Example Sheet 0. C5.7, Topics in Fluids. MT2025.

1. Vector identities and the divergence theorem.
(a) Prove the following identities for any differentiable vector fields u and v :
(i) (u-V)u=V (3lu?) +(VAu) Ay
(ii) VA(uAv)=(V-viju+ (v-V)u— (V- -u)v—(u-V)v.
(iii) V2Zu=V(V-u)— VA (V Au).

(b) The faces of a tetrahedron lie in the planes z; = 0,29 = 0,23 = 0 and n - x = 1, where
n = (n1,ng,n3) is a unit vector such that n; > 0 for j = 1,2,3 and x = (21,22, 23). Let A;
be the area of the face in the plane z; = 0 and let A be the area of the face with unit normal
n. By applying the divergence theorem, show that A; = n;A.

2. The convective derivative and Reynolds’ transport theorem

(i) Let f(x,t) be a differentiable function of position x and time ¢, defined in a fluid whose velocity
is u(x,t). Show that the rate of change of f following a material fluid element is given by

Df of
Dt ot (u-V)f

(ii) Let V(¢) be a time-dependent closed region of R3 that is convected with velocity u(x,t). Prove
Reynolds’ Transport Theorem, namely

jt///v(t)de://V(t)gJ;JrV-(fu)dV

for any continuously differentiable function f(x,t).
3. The continuity equation and incompressibility.
(a) By applying the principle of conservation of mass to a material volume V' (t), derive the con-

tinuity equation

op B
a—l—V-(pu)—O

for a compressible fluid with density p, stating any assumptions that you make about the
smoothness of p and u.

(b) When the fluid is incompressible, i.e. % = 0, derive the incompressibility condition

V-u=0

and deduce that the transport theorem for an incompressible fluid may be written in the form

et = I o

for any continuously differentiable function f(x,t).



4. Derivation of the incompressible Navier-Stokes equations.

(a)

Define the Cauchy stress tensor o;; and show that the force per unit area exerted on a surface
element with unit normal n = nje; by the fluid towards which n is directed is given by the
stress vector

t = eioijnj

where e, es, e3 are unit vectors along the axes Ox1, Oxa, Oxs.

Newton’s second law for a material volume V'(¢) with boundary 0V () is given by

d/// pudV:// tdS+/// pFdV
dt V(t) v (t) V(t)

where p is the density, u = u;e; is the velocity and F = Fje; is an external body force acting
per unit mass. Explain the physical significance of each term in this expression.

Use Reynolds’ transport theorem and the divergence theorem to derive Cauchy’s momentum
equation in the form

Define the rate-of-strain tensor e;;. State the physical assumptions that are needed for an
incompressible fluid to be Newtonian, that is

Oij = —poij + 2peq;,

where p is the pressure and p is the viscosity.

For an incompressible, constant viscosity, Newtonian fluid, deduce the Navier-Stokes equations
in the form

0
p<altl+(u-V)u> = —Vp+uV?u+pF, V-u=0.

5. Symmetry of the stress tensor.

For the Cauchy stress tensor, deduce that o;; = 0j;.
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C5.7 Sheet 0 solutions MT25

Q1 Vector identities and the divergence theorem.

(a) Prove the following identities for any differentiable vector fields u and v :
(i) (u- V)u=V (3/uf’) +(VAu) Au;
(ii) VA(uAv)=(V-v)u+ (v-V)u— (V- -u)v—(u-V)v.
(iii) V2u = V(V-u) - VA(V Au).

(b) The faces of a tetrahedron lie in the planes 1 = 0,29 = 0,23 = 0 and n-x = 1, where n =
(n1,n2,n3) is a unit vector such that n; > 0 for j = 1,2,3 and x = (z1, 22, 23). Let A; be the area
of the face in the plane z; = 0 and let A be the area of the face with unit normal n. By applying
the divergence theorem, show that A; = n;A.

Solution

(a) This part uses the summation convention (of summing over repeated indices in an expression) and
the following identities for a differentiable scalar field f(x), a differentiable vector field G(x) =
Gi(x)e; and vectors a, b, c :

Vf = eig]']j (1)
0G;
V- G= 87; (2)
VAG= e; A\ % (3)
j
(- 9)f =gt (@
_ o
VQf N 89518951 (5)
aN(bAc)=(a-c)b—(a-b)c (6)

(i) By (1), (3), (4) and (6),

(if) By (2), (3), (4) and (6),



o}
V/\(u/\v):ej/\a—xj(u/\v)

:i(ej/\(u/\v))

8&?]'
0
= %((ej-v)u—(ej-u)v)
0
= 87:] (vju —u;v)
Ju  Ov Ov. _ 0w

=Uv;j— u—ui— —
J . . J . .
Oxj Oz Ox;  Ox;

