, so the isometry group is Z2 ⋉

PGL(2,R), where PGL(2,R) = GL(2,R)
R∗ is 3-dimensional. The unit sphere S2 also has a

3-dimensional isometry group O(3) = Z2 ⋉ SO(3).
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w = u + iV

Sz = it isW

·
Figure 5.2. The unit disc model (on the left) and the upper half plane model
(on the right) can both be viewed as hemispheres of C ∪ {∞}

5.1. Geodesics in the hyperbolic plane. Let γ(s) = (x(s), y(s)) be a geodesic in (H, dx
2+dy2

y2
).

Then, t = (x′, y′) is a unit vector, so (x′)2+(y′)2 = y2. Also, γ satisfies the geodesic equations
in Proposition 4.30. These reduce to

d

ds

(
x′

y2

)
= 0,

d

ds

(
y′

y2

)
=

(x′)2y′ + (y′)3

y3
.

So, x′ = cy2, and (x′)2 + (y′)2 = y2 gives y′ =
√
y2 − c2y4.

dy

dx
=

y′

x′
=

√
y2 − c2y4

c2y4
=⇒ cydy√

1− c2y2
= dx .

This integrates to −c−1
√
1− c2y2 = x− a , i.e. (x− a)2 + y2 = 1

c2
.

Geodesics are semicircles centered on the x-axis, plus vertical half lines (the case c = 0,
which reduces to x = a.)

Ye

&&- -
7727771 57x

Figure 5.3. Hyperbolic geodesics in the half-plane model

In the unit disc model, geodesics are arcs of circles meeting the unit circle at right angles,
plus diameters of the unit disc (straight lines through (0, 0)).
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Figure 5.4. Hyperbolic geodesics in the disc model

5.2. Hyperbolic triangles. Consider a hyperbolic triangle ∆ in H, with sides segments of
3 geodesics. Let α, β, γ be the internal angles at the vertices. Note that angles in (H, g) are
the same as angles measured in R2 in the coordinates (u, v), since g = (function) · (du2+dv2)
and multiplying by a function does not change angles.

Then, piecewise-smooth local Gauss-Bonnet gives

0 = (2− 3)π + α+ β + γ −
∫
∆
κdA .

Hence,

Area(∆) = π − (α+ β + γ) .

Note that Area(∆) ≤ π even for arbitrarily large ∆. Also, α+β+γ < π (In the Euclidean
plane α+ β + γ = π).

↓

-
Figure 5.5. Hyperbolic triangle.

Let a, b, c be the lengths of the sides opposite α, β, γ. The hyperbolic cosine rule says that

coshc = cosha coshb− sinha sinhb cos γ

If a, b, c were small cosha ≃ 1 + a2, sinha ≃ a, 1 + c2 ≃ (1 + a2)(1 + b2) − ab cos γ ⇐⇒
c2 ≃ a2 + b2 − ab cos γ. So, one can recover the usual cosine rule in limit a, b, c → 0.

The hyperbolic sine rule says that

sinα

sinh a
=

sinβ

sinh b
=

sin γ

sinh c
.

If a, b, c are very small then we get sinα
α = sinβ

β = sin γ
γ .
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III,
Figure 5.6. If α = β = γ = 0 (side lengths infinite), then Area(∆) = π

Lots of geometry in R2 has nice extensions to H. Tends to involve hyperbolic trigonometric
functions sinh, cosh, tanh.

5.3. The uniformization theorem. Let X be a Riemann surface with complex structure
J . Then, X is also a smooth surface, so we can consider Riemannian metrics g on X. Now
X has tangent spaces TxX ∼= R2 for x ∈ X. The complex structure on X makes TxX into a
1-dimensional complex vector space TxX ∼= C. So, multiplication by i gives rotation by 90◦ in
TxX. The metric g gives an inner product on TxX. There is a natural compatibility condition
: the notions of rotation by 90◦ for J, g should be the same. Then, we say that (X, J) and
(X, g) have the same conformal structure (conformal = notion of angle). If z = x + iy is a
complex coordinate, this happens if g = E(dx2 + dy2), i.e. E = G and F = 0.

Theorem 5.3. Uniformization Theorem: Every compact, connected Riemann surface (X,J)
has a Riemann metric g compatible with its conformal structure, with constant Gaussian
curvature κ = 1, 0, or− 1.

From Gauss–Bonnet we see that κ = 1 if χ(X) > 0, i.e. g = 0; κ = 0 if χ(X) = 0 i.e.
g = 1, and κ = −1 if χ(X) < 0 i.e. g > 1.

κ = 1 =⇒ X = (S2, g) with round metric,

κ = 0 =⇒ X = R2/Λ, with Euclidean metric on R2,

κ = −1 =⇒ X = H/Γ for Γ an infinite group of isometries of H, acting freely on H.

So, we can understand Riemann surfaces of genus g > 1 using hyperbolic geometry. One can
get them by gluing sides of a polygon in H with geodesic sides: the hyperbolic version of
plane models.

Example 5.4. Take a regular octagon ”O” in the hyperbolic plane, with geodesic sides, and
indernal angels 45◦. Local Gauss–Bonnet gives∫

O
κdA = (2− 8)π +

π

4
+ . . .+

π

4
= −4π = 2π(−2) .

Gluing sides as shown in Figure 5.7 gives a genus 2 surface with a hyperbolic metric. (V =
2, E = 4, F = 1 =⇒ χ(X) = −2, g = 2.)

The hyperbolic plane was historically important in the development of mathematics. Eu-
clid studied geometry in R2 starting from axioms. His final axiom was called the ”prallel
postulate”:
- Two lines L1, L2 are parallel if L1 ∩ L2 = ∅. - Given a line L1, and a point p ∈ R2 not on
L1, there is a unique line L2 through p parallel to L1.
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Figure 5.7. Hyperbolic genus 2 surface from a regular hyperbolic octogon

Euclid seemed to be embarrassed about the parallel postulate and avoided using it as much
as possible. It was a long-standing problem to prove the parallel postulate from the other
axioms. The hyperbolic plane satisfies all Euclid’s axioms except the parallel postulate: there
are many lines L2 through p not intersecting L1. This eventually led to a reassessment of
what geometry was.

2 7)IR ↳
2

↳
L

p i
↳

↳ ↳

Figure 5.8. Parallel lines through a point in the Euclidean and hyperbolic planes


	1. Introduction
	2. Topological Surfaces
	2.1. Background from topology
	2.2. Topological Surfaces
	2.3. Building surfaces as quotient topological spaces
	2.4. Cellular decompositions and triangulations
	2.5. The Euler characteristic
	2.6. Connected sums
	2.7. Orientations and orientability
	2.8. The classification of surfaces

	3. Riemann surfaces
	3.1. The definition of Riemann surface
	3.2. Meromorphic functions
	3.3. Branch points and ramification points
	3.4. An example
	3.5. Building Riemann surfaces as branched double covers

	4. Smooth surfaces
	4.1. Abstract smooth surfaces
	4.2. Smooth surfaces in R3
	4.3. The first fundamental form
	4.4. Riemann metrics on abstract surfaces
	4.5. Examples of first fundamental forms
	4.6. Isometric surfaces
	4.7. The second fundamental form
	4.8. Tangential derivatives and the Theorema Egregium
	4.9. Geodesic curvature and geodesics
	4.10. The Gauss–Bonnet Theorem
	4.11. Critical points and the Euler characteristic

	5. The hyperbolic plane
	5.1. Geodesics in the hyperbolic plane
	5.2. Hyperbolic triangles
	5.3. The uniformization theorem


