B8.5 Graph Theory Lecture Notes

Michaelmas Term 2025, 16 lectures
Lecturer: Oliver Riordan
Last updated: October 15, 2025

These notes are to accompany the lectures in Michaelmas Term 2025 on graph theory for
Oxford Part B Mathematics. These are indirectly based on notes due to Colin McDiarmid,
then adapted by Alex Scott, myself, and Paul Balister. They also owe much to the book
Modern Graph Theory, Springer-Verlag, 1998 by Béla Bollobas. No major changes from
Paul Balister’s 2024 version are planned, but there are some changes in notation. The
notes will be updated through the term. If you spot any errors or have any comments,
email: oliver.riordan@maths.ox.ac.uk.

Relationship to Part A Graph Theory

Part A Graph Theory is recommended but not required as a prerequisite. The course
as lectured should be self-contained, though a few key results covered in Part A will be
stated as exercises to complete yourself if you did not do Part A Graph Theory.

1 Introduction

We start with some preliminary definitions and notation (see the end of these notes for
a summary). We write [n] for the set {1,2,...,n}. For any set S, we write (S) for the
set of subsets of S of size k, that is, (i) ={A CS:|A| =k}. Thusif |S| =n then (i)
consists of (}) sets. Some authors write S*) instead of (i)

A (simple) graph G is an ordered pair (V,E), where V is a set and F C (‘;) In
this course V' will almost always be finite and non-empty — this is assumed unless stated
otherwise. The elements of V' are called the vertices of G and the elements of E the

edges of G.

For brevity, we often write uv for the edge {u,v} (so uv means the same as vu). We say
that v and v are adjacent in G if uv is an edge of G. A vertex v and an edge e are
incident if v is one of the end vertices of e, i.e., one of the two vertices in e. Two
edges meet, or intersect if they intersect, i.e., share a vertex. Graphically, we represent
vertices as points (or more often blobs) and edges as lines or curves joining pairs of points
(blobs); how a graph is drawn is irrelevant as far as the structure of the graph itself is
concerned. The reason for using blobs is that it makes clear in the drawing where the
vertices are: we may have to draw the lines/curves for two edges so that they cross even
though the edges do not share a vertex.

Figure 1: Two ways of drawing the same graph G = ({a, b, ¢, d}, {ab, ac, ad, bd, cd}).

If G = (V,E), we write V(G) for V and E(G) for E. The order of a graph G, denoted
by |G| or v(G), is the number of vertices, so |G| = v(G) = |V(G)|. The size of G is the
number of edges, e(G) = |E(G)|; however, sometimes ‘size’ is used to mean ‘order’, so it
is safest to avoid this term.

Graphs G and H are isomorphic if there exists a bijection ¢: V(G) — V(H) such that,
for each z,y € V(G), xy € E(G) iff p(z)p(y) € E(H). In this case we say that ¢ is an
isomorphism,' and write G = H. It is easy to check that isomorphism of graphs is an
equivalence relation, and simply amounts to a ‘relabeling’ of the vertices. Often we do
not make a distinction between isomorphic graphs, treating them as the same.?

A graph G is complete if all possible edges are present, i.e., E(G) = (V(za)). We write
K, = ([n], ([g])) for the complete graph on the vertex set [n]. Clearly any complete
graph of order n is isomorphic to K,. A graph G is empty if E(G) = (). We write
E, = ([n],0) for the empty graph on the vertex set [n]. Any empty graph of order
n is isomorphic to E,. For n > 3 a graph G is a cycle on n vertices, or a cycle of
length n, if it is isomorphic to C,, := ([n],{12,23,...,(n — 1)n,nl}). There is no cycle
of length 1 or 2. A graph G is a path of length n, (n > 0), if it is isomorphic to
P, .= ({0,1,...,n},{01,12,...,(n — 1)n}). Note that a path of length n has n edges

and n + 1 vertices.

Warning. Some authors define P, as a path with n vertices, while in this course P, has
n edges. Similarly, the length of a path is almost always the number of edges, but some
use it to mean the number of vertices. Always check which definitions are being used!
Sometimes the term edge length is used to emphasise that it is the number of edges
being counted.

