
C4.1 Further Functional Analysis

Sheet 2 — MT 2025

For classes in week 5 or 6

This problem sheet is based on material up to and including Section 6 of the notes,

together with appendix A.

Section A

1. Let X and Y be normed spaces and T ∈ B(X,Y )

(a) Show (ran T )◦ = ker T ∗.

(b) Use the Hahn-Banach theorem to show (ran T ∗)◦ = ker T .

Solution:

(a)

(ran T )◦ = {f ∈ Y ∗ : f(Tx) = 0, x ∈ X} = {f ∈ Y ∗ : T ∗f = 0} = ker T ∗.

(b) If x ∈ KerT , then for any f ∈ Y ∗, (T ∗f)(x) = f(Tx) = 0, so x ∈ (ran T ∗)◦.

For the converse, if x ∈ (ran T ∗)◦, then for all f ∈ Y ∗, (T ∗f)(x) = f(Tx) = 0.

Hahn-Banach then implies that x ∈ KerT (as if not Tx 6= 0, and so there would

exist f ∈ Y ∗ with 0 6= f(Tx) = (T ∗f)(x)).
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2. Let X be a normed space.

(a) Let C ⊂ X be convex set. Show that the closure, C is convex.

(b) Given a subset A ⊂ X, show that{
n∑

i=1

λiai : n ∈ N, ai ∈ A, λi ≥ 0,
∑
i

λi = 1

}

is the smallest convex subset of X containing A. This is known as the convex hull

of A, and denoted co(A).

(c) Given a subset A ⊂ X, show that co(A) is the smallest closed convex subset of X

containing A. This is known as the closed convex hull of A, denoted co(A).

(d) Use an example on the last sheet to provide closed convex sets C1, C2 ⊆ X such

that co(C1 ∪ C2) is not closed.

[You may find the closed convex hull construction useful in question B.4.]

Solution:

(a) Suppose x, y ∈ C and 0 < λ < 1. Taking sequences xn → x and yn → y with

xn, yn ∈ C, we have λxn + (1 − λ)yn ∈ C and λxn + (1 − λ)yn → λx + (1 − λ)y.

Thus λx+ (1− λ)y ∈ C and so C is convex.

(b) It is easy to see that the given set is convex. Then show by induction that any

convex set C has the property that
∑n

i=1 λici ∈ C whenever c1, . . . , cn ∈ C and

λi > 0 have
∑n

i=1 λi = 1. Thus the displayed set is contained in any closed convex

set containing A.

(c) In this case co(C1 ∪ C2) = {λc1 + (1− λ)c2 : c1 ∈ C1, c2 ∈ C2, 0 ≤ λ ≤ 1}. Once

one sees this closure follows exactly as in (a). To see this, note that the set on the

right hand side is clearly contained in co(C1 ∪ C2) from the expression of this set

in (b); but it is also easily checked to be convex and contains C1 ∪ C2.

(d) Sheet 1, B4 provides an example, with C1 = Y and C2 = Z.
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Section B

1. Let X be a normed vector space and let Y be a subspace of X.

(a) Suppose that Y is finite-dimensional. Show that Y is complemented in X, and

that if Z is any closed subspace of X such that X = Y ⊕ Z algebraically, then X

is in fact the topological direct sum of Y and Z.

(b) What can you say if Y has finite codimension in X? [Recall that the codimension

of Y in X is the dimension of the quotient vector space X/Y .]

2. (a) Let X be a Banach space and suppose that {xn : n ≥ 1} is a bounded subset of X.

Show that there exists a unique operator T ∈ B(ℓ1, X) such that Ten = xn for all

n ≥ 1 and ‖T‖ = supn≥1 ‖xn‖.

(b) Prove that if X is a separable Banach space then X ∼= ℓ1/Y for some closed

subspace Y of ℓ1.

(c) Deduce that ℓ1 contains closed subspaces which are uncomplemented.

[You may assume that any closed infinite-dimensional subspace of ℓ1 has non-

separable dual. We might prove this at the end of the course.]

3. (a) Let X be an infinite dimensional real normed space, and f : X → R a linear

functional. Show that if there is an open ball B0
X(x0, r) such that f(x) > 0 for

x ∈ B0
X(x0, r), then f is continuous. Deduce that if f is unbounded, then ker f is

dense in X.

(b) Use the previous result to show that any infinite dimensional normed space X can

be decomposed into a union A∪B of disjoint convex sets, with both A and B dense

in X.

4. (a) Let C be a convex absorbing subset of a normed space. Show

{x ∈ X : pC(x) < 1} ⊆ C ⊆ {x ∈ X : pC(x) ≤ 1},

with equality in the first inclusion when C is open, and equality in the second when

C is closed.

(b) Let C be a convex balanced subset of a normed space, which contains a neighbour-

hood of 0 and is bounded. Show that pC gives an equivalent norm on X.

