
C4.1 Further Functional Analysis

Sheet 1 — MT 2025

For classes in week 3 or 4

This example sheet is based on the material in sections 2, 3 and 4 of the notes, together

with Appendix A.

Section A

1. Let X be a Banach space and Y a normed space. Let T ∈ B(X,Y ) be such that there

exists δ > 0 such that ‖Tx‖ ≥ δ‖x‖ for all x ∈ X. Show that Ran(T ) is complete, and

hence closed.

Solution: Suppose (yn)n is a Cauchy sequence in Ran(T ), write yn = Txn, so that

‖xn − xm‖ ≤ δ−1‖yn − ym‖ → 0. Therefore (xn) is Cauchy, and so converges say to

x ∈ X. Therefore by continuity of T , yn = Txn → Tx ∈ Ran(T ). Thus Ran(T ) is

complete, and hence closed.1

2. Let X be a vector space and suppose that Y is a subspace of X.

(a) By extending a Hamel basis for Y to X, construct a linear map P : X → X such

that P 2 = P and RanP = Y .

(b) Deduce that Y is algebraically complemented in X, which is to say that there exists

a further subspace Z of X such that every x ∈ X can be expressed uniquely as

x = y + z with y ∈ Y and z ∈ Z.

(c) Is the subspace Z in part (b) uniquely determined by Y ?

[One can achieve the main point of this question: subspaces are algebraically comple-

mented directly, by the same Hamel basis extension argument hinted at in (a).]

Solution:

(a) Let B be a Hamel basis for Y and B′ a Hamel basis for X such that B ⊆ B′. Define

P by setting Px = x for all x ∈ B and Px = 0 for all x ∈ B′ \ B and extending

linearly. Then P has the required properties.

1Every complete subspace of a metric space is closed. Indeed, if yn → y ∈ Y with yn ∈ Ran(T ), then

(yn) is Cauchy, so converges to some z ∈ Ran(T ). By uniqueness of limits y = z ∈ Ran(T ). But these

details would not be needed in a part C answer.

Mathematical Institute, University of Oxford

Jan Kristensen: kristens@maths.ox.ac.uk

Page 1 of 6



C4.1 Further Functional Analysis: Sheet 1 — MT 2025

(b) Since P 2 = P we know that X = RanP ⊕KerP , so we may take Z = KerP .

(c) No. Take for instance X = F2 and Y = Span {(1, 0)}. Let Z1 = Span {(0, 1)} and

Z2 = Span {(1, 1)}. Then X = Y ⊕ Zk for k = 1, 2 but Z1 6= Z2.

3. Let X be a vector space on which two norms ‖ · ‖,9 · 9 are defined, and suppose that

‖x‖ ≤ C9x9 for some constant C > 0 and all x ∈ X.

(a) Suppose that X is complete with respect to one of these two norms. Show that it

is complete with respect to the other if and only if the two norms are equivalent.

(b) Give an example in which (X,9 · 9) is complete but (X, ‖ · ‖) is not.

[See Question B.1 for examples with (X, ‖ · ‖) complete but (X,9 · 9) is not.]
Solution:

(a) If the norms are equivalent, and one norm is complete, then we can apply Question

1 to the identity map (X, ‖ · ‖) → (X,9 ·9) (or the otherway round) to learn that

the other norm is complete.

For the converse we need to show that if both norms are complete then they are

equivalent. This follows from the inverse mapping theorem applied to I : (X,9 ·9) → (X, ‖ · ‖).

(b) Let X = ℓ1 and let ‖ · ‖ = ‖ · ‖∞ and 9 ·9 = ‖ · ‖1. Then ‖x‖ ≤ 9x9 for all x ∈ X

and (X,9 · 9) is complete but (X, ‖ · ‖) is not.
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Section B

1. Let X be an infinite-dimensional normed space, and suppose that {xα : α ∈ A} is a

Hamel basis for X and that ‖xα‖ = 1 for all α ∈ A. Given a vector x ∈ X which has

the expansion x =
∑

α∈A λαxα we let

9x9 =
∑
α∈A

|λα|.

(a) Check that 9 · 9 defines a norm on X.

(b) Now let X be a Banach space. Show that (X,9 · 9) is not separable.
(c) Deduce that in the Closed Graph Theorem the assumption that the codomain be

complete cannot be omitted.

[Note that this provides loads of examples of Banach spaces X with norms ‖ · ‖ and9 · 9 as in Question 3, in which (X, ‖ · ‖) is complete but (X,9 · 9) is not.]
2. Let X be an infinite-dimensional Banach space with norm ‖ · ‖, and let f : X → F be

an unbounded linear functional. Given a vector x0 ∈ X such that f(x0) = 1, consider

the linear operator T : X → X defined by

Tx = x− 2f(x)x0, x ∈ X.

