
B8.5 Graph Theory

Sheet 0 — MT25

Solutions for students

Suggested use: having tried the questions, read a solution or two and compare with

yours. If there are major differences (in level of detail), try to modify your solutions to the

next questions before looking at mine, to see if you can end up with a close match by the

end of the sheet. The solutions are one to a page for this reason!

(Of course, for some questions there are a number of different approaches possible; this

is more about the level of rigour.)

As always, if you find an error please check the website, and if it has not already been

corrected, e-mail: oliver.riordan@maths.ox.ac.uk.
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1. Let x and y be vertices of a graph G. Show that G contains an (i.e., at least one) x–y

walk if and only if G contains an x–y path.

The definition of an x–y path is exactly that it’s an x–y walk v0v1 · · · vt in which v0, . . . , vt

are distinct, so any x–y path is an x–y walk. Thus one direction is trivial.

For the converse, suppose that G contains an x–y walk W = v0 · · · vt. If W is a path

then we are done. Otherwise, by definition, there are 0 ⩽ i < j ⩽ t such that vi = vj.

(There may be several such pairs.) Let W ′ = v0 · · · vivj+1 · · · vt.1 This is an x–y walk: the

first vertex is x, the last is y, and each is joined to the next since W is a walk and (if j < t)

vivj+1 = vjvj+1 ∈ E(G). Also W ′ is strictly shorter than W : it has length t − (j − i) < t.

If W ′ is a path, we are done. Otherwise repeat – this cannot continue indefinitely, so there

exists an x–y path.

[This is the argument as one might first think of it; the slick proof is to start by saying

that among all x–y walks there is (at least) one with minimum length, and start from that.

Be careful that a walk may intersect itself in many ways; if you try to remove all the ‘loops’

in one go things may well go wrong.]

1As usual in maths, if j = t then we interpret vj+1 · · · vt as being an empty list, so in this case W ′ =

v0 · · · vi
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2. Let G = (V,E) be a graph, and define a relation ∼ on V by x ∼ y if x and y are

connected in G, i.e., if there is an x–y path/walk in G (possibly of length 0). Show,

giving full details, that ∼ is an equivalence relation.

The relation is reflexive since for any vertex x, v0 = x is an x–x path/walk of length 0.

If x = v0v1 · · · vt = y is an x–y path/walk of length t ⩾ 0, then vtvt−1 · · · v0 is a y–x

path/walk, so the relation is symmetric.

For transitivity, suppose x ∼ y and y ∼ z. Then there exist paths/walks x = v0 · · · vt = y

and y = w0 · · ·ws = z. Then v0 · · · vtw1 · · ·ws is an x–z walk : the first vertex is x, the last

is z, and each is adjacent to the next, from the walks we started with plus the fact that

vtw1 = w0w1. (To be really complete, s = 0 needs a trivial special case. Or it’s ok to write

v0 · · · vt = w0 · · ·ws; the middle entry only appears once.)

[For the first two parts you can work with paths or walks; it makes no difference. For

the last, walks are better – even if we start with paths, the combined walk may not be a

path. But this is fine; we know that an x–z walk guarantees the existence of an x–z path

by question 1.]
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3. [A little tedious; omit if you like.] Check that any graph G is the disjoint union

of its components (maximal connected subgraphs). It may help to first show that

the components correspond to equivalence classes of the relation ∼ in the previous

question.

Let G = (V,E). Define the relation ∼ as in question 2; this is an equivalence relation

on the set V , so it partitions V into equivalence classes V1, . . . , Vk. These will be the vertex

sets of the components: let Gi = G[Vi], the graph with vertex set Vi containing all edges of

G with both ends in Vi. Then we expect that the Gi are the components.

Firstly, lets check that G is the disjoint union of G1, . . . , Gk. They are (vertex)2 disjoint

since equivalence classes are disjoint. Also, V (G1 ∪ · · · ∪Gk) = V1 ∪ · · · ∪ Vk = V . Certainly

E(G1 ∪ · · · ∪ Gk) ⊆ E(G), so we just need to check that every edge of G is an edge of

some Gi. But if xy ∈ E(G) then there is an x–y path (xy) of length 1, so x ∼ y and x, y

are in the same equivalence class Vi. Then xy ∈ E(Gi).

Secondly, we need to show that the Gi are the components (maximal connected sub-

graphs) of G.