Another commonly encountered graph is the complete bipartite graph K, ;, which has
vertex set AU B with |A] = a, |B] = b, AN B = (), and all edges between A and B:
E={xy:x € A, ye B}. The special case when a = 1 is also called a star.

A graph H is a subgraph of G if V(H) C V(G) and E(H) C E(G). A spanning
subgraph is one that includes all the vertices: V(H) = V(G). An induced subgraph
is one that includes all possible edges, i.e., all edges with both end vertices in V(H):
E(H)=EG)N (V(2H)). Given any W C V(@) there is a unique induced subgraph with

More generally we can define a graph homomorphism as a map ¢: V(G) — V(H) such that
xy € E(G) implies ¢(x)¢(y) € E(H). An isomorphism is then just an invertible map ¢ such that both
¢ and ¢! are homomorphisms.

2Sometimes we talk of ‘labelled graphs’, meaning the actual values of the vertices are important, and
‘unlabelled graphs’ for graphs considered only up to isomorphism.

- 1T x %

K, E, Cy Py Ky 3 Kig

Figure 2: Some special graphs.

vertex set W which we write as G[W], and which we call the subgraph of G induced
by W.

We often say that H is a subgraph of G (or more precisely, that G contains a copy of H)
to mean that G has a subgraph isomorphic to H.3

The complement of a graph G = (V,E) is G = (V, (‘2/) \ E). Thus K, = E, and
E, = K,. For an edge e, we write* G — e for the subgraph (V, E \ {e}), obtained by
deleting the edge e from G. For e € E(G), G+ e = (V, E U {e}) is the graph obtained
by adding the edge e to GG. For a vertex v, we write G — v for the subgraph induced
by V'\ {v}, i.e., the subgraph obtained from G by deleting v and (as we must) all edges
incident with v. We similarly define G — S when S is a set of edges, or a set of vertices,

in the obvious way.

In much of the following, unless otherwise indicated, the implicitly assumed setting is
that of an arbitrary graph G = (V, E).

Degrees

The degree of a vertex v is the number of incident edges,
d(v) = |{fw eV :vw € E}|.

We write dg(v) if we want to specify the graph. If d(v) = 0, v is an isolated vertex.
A vertex w is a neighbour of v if v and w are adjacent, i.e., vw € E. The set N(v) =
Ne(w) = {w € V : vw € E} is the neighbourhood of v, so d(v) = |N(v)|. Some
authors write I'(v) instead of N(v).

A graph G is r-regular if every vertex has degree r. If V- = {vy,...,v,}, the degree
sequence of G is the sequence d(vq),d(vs),...,d(v,), often (but not always!) arranged
in nondecreasing order. For example, K, is (n — 1)-regular and the degree sequence of

Pis1,1,2,2,2.

Lemma 1.1 (Handshaking Lemma). For any graph G,

D d(v) =2¢(G).

veV(G)

Proof. Consider the number of pairs (v, e) where v is a vertex of G and e is an edge of G
incident with v. We count them in two different ways. Firstly, each vertex v is in exactly

3Equivalently, there is an injective homomorphism from H to G.
4Some people write G\ e for G — e. Not to be confused with G/e, defined later.

3

d(v) such pairs, so there are)) d(v) pairs in total. Secondly, each edge e of G is in
exactly two such pairs, so there are 2| E(G)| = 2¢(G) pairs. O

Corollary 1.2. For any graph G, the number of vertices with odd degree is even.]

Paths, cycles and walks in graphs

A path of length t in G is a subgraph of GG isomorphic to P;; a cycle of length t
in G is a subgraph isomorphic to C;. We usually just list the vertices to describe a path
or cycle. Thus vyv, - --v,° is a path of length ¢ (with ¢ + 1 vertices) in G if and only if
Vo, ...,V are distinct vertices of G and voui, vivs, . .., vs_10; are edges of G.6 Similarly,
vy - - v, forms a cycle in G if and only if t > 3, vy, ..., v, are distinct vertices of G,
and v1vg, . .., V10, 01 are edges of GG. A graph is acyclic if it contains no cycles.