Show that T 2 = I. Hence show that the map 9 · 9 : X → [0,∞) given, for x ∈ X, by9x9 = ‖Tx‖ defines a complete norm on X which is not equivalent to ‖ · ‖.

3. (a) Let X, Y and Z be vector spaces and suppose that T : X → Y and S : X → Z are

linear maps. Show that there exists a linear map π : Z → Y such that T = π ◦ S
if and only if KerS ⊆ KerT .

(b) Hence or otherwise show that if n ∈ N and if f1, . . . , fn and f are linear functionals

on a vector space X, then f ∈ Span {f1, . . . , fn} if and only if

n∩
k=1

Ker fk ⊆ Ker f.

(c) Let X be a normed space and let F be a finite dimensional subspace of X∗. Write

F◦ for the preanhilator of F , i.e. F◦ = {x ∈ X : f(x) = 0, f ∈ F} and (F◦)
◦ for

the anhilator of F◦, i.e. (F◦)
◦ = {g ∈ X∗ : g(x) = 0, x ∈ F◦}. Show directly that

F = (F◦)
◦.

[We will use part (b) of this question a lot later in the course, so make sure you keep

this result handy.]
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4. Let Y, Z ⊆ ℓ2 be given by

Y =
{
(yn) ∈ ℓ2 : y2n = 0 for all n ≥ 1

}
,

Z =
{
(zn) ∈ ℓ2 : z2n−1 = nz2n for all n ≥ 1

}
.

(a) Show that Y and Z are closed subspaces of ℓ2 and that Y ∩ Z = {0}.

(b) Letting X = Y ⊕ Z denote the algebraic direct sum of Y and Z, prove that X is

dense in ℓ2 but that X 6= ℓ2, and deduce that X is not the topological direct sum

of Y and Z.

(c) Let P : X → X be the linear map given by P (y + z) = y for all y ∈ Y , z ∈ Z.

Show directly that P is unbounded.

5. LetX be a normed vector space and let Y and Z be subspaces ofX such thatX = Y ⊕Z

algebraically. Show that if Y is closed, then X is the topological direct sum of Y and Z if

and only if the restriction π|Z : Z → X/Y of the canonical quotient map π : X → X/Y

is an isomorphism.

6. Let Y and Z be closed subspaces of a Banach space X with Y ∩ Z = {0}. Equip the

algebraic direct sum Y ⊕ Z with the ℓ1-norm: 9y + z9 = ‖y‖+ ‖z‖.

(a) Show that 9 · 9 is complete on Y ⊕ Z.

(b) Show that the following are equivalent:

(i) 9 · 9 is equivalent to the original norm on Y ⊕ Z (as a subspace of X);

(ii) Y ⊕ Z is closed in X;

(iii) Y is complemented by Z in Y + Z (so Y ⊕ Z is a topological direct sum).

7. Let X and Y be Banach spaces and suppose that T ∈ B(X,Y ) is such that RanT has

finite codimension in Y . Show that RanT is closed.

[Recall that RanT being of finite co-dimensional means that Y/RanT is finite dimen-

sional. Start by checking that RanT is algebraically complemented in Y by a finite

dimensional subspace Z. You may then want to consider a map X/KerT → Y/Z where

Z is a finite dimensional subspace which complements RanT .]

2This exercise came from Fabian, where it didn’t ask for Y to be complemented by Z, just complemented.

This doesn’t work, as in general a bounded projection Y ⊕Z → Y does not have to be of the form y+z 7→ y.

As a counter-example, see Q4: since Y is complemented in ℓ2, it is complemented in any subspace; but the

Z of that question is not a complement.
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Section C

The extensional material in Section C for this sheet looks at the interplay between the

fundamental applications of Baire’s category theorem in functional analysis. Most of the

questions below are probably no harder than Section B, but they are a little off the main

topic of the course, though as we will use these applications of Baire category theorem it

certainly does not harm to know how they fit together.

1. Prove that the Closed Graph Theorem, the Inverse Mapping Theorem and the Open

Mapping Theorem are all equivalent.

[We saw that OMT⇒IMT⇒CGT in Appendix A, and potentially in your earlier courses.

You should avoid using any form of the axiom of choice (or even a countable version of

the axiom of choice). Countable choice plays a role in the proof of all of these theorems,

in that it is needed for the Baire category theorem.]

Solution: Throughout let X and Y be Banach spaces and let T : X → Y be linear.