(i) each Gi is connected: if x, y ∈ V (Gi), then x, y ∈ Vi, so x ∼ y. Hence there is an

x–y path P = v0v1 · · · vt in G. For each vertex vs on the path there is an x–vs path, namely

v0v1 · · · vs; so x ∼ vs and also vs ∈ Vi.
3 It follows that P is a path in Gi (all the vertices are

in Gi and, from the way we defined Gi, so are all the edges). Since x and y were any two

vertices of Gi, then Gi is connected.

(ii) we need to show maximality. So suppose Gi is a strict subgraph of H, itself a

connected subgraph of G. We cannot have V (H) = V (Gi) = Vi since Gi already contains

all edges of G within the set Vi. So H contains a vertex x /∈ Vi. Let y ∈ Vi. Then y is a

vertex of Gi and so of H. Since H is connected, there is an x–y path in H, and hence in G.

Thus x ∼ y. But this contradicts y ∈ Vi, x /∈ Vi.

2Vertex disjointness is the strongest notion of disjointness for graphs; if two graphs have no common

vertices, they can’t have any common edges. So we often just say ‘disjoint’ to mean vertex disjoint. If we

want to allow common vertices but not common edges, we say ‘edge disjoint’.
3Or, say that vs−1vs ∈ E(G) for each s, so vs−1 ∼ vs, so (formally by induction on s) all the vs are in

the same equivalence class.
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4. Show that TFAE (The Following Are Equivalent): (a) T is a tree, (b) T is a minimal

(w.r.t. edges) connected graph, (c) T is a maximal (w.r.t. edges) acyclic graph.

(a)⇒(b): Let T = (V,E) be a tree. Then T is connected by definition. If T − e were

connected for some edge e = xy of T then there would exist an x–y path in T − e, say

x = v0v1 · · · vt = y. Now t ⩾ 2, since xy = e is not an edge in T − e. Thus v0, v1, . . . , vt

are ⩾ 3 distinct vertices of T . We have v0v1, . . . , vt−1vt ∈ E(T − e) ⊆ E(T ) (from the path)

and vtv0 = xy ∈ E(T ). Thus v0 · · · vt defines a cycle in T , contradicting T being a tree.4

(b)⇒(a): Conversely, suppose that T is a minimal connected graph. If T contains a cycle

v1v2 · · · vk, then removing the edge e = v1vk from T leaves T − e connected: for any two

vertices u and v, there is a path from u to v in T , and if that path uses e, we can replace

e by with v1v2 · · · vk or vk · · · v2v1 to obtain a walk (there may be some repeated vertices)

from u to v in T − e. Thus T − e would be connected, a contradiction. Hence T is acyclic

and hence a tree.

(a)⇒(c): Let T = (V,E) be a tree. Then T is acyclic by definition. Suppose T ′ = (V,E ′)

with E ⊊ E ′ and e = xy ∈ E ′ \ E. Then, as T is connected, there exists an x–y path

x = v0 · · · vt = y in T . It is of length at least 2 as xy /∈ E(T ). Thus v0v1 · · · vt forms a cycle

in T ′.

(c)⇒(a): Conversely, suppose T is a maximal acyclic graph. It T were not connected, there

would exist x, y ∈ V with no x–y walk in T . In particular xy /∈ E(T ). Consider T ′ = T+xy.

If there were a cycle in T ′ then the cycle would have to use the edge xy, as otherwise it

would be a cycle in T . Let the cycle be xyv1 · · · vt. As x, y, v1, . . . , vt are distinct, none of

the edges yv1, v1v2, . . . , vtx are equal to xy, and so all lie in T . But then xvt · · · v1y is an

x–y path in T , a contradiction. Hence T is connected and hence a tree.

4Actually, to be really complete we should consider deleting more than one edge too: if T ′ = (V,E′) with

E′ ⊊ E, then pick any e ∈ E \E′. Then T − e is not connected and T ′ is a spanning subgraph of T − e. It

follows that T ′ is not connected (any path in T ′ is a path in T − e).
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5. Modify the argument in lectures to show that any tree with at least two vertices has

at least two leaves.

Let T be a tree with at least two vertices. If any vertex v has degree 0 then T is not

connected, a contradiction. (Indeed, pick u ̸= v and consider a v–u path vv1 . . . u. Then v1

is a neighbour of v and so d(v) ⩾ 1.) If at least two vertices have degree 1 we are done.