(c) Let Y be a subspace of a normed space (X, ·), and let 9 ·9 be an equivalent norm

on Y . Show that 9 · 9 can be extended to an equivalent norm on X.
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5. Let X and Y be normed vector spaces and let T ∈ B(X,Y ). Suppose there exists a

constant r > 0 such that ‖T ∗f‖ ≥ r‖f‖ for all f ∈ Y ∗.

(a) Using the Hahn-Banach Separation Theorem, or otherwise, show that BY (r) is

contained in the closure of T (BX).

(b) If X is complete, deduce that T is a quotient operator, and that T is an isometric

quotient operator if T ∗ is an isometry.

[This question is asking you to complete the missing bits from Theorem 5.16.]

6. Let X = ℓ∞ and Sx = (xn+1) for x = (xn) ∈ X. Moreover, let T = I − S.

(a) Show that KerT = {(λ, λ, λ, . . . ) : λ ∈ F} and that RanT ∩KerT = {0}.

(b) Let Y = RanT ⊕ KerT and let P : Y → Y be the projection onto KerT along

RanT . By considering the operators

An =
1

n

n−1∑
k=0

Sk, n ≥ 1,

or otherwise, show that P is bounded and that ‖P‖ = 1.

(c) Prove that there exists a functional f ∈ X∗ with ‖f‖ = 1 such that f(Sx) = f(x)

for all x ∈ X and

f(x) = lim
n→∞

xn

whenever x = (xn) ∈ c.1 Evaluate f(x) when x is a periodic sequence.

7. Let X be a normed vector space and let Y be a subspace of X.

(a) Writing Y ◦◦ = (Y ◦)◦ for the double annihilator of Y in X∗∗, show that there exists

an isometric isomorphism T : Y ∗∗ → Y ◦◦ such that T ◦ JY = JX |Y . Deduce that Y
is reflexive if and only if Y ◦◦ ⊆ JX(Y ).

(b) Show that if X is reflexive and Y is closed, then both Y and X/Y are reflexive.

[Hint: Do the case of Y being reflexive first, and then consider (X/Y )∗.]

(c) Now suppose X is Banach and Y is a closed subspace such that both Y and X/Y

are reflexive.

(i) Fix ϕ ∈ X∗∗. Let π : X → X/Y denote the canonical quotient operator, and

show that there exists x ∈ X such that JX/Y (x+ Y ) = ϕ ◦ π∗.

(ii) Show ϕ − JX(x) ∈ Y ◦◦, and use part (a) to show find some y for which ϕ =

JX(x+ y).

1Recall that c is the subspace of ℓ∞ consisting of convergent sequences.
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Section C

1. (a) Let X be a normed vector space and let P ∈ B(X∗∗∗) be given by P = JX∗J∗
X .

Show that P is the projection onto JX∗(X∗) along JX(X)◦ and that ‖P‖ = 1.

(b) (i) Show that if T ∈ B(ℓ∞) with ‖T‖ = 1 and Ten = en, n ≥ 1, then T = I.

(ii) Deduce that there does not exist a projection of norm 1 from ℓ∞ onto c0.

(iii) Prove that there is no normed vector space X such that X∗ ∼= c0.

Solution:

(a) For f ∈ X∗ we have(
J∗
X(JX∗f)

)
(x) = (JXx)(f) = f(x), x ∈ X,

so J∗
XJX∗ is the identity operator on X∗. Hence P 2 = P . Note also that

JX∗(X∗) = P (JX∗(X∗)) ⊆ RanP ⊆ JX∗(X∗),

so RanP = JX∗(X∗). Since JX∗ is injective, KerP = Ker J∗
X = JX(X)◦. Moreover,

‖P‖ ≤ ‖JX∗‖‖J∗
X‖ = 1. Since P 6= 0 we must have ‖P‖ = 1.

(b) (i) Let x ∈ ℓ∞ and let y = Tx. Fix n ≥ 1. Then ‖x + λen‖∞ = |xn + λ| and
‖y + λen‖∞ = |yn + λ| for all λ ∈ F with |λ| sufficiently large. Thus

|yn + λ| = ‖y + λen‖∞ = ‖T (x+ λen)‖∞ ≤ |xn + λ|

for λ ∈ F as above. It follows from elementary geometric considerations that

xn = yn. Since n ≥ 1 was arbitrary, we have x = y and hence T = I.

(ii) Suppose that P ∈ B(ℓ∞) has norm 1 and is such that P 2 = P and RanP = c0.

Then P fixes elements of c0 and in particular Pen = en, n ≥ 1. By the previous

result we see that P = I contradicting the fact that RanP 6= ℓ∞.