We show first that OMT ⇐⇒ IMT and then that IMT ⇐⇒ CGT. Assume the OMT

and suppose that T ∈ B(X,Y ) is a bijection. If U ⊆ X is open then so is T (U) and

hence T−1 is continuous, so T is an isomorphism. Thus OMT =⇒ IMT. Now assume

the IMT and suppose that T is surjective. Then the operator T0 : X/KerT → Y defined

by T0(x + KerT ) = Tx, x ∈ X, is a continuous linear bijection between two Banach

spaces and hence is an isomorphism. If π : X → X/KerT denotes the canonical quotient

operator then for every open set U ⊆ X we have T (U) = T0(π(U)). But π is an open

map, so π(U) is open and hence so is T (U), so T is an open map. Thus IMT =⇒ OMT.

Next assume the IMT and endow X × Y with any of the p-norms, 1 ≤ p ≤ ∞. If

T is continuous then GT is closed in X × Y by an elementary argument. Conversely,

suppose that GT is closed in X × Y . Since X × Y is complete so is GT . Consider the

linear map S : GT → X given by S(x, Tx) = x, x ∈ X. Then S is a continuous linear

bijection between two Banach spaces and hence by the IMT the operator S−1 : X → GT

is also continuous. Hence T is bounded, so IMT =⇒ CGT. Now assume the CGT. If

T ∈ B(X,Y ) then GT is closed. If T is a bijection then the graph of the algebraic inverse

T−1 satisfies

GT−1 = {(y, T−1y) : y ∈ Y } = {(y, x) : (x, y) ∈ GT},

which is closed because the map (x, y) 7→ (y, x) maps X × Y homeomorphically onto

Y ×X. Hence T−1 is bounded, so CGT =⇒ IMT.
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2. Show, in the spirit of Question 1, that the principle of uniform boundedness is also

equivalent to the open mapping theorem, inverse mapping theorem and closed graph

theorem.

Solution: Assume the CGT. Suppose that F is a family of bounded linear operators

X → Y such that supT∈F ‖T (x)‖ < ∞ for all x ∈ X. Form the Banch space ℓ∞(F , Y ) =

{(yT )T∈F : supT∈F ‖yT‖ < ∞} with the norm ‖(yT )T∈F‖ = supT∈F ‖yT‖. Now define

a map Φ : X → ℓ∞(F , Y ) given by Φ(x) = (T (x))T∈F . The hypothesis on F ensures

that Φ does map into ℓ∞(F , Y ) and it is clearly linear. Suppose xn → x in X and

Φ(xn) → (yT )T∈F ∈ ℓ∞(F , Y ). Then, for each T ∈ F , T (xn) → yT . But as T is

bounded, T (xn) → T (x), so yT = T (x), i.e. (yT )T∈F = Φ(x). Thus Φ has closed graph,

so is bounded. Then ‖Φ‖ = sup∥x∥≤1 supT∈F ‖T (x)‖ = supT∈F ‖T‖, so supT∈F ‖T‖ < ∞.

Now assume the principle of uniform boundedness and let T : X → Y be a surjective

map between Banach spaces. For each n define a new norm ‖y‖n = inf{‖x‖ + n‖z‖ :

x ∈ X, z ∈ Y, Tx+ z = y}. It is easily checked that this is a norm (and we do not need

to worry about whether it is complete) and let Z = {(yn)∞n=1 : yn ∈ Y, sup ‖yn‖n < ∞},
the ℓ∞-direct sum of copies of Y with the norm ‖ · ‖n. For each n, let Tn : Y → Z be

the map embedding Y into the n-th summand of Z (i.e. Tn(y) = (0, . . . , 0, y, 0, . . . ),

with y in the n-th position. This is linear, and ‖Tn‖ ≤ n, so each Tn is bounded.

Also, for y ∈ Y , there exists x ∈ X with Tx = y. Thus supn ‖Tn(y)‖ ≤ ‖x‖, so the

principle of uniform boundedness (which does not require Z to be complete) shows that

C = sup ‖Tn‖ < ∞.

Suppose y ∈ Y has ‖y‖ < 1/C. Then ‖y‖n = ‖Tny‖ ≤ C‖y‖ < 1. Therefore for

each n there exists xn ∈ X, zn ∈ Y with Txn + zn = y and ‖xn‖ + n‖zn‖ < 1. Thus

‖zn‖ < 1/n → 0, so Txn → y. Therefore y ∈ T (B◦
X). The successive approximation

lemma then shows that B◦
Y (1/C) ⊂ T (B◦

X), and we have deduced the open mapping

theorem.
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