B8.5 Graph Theory
Sheet 0 — MT25

Solutions for students

Suggested use: having tried the questions, read a solution or two and compare with
yours. If there are major differences (in level of detail), try to modify your solutions to the
next questions before looking at mine, to see if you can end up with a close match by the
end of the sheet. The solutions are one to a page for this reason!

(Of course, for some questions there are a number of different approaches possible; this
is more about the level of rigour.)

As always, if you find an error please check the website, and if it has not already been

corrected, e-mail: oliver.riordan@maths.ox.ac.uk.
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1. Let z and y be vertices of a graph G. Show that G contains an (i.e., at least one) z—y

walk if and only if G' contains an x—y path.

The definition of an x—y path is exactly that it’s an x—y walk vgvy - - - v; in which vg, ..., vy
are distinct, so any xz—y path is an x—y walk. Thus one direction is trivial.

For the converse, suppose that G contains an z—y walk W = vy ---v,. If W is a path
then we are done. Otherwise, by definition, there are 0 < ¢ < j < ¢ such that v; = v;.
(There may be several such pairs.) Let W’ = vy« - vv;41 -+ v;." This is an z—y walk: the
first vertex is x, the last is y, and each is joined to the next since W is a walk and (if j < ?)
V;Vj41 = Vvj11 € E(G). Also W’ is strictly shorter than W: it has length t — (j — i) < t.
If W' is a path, we are done. Otherwise repeat — this cannot continue indefinitely, so there
exists an x—y path.

[This is the argument as one might first think of it; the slick proof is to start by saying
that among all z—y walks there is (at least) one with minimum length, and start from that.
Be careful that a walk may intersect itself in many ways; if you try to remove all the ‘loops’

in one go things may well go wrong,.|

1As usual in maths, if j = ¢t then we interpret Vj41--- v as being an empty list, so in this case W' =

Vgt U
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2. Let G = (V, E) be a graph, and define a relation ~ on V by x ~ y if x and y are
connected in G, i.e., if there is an x—y path/walk in G (possibly of length 0). Show,

giving full details, that ~ is an equivalence relation.

The relation is reflexive since for any vertex x, vy = « is an x—z path/walk of length 0.

If £ = wvyvy-- v, = y is an x—y path/walk of length ¢ > 0, then vv,_1---vg is a y—=x
path/walk, so the relation is symmetric.

For transitivity, suppose x ~ y and y ~ z. Then there exist paths/walks x = vy -+ v, =y
and y = wy---ws = 2. Then vg - - - vywy - - - w, is an x—z walk: the first vertex is x, the last
is z, and each is adjacent to the next, from the walks we started with plus the fact that
vyw; = wows. (To be really complete, s = 0 needs a trivial special case. Or it’s ok to write
Vo -+ U = Wp - - - Wg; the middle entry only appears once.)

[For the first two parts you can work with paths or walks; it makes no difference. For
the last, walks are better — even if we start with paths, the combined walk may not be a
path. But this is fine; we know that an x—z walk guarantees the existence of an z—z path

by question 1.]

Mathematical Institute, University of Oxford Page 3 of 10

Oliver Riordan: oliver.riordan@maths.ox.ac.uk



B8.5 Graph Theory: Sheet 0 — MT25

3. [A little tedious; omit if you like.] Check that any graph G is the disjoint union
of its components (maximal connected subgraphs). It may help to first show that
the components correspond to equivalence classes of the relation ~ in the previous

question.

Let G = (V, E). Define the relation ~ as in question 2; this is an equivalence relation
on the set V, so it partitions V into equivalence classes Vi, ..., V,. These will be the vertex
sets of the components: let G; = G[V;], the graph with vertex set V; containing all edges of
G with both ends in V;. Then we expect that the G; are the components.

Firstly, lets check that G is the disjoint union of G4, ..., G. They are (vertex)? disjoint
since equivalence classes are disjoint. Also, V(G1U---UGy) =ViU---UV, = V. Certainly
E(GyU---UGyg) C E(G), so we just need to check that every edge of G is an edge of
some G;. But if zy € E(G) then there is an x—y path (zy) of length 1, so x ~ y and z, y
are in the same equivalence class V;. Then xy € E(G;).