=(v-V)u+(V-v)u—(u-V)v—(V-u)v

(iii) By (1), (2), (3), (5) and (6),

;
82
_ &rla ’ (el A (ej A ll))
82
= 8xzax3 ((el : u) e] - (e'L e])u)
62
_o 0 (0w _ _Ou
N ]a$]’ 8%1 8xj8$j
=V(V - u) - Vu

where Kronecker’s delta ¢;; is defined by

1 ifi=j
dij = e
0 ifi#j
The divergence theorem states that if the region V in R? is bounded by a piecewise smooth surface

0V with outward pointing unit normal n = exni and G(x) = e;G, is a differentiable vector field
on V, then

///V.dez/ G.ndS or ///adeV:/ Gong dS (7)
v oV v Oy, oV

Let V be the tetrahedron and for clarity replace n in the question with n. The face with area A;
has outward unit normal —e; and the (slanted) face with area A has outward unit normal n( since
V(- -x—1)=n,|n| =1 and n points out of the tetrahedron). Let G = e;, so that V-G = 0. By
the divergence theorem,



0:// V.G dV

1%

:/ G -ndS
v

= e;-ndS+ // —e;)dS
//8Vﬂ{x~ﬁ1} ! Z Vn{x;= 0} )

= (e; - // ds — (€ - € //
OVN{x-n=1} 1 OVN{z;= 0}

— ;A — 0y A
=i A— A

1=

Q2 The convective derivative and Reynolds’ transport theorem.

(a) Let f(x,t) be a differentiable function of position x and time ¢, defined in a fluid whose velocity is
u(x,t). Show that the rate of change of f following a material fluid element is given by

D s,
Dt 8t+(u V) f.

(b) Let V(¢) be a time-dependent closed region of R? that is convected with velocity u(x,t). Prove
Reynolds’ Transport Theorem, namely

// fdv = /%/)8t+v u)dV

for any continuously differentiable function f(x,t).

Solution

We choose the label X to be the initial position of a fluid particle at time ¢ = 0 (say), and denote by
x(X, ) its position at time ¢ > 0, thus

x(X,0) = X, x(X,t) = u(x(X,1),t).

h

(a) The convective derivative

D_29

Dt ~ dt|x
is related to the Eularian time derivative

9_20

ot Ot x

using the chain rule. The time rate of change of a differentiable scalar field f(x,t) following the
fluid is the convective derivative



Df 9
ﬁ - a Xf(X(th)’t)

oo | o o) | 0 o) L0
0z at Jdrg Ot |x  Oxg Ot |x Ot
=5 ot V!
= vy
(gt +u- V) f
(b) The Jacobian J(X,t) is defined by
J(X,1) = 0 (z1,x2,73) . Oxy Oxg Oxg

9(X1, X2, X3) 70X, 0X; 0X),

where the Levi-Civita symbol ;;;, is defined by

1if 7,7, k in cyclic order ,
eijk = § —1if 4, j, k in acyclic order ,

0 otherwise.

Hence, the rate of change of J following the fluid is given by

DJ o D &rl 8952 8953
Dt Dt < “koX; 0X; an)
— e (81‘1 8:1/‘2 3$3 81‘1 3$'2 6953 8$1 8902 89:3)
TR\ 0X; 0X;0X), ' 0X,0X;0X), = 0X; 0X; 0X},

o <8u1 0z, Oxg Oxs Oz Oug Oxy, O3  Ox1 Oxo OUus 8xm>
I\ Oz, 0X; 0X; 0Xy | 0X; Oz 0X; 0Xy | 0X; 0X; Oz, 01X,

~ Our O (xm,2,23) Ouz 0 (x1,ZTm,x3) Ouz 0 (x1,x2, Tm)

- (%m&(Xl,XQ,Xg) 8xm8(X1,X2,X3) axma(Xl,Xz,Xg)

o <8U1 8U2 8U3> 8(581,.%‘2,333)

8%1 87332 + 8.733 8(X1,X2,X3)

where in the second line we set * = D/Dt¢ and used the product rule; in the third line we used
In = Uy, and the chain rule; and in the fifth line we used the fact a determinant is zero if it has
repeated rows. Thus, we have derived Euler’s identity

— =JV-u

Dt
Assuming the map from X to x(X, ¢) is invertible and continuous, J(X,t) is positive and bounded.
We can therefore transform from Eularian coordinates x to Lagrangian coordinates X in order to
"differentiate under the integral sign: For a continuously differentiable scalar field f(x,#)!



dt//vw'th(mldx2¢m__/// Fx(X, 1), 5)J (X, 1)dX1 dXs dXg
Sl
/[/ D (£ dX dXs
L (522 o
/[/ <+fv w) 7 X X, dx,
/ / / < +tVv (fu)) dey day des ®)

where on the fourth line we used Euler’s identity and on the last line we set

fJ dX; dXs dX3

+(u-V)f+fV- u—%:—i—v (fu)

Df 8f
o F/Vou T oot

while transforming back to Eulerian coordinates.