More generally, we say vouy---v; is a walk in G if vg,vy,...,v; are (not necessarily
distinct) vertices of G such that v;v;11 € E(G) for each i = 0,1,...,t — 1. The length
of a walk is the number of steps, here ¢t. If x = vy and y = v; then we speak of a walk
from x to y, or an x—y walk; an z—y path is defined similarly. A walk vq---v; is closed
if v; = vy.

Exercise. Let G be a graph and x,y € V(G). Then G contains an x—y walk if and only
if G contains an x—y path.

In other words, if we want to get from x to y, then allowing ourselves to revisit vertices
does not help. This simple observation is useful, allowing us to switch back and forth
between using paths and walks to define connectedness, at any point using whichever
definition is easiest to work with. The cleanest proof of the exercise is to consider a
shortest x—y walk and show that it is a path (see Problem Sheet 0).

A graph G is connected if for all x,y € V(G) there is at least one x—y path (or walk)
in G. The components of a general graph G are the maximal connected subgraphs.
It is easy to check that G is the disjoint union of its components. Indeed, consider the
relation ~ on V(G) defined by “x ~ y iff there exists an x—y walk”. It is easy to check
that this is an equivalence relation, and that the components are the subgraphs induced
by the equivalence classes.

We finish this section with a simple lemma giving a condition under which we are guar-
anteed that G contains a cycle.

Lemma 1.3. Let G be a finite graph in which every vertex has degree at least 2. Then
G contains a cycle.

SFor paths/walks it is often convenient to start numbering from 0, though of course not compulsory

6The two definitions of path in G are not quite the same: for existence, they are equivalent, but for
counting paths, they differ by a factor of 2 for ¢t > 2 as the subgraph corresponding to vgvy - - - vy is the
same as for v;v;_1---vg. A similar comment applies to cycles with a different factor.

"It might make more sense to write v1vs - - - v,v; to indicate all the edges, but we will stick to the more
standard convention of not repeating a vertex. Thus ‘the path xyz’ and ‘the cycle zyz’ mean different
things.

() (b)

Figure 3: (a) A connected graph. (b) A graph with 3 components. (Look carefully!)

Proof. Pick vy € V(G) and v; € N(vg). Now for each i > 1 we can successively pick
vis1 € N(v;) such that v;i1 # v;_1 (since |N(v;)| = 2). Thus we have a sequence
Vo, V1, Vg, . . . such that v;_jv; € E(G) for every i, and v;_1, v; and v; 4, are always distinct.
Since GG has only finitely many vertices, some vertex must appear more than once. Pick
¢ < j such that v; = v; and j is minimal. Then j — ¢ > 3 and, by minimality of j,
V;,...,v;—1 are distinct. Thus v; ---v;_; forms a cycle in G. O

2 Trees

A tree is simply an acyclic connected graph. A general acyclic graph, or equivalently, a
graph in which each component is a tree, is sometimes called a forest.

Y Y.

() (b)

Figure 4: (a) A tree. (b) A forest with 3 components.

Lemma 2.1. The following are equivalent, where minimality/mazimality is with respect
to deleting/adding edges.

(a) T is a tree,
(b) T is a minimal connected graph,

(¢) T is a mazimal acyclic graph.

The precise meaning of (b) is that 7' = (V, E) is connected, but that for any strict subset
E'"C E, (V,E’) is not connected. Equivalently, T" is connected, but for any edge e of T,
T — e is not connected. Similarly in (c), T'= (V, E) is acyclic, but (V, E’) contains a cycle
for any strict superset £’ O E. Equivalently, T is acyclic, but for any edge e of T, T + ¢
is not acyclic.