Secondly, we need to show that the G; are the components (maximal connected sub-
graphs) of G.

(i) each G; is connected: if z,y € V(G;), then z,y € V;, so x ~ y. Hence there is an
x—y path P = vgv; - - - v, in G. For each vertex v, on the path there is an z—v, path, namely
VoU1 - - - Us; 50 T ~ vg and also v, € V;.3 It follows that P is a path in G; (all the vertices are
in G; and, from the way we defined G, so are all the edges). Since z and y were any two
vertices of GG;, then G; is connected.

(ii) we need to show maximality. So suppose G; is a strict subgraph of H, itself a
connected subgraph of G. We cannot have V(H) = V(G;) = V; since G; already contains
all edges of G within the set V;. So H contains a vertex = ¢ V;. Let y € V;. Then y is a
vertex of GG; and so of H. Since H is connected, there is an x—y path in H, and hence in G.
Thus = ~ y. But this contradicts y € V;, x ¢ V;.

2Vertex disjointness is the strongest notion of disjointness for graphs; if two graphs have no common
vertices, they can’t have any common edges. So we often just say ‘disjoint’ to mean vertex disjoint. If we

want to allow common vertices but not common edges, we say ‘edge disjoint’.
30r, say that vs_1vs € E(G) for each s, 80 vs_1 ~ v, so (formally by induction on s) all the v, are in

the same equivalence class.
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4. Show that TFAE (The Following Are Equivalent): (a) T is a tree, (b) T" is a minimal

(w.r.t. edges) connected graph, (c) 7" is a maximal (w.r.t. edges) acyclic graph.

(a)=(b): Let T' = (V,E) be a tree. Then T is connected by definition. If 7' — e were
connected for some edge e = xy of T' then there would exist an z—y path in T — e, say
xr = vvy---v, = y. Now t > 2, since xy = e is not an edge in T' — e. Thus vy, vy, ...,
are > 3 distinct vertices of T. We have vyvy, ..., 010 € E(T —e) C E(T) (from the path)
and v;vg = 2y € E(T). Thus vy - - - v; defines a cycle in T, contradicting T being a tree.?

(b)=-(a): Conversely, suppose that 7" is a minimal connected graph. If T contains a cycle
V1Vs - - - Vg, then removing the edge e = vyv, from T leaves T — e connected: for any two
vertices u and v, there is a path from u to v in 7', and if that path uses e, we can replace
e by with vjvy - -vg or vg -+ - V901 to obtain a walk (there may be some repeated vertices)
from u to v in T'— e. Thus T' — e would be connected, a contradiction. Hence T is acyclic

and hence a tree.

(a)=(c): Let T'= (V, E) be a tree. Then T is acyclic by definition. Suppose 7" = (V, E’)
with £ C E' and e = xy € E'\ E. Then, as T is connected, there exists an x—y path
x =1y v, =y inT. It is of length at least 2 as xy ¢ E(T). Thus vgv; - - - vy forms a cycle
in T".

(c)=(a): Conversely, suppose T' is a maximal acyclic graph. It 7" were not connected, there
would exist x,y € V with no z—y walk in T'. In particular zy ¢ E(T'). Consider T" = T'+zy.
If there were a cycle in T” then the cycle would have to use the edge xy, as otherwise it
would be a cycle in T. Let the cycle be xyvy ---v;. As x,y,v1,...,v; are distinct, none of
the edges yvy,v1v9, ..., v are equal to xy, and so all lie in 7. But then zv;---vyy is an

x—y path in T', a contradiction. Hence T is connected and hence a tree.

4 Actually, to be really complete we should consider deleting more than one edge too: if 77 = (V, E') with
E' C E, then pick any e € E'\ E’. Then T — e is not connected and T” is a spanning subgraph of T'—e. It
follows that T” is not connected (any path in 7" is a path in T — e).
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5. Modify the argument in lectures to show that any tree with at least two vertices has

at least two leaves.