Q3 The continuity equation and incompressibility.

(a) By applying the principle of conservation of mass to a material volume V (), derive the continuity
equation

dp
SV (pw) =0

for a compressible fluid with density p, stating any assumptions that you make about the smooth-
ness of p and u.

b) When the fluid is incompressible, i.e. 22 = 0, derive the incompressibility condition
p e 77 =0, P ¥y

V-u=0

and deduce that the transport theorem for an incompressible fluid may be written in the form

Gl = o

for any continuously differentiable function f(x,t).

Solution

(a) Since a material volume V' (¢) always consists of the same fluid particles, its mass must be preserved,
ie.



/]
— pdV =0

Assume p € C! (i.e. p is continuously differentiable) and apply Reynolds Transport Theorem (8)

with f = p to obtain
// f—kV (pu)dV = 0.
V(t)

We assume that p and u are sufficiently smooth that the integrand is continuous (e.g. p,u € C*
will do). Then we may use the fact the volume V(t) is arbitrary to deduce that the integrand is
zero, i.e. the continuity equation

dp
— : =0. 9
5 TV (ou) (9)
(b) By (9) and the product rule,
ap p _Dp
0= E%—V (pu) = 5t +(u-V)p+pV-u= Dt—l—qu
Hence, for an incompressible flow,
Dp
ﬁ =0 & V-.-u=0,
in which case
of Df _ Dy
o TV VW= v V=g

so that Reynolds Transport Theorem (8) becomes

d Df
e // o, f(x,t)dxy dzg das = ///V(t) Dt dzi dzs dzs.

Q4 Derivation of the incompressible Navier-Stokes equations.

(a) Define the stress tensor o;; and show that the force per unit area exerted on a surface element with
unit normal n = nje; by the fluid towards which n is directed is given by the stress vector

t = eiaijnj,

where e, es, €3 are unit vectors along the axes Ox1, Oxsa, Oxs.

(b) Newton’s second law for a material volume V (t) with boundary 9V (t) is given by

d/// pudV:// tdS—i—/// pFdV,
dt V(t) v (1) V(t)



where p is the density, u = u;e; is the velocity and F = Fje; is an external body force acting per
unit mass. Explain the physical significance of each term in this expression.

(c) Use Reynolds’ transport theorem and the divergence theorem to derive Cauchy’s momentum equa-
tion in the form

(d) Define the rate-of-strain tensor e;;. State the physical assumptions that are needed for an incom-
pressible fluid to be Newtonian, that is

0y = —pdij + 2pes;,

where p is the pressure and p is the viscosity.

(e) For an incompressible, constant viscosity, Newtonian fluid, deduce the Navier-Stokes equations in
the form

0

Solution

(a) The stress tensor o;;(x,t) is the component of stress (i.e. force per unit area) in the z;-direction
exerted on a surface element with normal in the x;-direction by the fluid toward which e; points.
The stress vector t(x,t,n) is the stress exerted on a surface element by the fluid toward which its
unit normal n points. Hence,

Jij(X,t) =e; -t (X,t, ej) &S0t (X,t,ej) = eiaij(x,t). (11)

Consider a material volume V (t) having at time ¢ the configuration of a small tetrahedron as shown.

€3

€1

Let the slanting face have area A = L? and outward unit normal n = e;n;, with n; > 0.

Begin with conservation of momentum for V() from part (c) in the form

/// pD“—devz// ¢ds. (12)
vy Dt oV (t)

7



Assuming the integrand is continuous, the integral mean value theorem implies that

/// P28 RAV = O (%) as L 0. (13)

Since the face with area A; = n;A = n;L? (by Q1(b)) has outward unit normal —e; and the
(slanted) face with area A = L? has outward unit normal n,

// tdS = (t(x,t,n) +t(x,t,—e;) n;) L*+0 (LS) as L —0. (14)
oV (t)
By Newton’s third law, t (x,t,—e;) = —t (x,t,e;), so we we deduce from (12)-(14) that

(t(x,t,n) —t (x,t,e;)n;) L*=0(L*) as L—0

This expression pertains for arbitrarily small L, so there is a local equilibrium of the surface stresses,
with

t(x, t, 1’1) =t (X7 2 ej) nj = eiaij(x7 t)n]' (15)

by (11). Note that the argument may be readily generalized to an arbitrarily oriented unit normal
n.