Proof. Revision from Part A or exercise, as applicable. See Problem Sheet 0. n

An edge e in a connected graph is called a bridge if G — e is disconnected. (In a general
graph, e is a bridge if G — e has more components than G.) Thus Lemma 2.1 implies
that a connected graph G is a tree iff each edge is a bridge. Indeed, it is easy to see that
for any edge e in a graph, e is a bridge iff e is not in any cycle.

A spanning tree of a graph G is a spanning subgraph of G that is a tree, i.e., a subgraph
of G that is a tree containing all the vertices of G.

Corollary 2.2. Every connected graph G has at least one spanning tree.

Proof. Remove edges one by one, keeping the graph connected, until we can remove no
more. The graph T that remains is a minimal connected graph with vertex set V' (G); by
Lemma 2.1, T is a tree. O

A vertex v of a graph G is called a leaf if d(v) = 1. This term is most often used in the
context of trees/forests.

Lemma 2.3. Fvery tree on n > 2 vertices has at least one leaf.

Proof. T is connected, so it has no isolated vertices (vertices of degree 0), since there can
be no path from such a vertex to any other. But T has no cycle, so by Lemma 1.3 it
must have a vertex of degree less than 2. Therefore it has a vertex v with degree 1. [

In fact, every tree with at least 2 vertices has at least two leaves; there are many proofs
of this fact. One involves modifying the argument above slightly. Another way is to
consider a longest path vy ---v; in the tree and show that ¢ > 0 and that vy and v; are
both leaves (see Problem Sheet 0).

The significance of leaves is shown by the following simple result.

Lemma 2.4. Let v be a leaf of a graph G. Then G is a tree iff G —v is a tree.

Proof. (Revision if you did Part A.) If G if connected and z,y € V(G) \ {v}, then there
is an x—y path P in G. But every vertex of P other than x and y has degree 2 in P, and
hence degree at least 2 in (G, so cannot be v. Thus P is an z—y path in G — v, so G —v is
connected. Conversely, if G — v is connected then G is as every vertex in G (including v)
has a path to the neighbour of v in G and so lies in the same component.

If G — v has a cycle then obviously so does GG. If G has a cycle C then all the vertices
of C' have degree at least 2 in G and so C cannot include v. Thus C is a cycle in G — v.
Hence G is connected and acyclic iff G — v is connected and acyclic. n

Lemma 2.5. If T is a tree on n vertices, then e(T) =n — 1.

Proof. We use induction on n; the case n = 1 is trivial. Let T" be any tree with n > 2
vertices. By Lemma 2.3, T has a leaf v. By Lemma 2.4, 7" = T — v is a tree. Since T” has
n — 1 vertices, by induction it has n — 2 edges. Thus 7" has n — 1 edges, since removing
v from T removes precisely d(v) = 1 edge. O

Combining Lemmas 2.1 and 2.5 gives some further characterisations of trees.

Corollary 2.6. Let G be a graph with n vertices. The following are equivalent.

(a) G is a tree,

(b) G is connected and e(G) =n — 1,
(¢) G is acyclic and e(G) =n — 1.

Proof. (a) implies (b) and (c) by the definition of a tree and Lemma 2.5. Suppose that (b)
holds. Then G has a spanning tree T" which, by Lemma 2.5, has n — 1 edges. A spanning
subgraph includes all the vertices by definition, and since e(7') = n—1 = e(G), in this case
it includes all the edges too. Thus T'= G and so G is a tree, completing the proof that
(b) implies (a). To see that (c) implies (a), one can argue similarly, finding a maximal
acyclic graph containing G. Alternatively, each component C; of G is connected and
acyclic, so is a tree. Thus e(C;) = |C;| —1 and so e¢(G) = > e(C;) = > (|Ci]| —1) =n—e¢,
where ¢ is the number of components. Thus ¢ = 1 and G is connected. O

This corollary shows that for a graph G with n vertices, any two of ‘G is connected’; ‘G
is acyclic’ and ‘¢(G) = n — 17 imply the third.