Let T be a tree with at least two vertices. If any vertex v has degree 0 then T is not
connected, a contradiction. (Indeed, pick u # v and consider a v—u path vv; ...u. Then v,
is a neighbour of v and so d(v) > 1.) If at least two vertices have degree 1 we are done.
Otherwise, there is at most 1 vertex with degree 1, and all others have degree at least 2.°
In particular there is a vertex vy (with degree > 1) such that every other vertex has degree
at least 2. We now obtain a contradiction by (carefully!) building a cycle.

Let v; be a neighbour of vy (which exists as d(vg) > 1). Having chosen v;, if v; = vy
then we stop; otherwise d(v;) > 2 so v; has a neighbour v;,; other than v; ;. This way
we construct a finite or infinite sequence vy, vy1,... such that (as in lectures) any three
consecutive vertices are distinct. There must exist ¢ < j such that v; = v; (either because
we stop with v; = wvg, or because the sequence is infinite). The rest of the argument is
exactly as in lectures: j — ¢ > 3 since any three consecutive vertices are distinct, and then
v; -+ -vj_; forms a cycle.

[An incorrect proof would be as follows: start at vy, which has d(vy) > 1 so we can
choose a neighbour v;. For ¢ > 1, v; has degree > 2, so we can find a neighbour v;,; of v;
other than v;_;, continue as in lectures. The problem is that we don’t know that v; # vy in

general. We fix this by stopping if we repeat — in this case we’ve already built a cycle.]

50r say if all > 2 then done in lectures, so we can assume exactly one has degree 1, the rest > 2.
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6. Let T be a tree with |T'| > 2, and let P be a longest path in T. Prove, giving full

details, that the ends of P are leaves. Deduce that T has at least two leaves.

Let P = vgvy - - - vy be a longest path in T'. It’s crucial (and trivial!) to note that ¢t > 1:
T certainly has at last one edge (a graph with > 2 vertices and no edges is not connected),
so there is at least one path in G of length at least 1. So the two ends of P are distinct.

Also, vg has one neighbour vy (using ¢t > 1). Suppose for a contradiction that it has
another neighbour w. Then either w is not on the path; but then wuvy - - - v; is a longer path
in T', a contradiction. Or w is on the path, so w = v; for some 2 < i < t. But then vguy - - - v;
defines a cycle in T, a contradiction. So vy has exactly one neighbour in 7" and is a leaf.

Similarly for v;.
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7. Show that any two vertices of a tree 1" are joined by a unique path in 7.

By definition (connectedness) any two vertices of a tree T' are joined by at least one
path, so we have to rule out two vertices joined by two or more paths. I'll give two proofs:

a pedestrian one, and a ‘slick’ one.

Pedestrian: (You really need to draw a picture as you read this!)

Let v and w be vertices of T', and suppose for a contradiction that there are at least two
v—w paths in T. Let P, = xgx1---x, and P, = yoy; - - - ys be two different v—w paths, with
To =1y =0 and x, = Yy, = w.

Since P, # P there is some i < min{r, s} such that z; # y;. (Otherwise, one of the
paths would have to extend the other. If, wlog, P, were longer, we would have vy, = x, = w
and y, = w, contradicting yo, y1, . . ., ys being distinct.) Pick the least such i, so x) = y; for
0<k<i—1.

There is some j > 4 such that y; is a vertex of P;; indeed, this holds for j = s since
ys = w = x,. Pick the least j > 4 with this property. Since y; is on P, we have y; = z;, for
some k. Since y; ¢ {v1,...,yi—1} = {z1,...,xi_1}, we have k > 1.

Since (by definition of j) the vertices y;, yit1, ..., y;—1 are not on P, the vertices x;_y =
Yie1, Yis Yit1s - - - Yj = Th, Th—1, - - . , ; are distinct. Also, each vertex in this list is adjacent to
the next, and the last to the first. (The relevant edges are all edges of P; or of P».) Finally,
there are k — 7+ 1+ j — 7+ 1 vertices in this list. This number is at least 3, since otherwise
k =i and j = i, contradicting z;, = y; and z; # y;. Hence z;_1 = yi—1, ¥, Yit1,- .-, Y; =

Tk, Tp_1,...,2; 1s a cycle in T', contradicting our assumption that 7' is a tree.