Since the the face with area A; = njA = n;L? (by Q1(b)) has outward unit normal - e;, the (slanted)
face with area A = L? has outward unit normal n and by Newton’s third law t (—e;) = —t (e;),
the net surface force on the tetrahedron is given by

t(n)A+t(—e;) Aj = (t(n) —t (e;) ny) L?

to a first approximation as L — 0, with all dependent variables (i.e. t here) evaluated at x at
time ¢ here and hereafter. To a first approximation Newton’s second law for the small material
tetrahedron is given by

Du

—6V = (t(n) —t(ej)n;) L? FoV
PDi (t(n) ffy)”a) + g_v_/
Net surface force Net body force

Mass X acceleration
where 6V is the volume of the tetrahedron. Since 6V = O (L3) as L — 0, we deduce that
t(n) =t (e;) n; = ejoyn;

by (11), provided the acceleration and body force are finite. Note that the argument may be readily
generalized to an arbitrarily oriented unit normal n.

(b) Conservation of momentum for a material volume V'(¢) is given by

d
— /// pudV = // tdS + /// pFdV (16)
dt V(t) oV (¢) V(t)



The term on the left is the time rate of change of the linear momentum of V' (¢). The first term on
the RHS is the net surface force exerted by fluid outside V (¢) on fluid inside V (¢t) via 9V (t). The
second term on the RHS is the net body force exerted on V().

By Reynolds Transport Theorem (8) with f = pu; (assuming p,u; € C' ) and the continuity
equation (9), we obtain

8l = ] e
e ) o3
:///V(t)p%f av

By Cauchy’s stress theorem (5) and the divergence theorem,

// t(n)dS:ei// oijn; dS:ei/// 993 gy,
av (1) av (1) v 0%;

Hence, the x;-component of (16) may be written in the form

Dui aO'ij
p - —pF; dV = 0.
///V(t) Dt 81’j

Since V (t) is arbitrary, the integrand must be zero (if it is continuous), and we deduce Cauchy’s
momentum equation in the form

Dui 80’1']'
_ = F;. 1

The rate-of-strain tensor e;; is given by

_ 1 8’11,1 8Uj
“ij = 2 (8% + 81’1}1) )
Let o;; = —pd;j + Ti;, where p is the pressure and 7;; is the deviatoric stress tensor, due to the
presence of viscosity. The two physical assumptions defining a Newtonian fluid are
(1) 7 is a linear function of the velocity gradients Juq/0xg;
(2) the relation between 7;; and the velocity gradients is isotropic, i.e. invariant to rotations of the
coordinate axes (so that there is no preferred direction).

Together with symmetry of the stress tensor, these conditions are sufficient to determine the form
of 7;; completely (outline proof in lecture notes not examinable):

where A is the bulk viscosity and pu is the dynamic (shear) viscosity. Hence, for an incompressible
flow, with V - u = 0, the Newtonian constitutive law is given by

81']' + ({9(131

Ou; ~ Ouy;
Oij = —Poij + Tij = —poij + 2pei; = —poij + p < : J) :

9



(e) If p is constant, then

80‘2‘]' . i " 4 auz 4 8Uj
a.%'j - 81‘]' p K H 8.%‘j 8%1
Op 0%u; 82u]

ox; + 'u(?:rja:vj T 8:16]81'2

_ 9 0y
N (9.%'1 Ui Mal‘i al'j
Op 0
_axi u; + ,U/aix](v . u)
dp
v U (18)

since V - u = 0 for an incompressible flow. By (17) and (18), the incompressible Navier-Stokes
equations are given in component form by

ou; Op 9
. i = —— i i . =0,
p(at—i-(u V)u) axi+uVu+pF V-u=0

and in vector form by

<(?)t+(u V)u >__Vp+/N2u+PFa V-u=0. (19)

Q5 Symmetry of the Cauchy stress tensor.

For the Cauchy stress tensor, deduce that o;; = o0;.

Solution

For a material volume V' (t), conservation of angular momentum about the origin O is given by

/// x A pudV = // x/\tdS-l—/// x A pF dV.
dt oV (t) V(1)

Use Reynolds transport theorem and the divergence theorem to write this expression in the form

/[/ XA (p@ w@al] — \ /// e; Nejo;;dV.
JJ v \" Dt oxz; ) ././jV g

Dotting this with e_k gives the kth component of the
We can then deduce

momentum conservation equation, which is zero.
/// ei/\ejcrijdV:O.
V(1)

Hence this zero.
Since V/(t) is arbitrary, the integrand must be zero (if it is continuous), i.e

0=-e;Nejo;; =e1 (023 —032) + €2 (031 — 012) + €3 (012 — 021) ,