(iii) Let Y = c0 and suppose that S : X∗ → Y is an isometric isomorphism. Let

Φ: ℓ∞ → Y ∗∗ be the usual isometric isomorphism and let P ∈ B(X∗∗∗) be

as in part (a). Note that JY ◦ S = S∗∗ ◦ JX∗ and that S∗∗ is an isometric

isomorphism. Consider the operator T ∈ B(ℓ∞) given by

T = Φ−1JY SJ
−1
X∗P (S∗∗)−1Φ,
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where we write J−1
X∗ for the inverse of the map JX∗ with codomain JX∗(X∗).

Then ‖T‖ = 1 and, using the fact that JY (y) = Φ(y) for y ∈ c0, we have

Ty =
(
Φ−1JY SJ

−1
X∗P (S∗∗)−1JY

)
(y) =

(
Φ−1JY SJ

−1
X∗PJX∗S−1

)
(y) = y.

By part (b)(i) we have that T = I. In particular, JY must be surjective, which

is a contradiction because c0 is non-reflexive.

2. Given a normed vector space X, we say that X is injective 2 if whenever Y is a subspace

of a normed vector space Z and T ∈ B(Y,X) there exists an operator S ∈ B(Z,X) such

that ‖S‖ = ‖T‖ and S|Y = T .

(a) (i) Show that ℓ∞ is injective

(ii) By proving first that any operator T ∈ B(ℓ∞, c0) such that Ten = en, n ≥ 1,

must have norm ‖T‖ ≥ 2, or otherwise, show that c0 is not injective.

(iii) Is c0 complemented in c, and if so what can you say about the norm of a

complementing projection?

(b) Suppose thatX is an injective normed vector space, and Y is a subspace of a normed

vector space Z such that Y is isomorphic to X. Prove that Y is complemented in

Z.

Solution:

(a) (i) Suppose that Y is a subspace of Z and that T ∈ B(Y, ℓ∞). For n ≥ 1 let

pn ∈ (ℓ∞)∗ by given by pn(x) = xn and let gn ∈ Y ∗ be given by gn = T ∗pn.

Thus Ty = (gn(y)), y ∈ Y , and hence

‖T‖ = sup
y∈BY

sup
n≥1

|gn(y)| = sup
n≥1

sup
y∈BY

|gn(y)| = sup
n≥1

‖gn‖.

By the Hahn-Banach Theorem there exist fn ∈ Z∗, n ≥ 1, such that fn|Y = gn

and ‖fn‖ = ‖gn‖ for all n ≥ 1. Let S ∈ B(Z, ℓ∞) be given by Sz = (fn(z)),

z ∈ Z. Then S|Y = T and moreover ‖S‖ = supn≥1 ‖fn‖ = supn≥1 ‖gn‖ = ‖T‖,
as required.

(ii) Suppose that T ∈ B(ℓ∞, c0) satisfies Ten = en, n ≥ 1, and that ‖T‖ < 2. Let

e = (1, 1, 1, . . . ) and let x = Te. Then

|xn − 2| ≤ ‖x− 2en‖ = ‖T (e− 2en)‖ ≤ ‖T‖‖e− 2en‖ ≤ ‖T‖, n ≥ 1,

2The terminology comes from category theory; X is an injective object in the category of normed spaces

with contractive linear maps.
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and hence |xn| ≥ 2− ‖T‖ > 0, n ≥ 1, contradicting the fact that x ∈ c0. So if

T ∈ B(ℓ∞, c0) and Ten = en, n ≥ 1, then ‖T‖ ≥ 2. In particular, taking Y = c0

and Z = ℓ∞ it follows that the identity operator on Y has no norm-preserving

extension to Z, so c0 is not injective.

(iii) The same proof above shows that any projection P : c → c0 must have ‖P‖ ≥ 2.

c0 is complemented in c by a projection of norm exactly 2. Indeed, define

f : c → F by f((xn)) = limn→∞ xn, and then P : c → c0 by P ((xn)
∞
n=1) =

(xn − f(x))∞n=1. This is a projection onto c (as P (en) = en, and the span of

the ei is dense in c0). Viewing P as an operator c → c, it is the sum of idc and

x 7→ f(x)(1, 1, . . . ), so has norm at most 2. Hence ‖P‖ = 2.

(b) If T ∈ B(Y,X) is an isomorphism then we may find S ∈ B(Z,X) such that S|Y = T .

Consider the operator P ∈ B(Z) given by Pz = T−1Sz, z ∈ Z. Then P 2 = P and

RanP = Y , so by a result from lectures Y is complemented in Z.

3. Let Y and Z be closed subspaces of a Banach space X and suppose that X∗ = Y ◦ ⊕Z◦

as a topological direct sum. Show that X = Y ⊕ Z as a topological direct sum.

Solution: Not so much as a solution, as a link to some hints. This was on the 2020 exam

paper as Q3(b), broken up there in to parts to get you going (the question had not appeared

on a problem sheet in 2020). The last part though is still pretty tricky - see the solutions

to the 2020 exam, which are available for current students through the institute website.
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