Counting trees

Let’s start with a simpler question: how many graphs G = (V, E) are there with vertex
set [n]? Each of the (%) possible edges may or may not be included in E, with all possibil-

ities allowed, so the answer is 2(3). Note that we are not asking how many isomorphism
classes there are: this is a much harder question. (Sometimes, counting graphs on a
given vertex set is referred to as ‘counting labelled graphs’; counting isomorphism classes
is referred to as ‘counting unlabelled graphs’.)

Counting trees is much harder than counting all graphs. The answer was found (but not
really proved) by Cayley in 1889, though implicitly earlier by Borchardt in 1860; it is
now known as Cayley’s formula.

Theorem 2.7. For any n > 1 there are ezactly n™=2 trees T with vertex set [n].

Proof. The result is trivial for n = 1 and 2, so fix n > 3. We shall map each tree on
[n] to its Priifer code ¢ = (c1,¢o,...,¢h2), where 1 < ¢; < n. (The ¢; need not be
distinct.) Since there are n™2 possible codes, it suffices to show that the map gives a
bijection between trees on [n| and codes.

Given a tree T on [n] we construct its code as follows:

T1 := T has at least one leaf. Find the leaf v; with the smallest number, remove it,
and write down the number ¢; of the (unique) vertex v; was adjacent to. Repeat until
exactly two vertices remain. Thus, for example, vy is the smallest leaf of Ty := T — vy,
and ¢y is the vertex of Ty that v, is adjacent to. In general v; is the smallest leaf of
T, =T —wv, —---—wv;_1 and ¢; is the vertex of T; it is adjacent to. Note that ¢q,..., ¢, o
form the code, not vy, ..., v,_s.

Priifer Code = 4411

1 leaves of T; v; ¢ 2 3
1 {2,3,5,6} 2 4
2 {356} 3 4 VARV
3 {4,5,6} 4 1 1 1 1 1
4 {5,6} 5 1
6 6 6 6
Ty T3 T, Ts

Figure 5: Example of a Priifer code.

The following observation is key to the proof: a vertex w with degree d in T appears
exactly d — 1 times in the code c. Indeed, we write w down in the code each time
we delete a neighbour of w, i.e., each time its degree decreases. The final degree of w is
always 1: either w is deleted when it is a leaf, or w is left at the end as one of the two final

vertices, which are then leaves. More generally, if the degree of win T'—vy —vg—+ - —v; 4
is d, then w occurs d — 1 times in ¢;, ..., ¢,_o. It follows from this that

vr =min {[n] \ {c1,...,cn2}}

vy =min {[n] \ {vi,c2...,coa}}

v; =min {[n] \ {v1,...,vi-1,¢, ..., Caa}} (1<i<n-—2) (1)

Let us write v,y and v, (with wlog v,_; < v,,) for the two vertices left at the end when
we constructed the code, so

{vn—1,vn} =[n] \ {v1,...,0n2}. (2)

Then, since we deleted the edge v;c; at step i, and were left with the edge v,,_1v,, between
the final two vertices,

E(T) = {vici, - .., Un—9Cn 2, Un_1Un} (3)

The formulae above describe T', the tree that we started with, in terms of its code
¢ = (¢1,...,¢,-2). Does this mean that the proof is complete? No! We started by
assuming that 7" was a tree, with code ¢, and then showed that given c, we could identify
T (i.e., the map from trees to codes is injective). So for any code coming from a tree,
there is a unique tree with that code. We still need to show that for every code c, there
is a tree with code c (i.e., the map from trees to codes is surjective).

The formulae above tell us where to look: if there is a tree with code c, it must be as
described above. So let us check.

Formally, let ¢ be any possible code (¢p,...,¢,-2). Then we may use (1) to define
V1,...,Un_o. (Each time we take the minimum of a non-empty set, which makes sense.)

Also, from (1) we see that v; is not equal to any of vq,...,v;_1. Thus vy,...,v,_2 are
distinct.

Next, we define v, < v, to be the two remaining elements of [n], as in (2), so vy,..., v,
are distinct; they are 1,2,...,n in some order.