Otherwise, there is at most 1 vertex with degree 1, and all others have degree at least 2.5

In particular there is a vertex v0 (with degree ⩾ 1) such that every other vertex has degree

at least 2. We now obtain a contradiction by (carefully!) building a cycle.

Let v1 be a neighbour of v0 (which exists as d(v0) ⩾ 1). Having chosen vi, if vi = v0

then we stop; otherwise d(vi) ⩾ 2 so vi has a neighbour vi+1 other than vi−1. This way

we construct a finite or infinite sequence v0, v1, . . . such that (as in lectures) any three

consecutive vertices are distinct. There must exist i < j such that vi = vj (either because

we stop with vi = v0, or because the sequence is infinite). The rest of the argument is

exactly as in lectures: j − i ⩾ 3 since any three consecutive vertices are distinct, and then

vi · · · vj−1 forms a cycle.

[An incorrect proof would be as follows: start at v0, which has d(v0) ⩾ 1 so we can

choose a neighbour vi. For i ⩾ 1, vi has degree ⩾ 2, so we can find a neighbour vi+1 of vi

other than vi−1, continue as in lectures. The problem is that we don’t know that vi ̸= v0 in

general. We fix this by stopping if we repeat – in this case we’ve already built a cycle.]

5Or say if all ⩾ 2 then done in lectures, so we can assume exactly one has degree 1, the rest ⩾ 2.
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6. Let T be a tree with |T | ⩾ 2, and let P be a longest path in T . Prove, giving full

details, that the ends of P are leaves. Deduce that T has at least two leaves.

Let P = v0v1 · · · vt be a longest path in T . It’s crucial (and trivial!) to note that t ⩾ 1:

T certainly has at last one edge (a graph with ⩾ 2 vertices and no edges is not connected),

so there is at least one path in G of length at least 1. So the two ends of P are distinct.

Also, v0 has one neighbour v1 (using t ⩾ 1). Suppose for a contradiction that it has

another neighbour w. Then either w is not on the path; but then wv0 · · · vt is a longer path

in T , a contradiction. Or w is on the path, so w = vi for some 2 ⩽ i ⩽ t. But then v0v1 · · · vi
defines a cycle in T , a contradiction. So v0 has exactly one neighbour in T and is a leaf.

Similarly for vt.
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7. Show that any two vertices of a tree T are joined by a unique path in T .

By definition (connectedness) any two vertices of a tree T are joined by at least one

path, so we have to rule out two vertices joined by two or more paths. I’ll give two proofs:

a pedestrian one, and a ‘slick’ one.

Pedestrian: (You really need to draw a picture as you read this!)

Let v and w be vertices of T , and suppose for a contradiction that there are at least two

v–w paths in T . Let P1 = x0x1 · · · xr and P2 = y0y1 · · · ys be two different v–w paths, with

x0 = y0 = v and xr = ys = w.

Since P1 ̸= P2 there is some i ⩽ min{r, s} such that xi ̸= yi. (Otherwise, one of the

paths would have to extend the other. If, wlog, P2 were longer, we would have yr = xr = w

and ys = w, contradicting y0, y1, . . . , ys being distinct.) Pick the least such i, so xk = yk for

0 ⩽ k ⩽ i− 1.

There is some j ⩾ i such that yj is a vertex of P1; indeed, this holds for j = s since

ys = w = xr. Pick the least j ⩾ i with this property. Since yj is on P1 we have yj = xk for

some k. Since yj /∈ {y1, . . . , yi−1} = {x1, . . . , xi−1}, we have k ⩾ i.

Since (by definition of j) the vertices yi, yi+1, . . . , yj−1 are not on P1, the vertices xi−1 =

yi−1, yi, yi+1, . . . , yj = xk, xk−1, . . . , xi are distinct. Also, each vertex in this list is adjacent to

the next, and the last to the first. (The relevant edges are all edges of P1 or of P2.) Finally,

there are k− i+1+ j − i+1 vertices in this list. This number is at least 3, since otherwise

k = i and j = i, contradicting xk = yj and xi ̸= yi. Hence xi−1 = yi−1, yi, yi+1, . . . , yj =

xk, xk−1, . . . , xi is a cycle in T , contradicting our assumption that T is a tree.

Slick(ish; you can say it shorter, but with details it’s not that short):

Suppose that, somewhere in T , there exist two distinct paths P1 and P2 with the same

start and endpoints. Pick such a pair with the sum of the lengths of P1 and P2 minimal.