Slick(ish; you can say it shorter, but with details it’s not that short):

Suppose that, somewhere in T', there exist two distinct paths P, and P, with the same
start and endpoints. Pick such a pair with the sum of the lengths of P, and P, minimal.
Say P = xox1---x, and Py = yoy1 -+ - ys, with xg = yg = v and z, = y, = w, say. We
can’t have v = w (the only v—w path has length 0). So r,s > 0. We can’t have r = s = 1,
otherwise the paths are the same. If the paths share no vertices other than v and w then,
sincer+s >3, xg- -2, = YsYs—1 - - - y1 and back to yg = x( forms a cycle, a contradiction.
So the paths meet in some other vertex w. But then u = z; = y; for some 0 < i < r and
0<j<s. Then Pl =xy---x; and P) =y - - - y; is a pair of (not necessarily distinct) paths
with the same start and end, shorter than the pair we started with. Similarly, P = x;-- -z,
and P) = y;---ys is a such a pair. By minimality of the original pair we thus have P = P;
and P = Pj/. But then P, = P», a contradiction.
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8. Let (dy,...,d,) be a sequence of integers with n > 2. Show that there is a tree on [n]
with d(i) = d; for each i if and only if d; > 1 for all ¢ and ), d; = 2n — 2.

Suppose first that there is a tree on [n] with d(i) = d; for every i. Then (as in lectures)
T is a tree with |T'| > 2, so every vertex has degree at least 1, i.e., d; > 1 for every i. Also,
dodi =) iy di) = 2e(T) = 2(n — 1) = 2n — 2 by the handshaking lemma.

For the reverse direction we use induction on n. The case n = 2 is easy. (The only
sequence is (1,1).)

Suppose that n > 3 and the result holds for n — 1. We prove it for n. Crucially, this
means that we start with a sequence, not a tree.® More precisely, let (di,...,d,) be any
sequence satisfying the given conditions. We must build a corresponding n-vertex tree.

[Informally: our plan is to use induction, which allows us to get a tree from a sequence
of length n — 1. So we try to shorten our sequence appropriately, get an n — 1 vertex tree,
and extend that.]

To do this, first note that there is some i (wlog i = n) such that d; = 1. Otherwise
d; > 2 for every i and so Y d; > 2n > 2n — 2. Also, there is some j (wlog j = 1)
such that d; > 2: otherwise d; = 1 for all j and > d; = n < 2n — 2. Consider the
sequence (d},...,d)_;) = (di —1,ds,...,d,—1). This has length n — 1 > 2. Every entry
is at least 1 (since d; > 2). Also, since we decreased d; and deleted d, = 1, we have
Yod, => dpy—2=2n—4=2(n—1)—2. Thus by induction there is a tree 7" on [n — 1]
in which vertex i has degree d;. Let T'=T" + 1n (i.e., add the vertex n and the edge 1n).

This is a tree (by Lemma 2.4) and each vertex i has degree d;.

60f course, the way to come up with this proof is to think about deleting a leaf from an n-vertex tree;

but that is not how the logic of the proof works.
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9. Show that deleting any edge from a tree T" leaves a graph with exactly two components.
Show that deleting a vertex v leaves d(v) components. [Hint: you could do this directly,

or try a short cut using what we know about numbers of edges in trees.]

A pedestrian proof goes by considering what happens when we add an edge to a graph: if
it does not create a cycle, then there was no path between its ends, so they were in different
components, and these two components become united. So deleting an edge not in a cycle
will split one component into two. Use this repeatedly for the vertex case.

Or: we know that in a tree e(T)) = |T'| — 1. So summing over components, in a forest
with k& components, e(F) = |F| — k. If we delete an edge from a tree T we certainly get a
forest as the graph is still acyclic; we’ve deleted no vertices and one edge, so e(F) = |F| — 2
and there must be exactly two components. If we delete a vertex, the resulting forest has
|F|=1|T| —1and e(F)=e(T) —d(v) = |T| —1—d(v), so e(F) = |F| — d(v) and there are
d(v) components.

[Of course, one can also say that every vertex u # v was joined to v by a path, and split
according to the last vertex on the path before v. This will (with some checking) give the

d(v) components in a more intuitive way.]
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