Say P1 = x0x1 · · · xr and P2 = y0y1 · · · ys, with x0 = y0 = v and xr = ys = w, say. We

can’t have v = w (the only v–w path has length 0). So r, s > 0. We can’t have r = s = 1,

otherwise the paths are the same. If the paths share no vertices other than v and w then,

since r + s ⩾ 3, x0 · · ·xr = ysys−1 · · · y1 and back to y0 = x0 forms a cycle, a contradiction.

So the paths meet in some other vertex u. But then u = xi = yj for some 0 < i < r and

0 < j < s. Then P ′
1 = x0 · · ·xi and P ′

2 = y0 · · · yj is a pair of (not necessarily distinct) paths

with the same start and end, shorter than the pair we started with. Similarly, P ′′
1 = xi · · ·xr

and P ′′
2 = yj · · · ys is a such a pair. By minimality of the original pair we thus have P ′

1 = P ′
2

and P ′′
1 = P ′′

2 . But then P1 = P2, a contradiction.
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8. Let (d1, . . . , dn) be a sequence of integers with n ⩾ 2. Show that there is a tree on [n]

with d(i) = di for each i if and only if di ⩾ 1 for all i and
∑n

i=1 di = 2n− 2.

Suppose first that there is a tree on [n] with d(i) = di for every i. Then (as in lectures)

T is a tree with |T | ⩾ 2, so every vertex has degree at least 1, i.e., di ⩾ 1 for every i. Also,∑
di =

∑
i∈V (T ) d(i) = 2e(T ) = 2(n− 1) = 2n− 2 by the handshaking lemma.

For the reverse direction we use induction on n. The case n = 2 is easy. (The only

sequence is (1, 1).)

Suppose that n ⩾ 3 and the result holds for n − 1. We prove it for n. Crucially, this

means that we start with a sequence, not a tree.6 More precisely, let (d1, . . . , dn) be any

sequence satisfying the given conditions. We must build a corresponding n-vertex tree.

[Informally: our plan is to use induction, which allows us to get a tree from a sequence

of length n− 1. So we try to shorten our sequence appropriately, get an n− 1 vertex tree,

and extend that.]

To do this, first note that there is some i (wlog i = n) such that di = 1. Otherwise

di ⩾ 2 for every i and so
∑

di ⩾ 2n > 2n − 2. Also, there is some j (wlog j = 1)

such that dj ⩾ 2: otherwise dj = 1 for all j and
∑

dj = n < 2n − 2. Consider the

sequence (d′1, . . . , d
′
n−1) = (d1 − 1, d2, . . . , dn−1). This has length n − 1 ⩾ 2. Every entry

is at least 1 (since d1 ⩾ 2). Also, since we decreased d1 and deleted dn = 1, we have∑
d′k =

∑
dk − 2 = 2n− 4 = 2(n− 1)− 2. Thus by induction there is a tree T ′ on [n− 1]

in which vertex i has degree d′i. Let T = T ′ + 1n (i.e., add the vertex n and the edge 1n).

This is a tree (by Lemma 2.4) and each vertex i has degree di.

6Of course, the way to come up with this proof is to think about deleting a leaf from an n-vertex tree;

but that is not how the logic of the proof works.
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9. Show that deleting any edge from a tree T leaves a graph with exactly two components.

Show that deleting a vertex v leaves d(v) components. [Hint: you could do this directly,

or try a short cut using what we know about numbers of edges in trees.]

A pedestrian proof goes by considering what happens when we add an edge to a graph: if

it does not create a cycle, then there was no path between its ends, so they were in different

components, and these two components become united. So deleting an edge not in a cycle

will split one component into two. Use this repeatedly for the vertex case.

Or: we know that in a tree e(T ) = |T | − 1. So summing over components, in a forest

with k components, e(F ) = |F | − k. If we delete an edge from a tree T we certainly get a

forest as the graph is still acyclic; we’ve deleted no vertices and one edge, so e(F ) = |F | − 2

and there must be exactly two components. If we delete a vertex, the resulting forest has

|F | = |T | − 1 and e(F ) = e(T )− d(v) = |T | − 1− d(v), so e(F ) = |F | − d(v) and there are

d(v) components.

[Of course, one can also say that every vertex u ̸= v was joined to v by a path, and split

according to the last vertex on the path before v. This will (with some checking) give the

d(v) components in a more intuitive way.]
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