Finally, we let T" be the graph with vertex set [n] and edge set given by (3). We need to
check that T is indeed a tree, and that it has code c. We do this step by step: first note
that from our definition (1) of v;, it is distinct from ¢;, j > 4. Thus ¢; is distinct from v;,
i < j,so for each j, ¢; € {vj41,...,v,}. Let T; be the graph with

V(T;) =A{vi,...,v,} and E(T;) ={vici,...,Un_2Ch_2,Vpn_10p}.

(This makes sense since the ends of the edges are distinct and lie in V(7;).) Then T,,_; is
a tree with two vertices. Also, T; is constructed from T;,; by adding a new vertex v; and
one edge v;c;. So, by Lemma 2.4, T; is a tree for e =n —2,n —3,...,2,1. In particular,
T =T, is a tree. That the code of T is c is an exercise; see Problem Sheet 1. O

Summary of Notation

n] ={1,2,...,n}.

(7) = {A C X : |A| = k} is the set of k-element subsets of X.

V(G), the vertex set of the graph G.

E(G), E(G), the edge set a graph or directed graph G.

uv = vu = {u,v}, an edge of a graph.

|G| = |V(G)|, the order, or number of vertices in G

e(G) = |E(G)|, the size, or number of edges in G

e(A) = e(G[A]), the number of edges of G with both endpoints inside A.

E(A, B), ﬁ(A, B), the set of edges ab in a graph or digraph with a € A, b € B.
e(A, B) = |E(A, B)|, the number of edges ab of G with a € A and b € B.

N(v) = Ng(v) = {u : wv € E}, the neighbourhood of v € V(G).
Nt(w)={u:vu € ﬁ}, the out-neighbourhood of a vertex in a directed graph.

N-(v)={u:uv € ﬁ}, the in-neighbourhood of a vertex in a directed graph.
Na(v) = AN N(v), the set of neighbours of v that lie in A C V(G).

N(S) = U,eg N(2), the neighbourhood of a set of vertices.

d(v) = dg(v) = |N(v)|, the degree of v.

da(v) = |Na(v)|, the degree of v into A, A C V(G).

§(G) = min,ev () d(v), the minimum degree of the vertices of G.

A(G) = maxyey(g) d(v), the maximum degree of the vertices of G.

d(G) = ﬁ > vev(c) d(v), the average degree of the vertices of G.

G = H, graphs G and H are isomorphic.

G[S] = (S, E(G)N (g)), the subgraph of G induced by S C V(G).

G = (V,(}) \ E), the complement of G = (V, E).

10

G —e= (V,E\ {e}), the graph obtained by deleting e € E(G) from G.

G — S = (V,E\S), the graph obtained by removing all edges in 5, S C E(G).

G +e = (V,EU{e}), the graph obtained by adding e € E(G) to G.

G —v = G[V \ {v}], the graph obtained by deleting the vertex v and any incident edges.
G — S =G[V(G)\ 5], the graph with all vertices in S C V(G) removed.

G /e, the graph with e contracted (end vertices merged into a single vertex).

GUH = (VUV' /EUE'), the union of two graphs.

L(G), the line graph of G with vertex set F(G) and edges ef iff e, f meet.

G*, the dual of a plane graph G.

df, the boundary of a face of a plane graph G as a subgraph of G.

d(f), the number of edges in Jf, counting bridges twice.

K, the complete graph on n > 1 vertices, K, = (|n], ([g}))

E,,, the empty graph on n > 1 vertices, E, = ([n],).

P,, the path of length n > 0 (n + 1 vertices), P, = ({0,1,...,n},{12,23,...,(n — 1)n}).
C., the cycle on n > 3 vertices (also n edges), C,, = ([n], {12,23,...,(n — 1)n,nl}).
K, 4, the complete bipartite graph with a vertices in one part and b in the other.

K, (t), the complete r-partite graph with ¢ vertices in each of the r partite classes.

T,(n), the Turan graph — complete r-partite graph with n vertices partitioned as equitably
as possible.

t.(n) = e(T.(n)), the Turdn number — the number of edges in the Turdn graph.
X(G) = min{k : Jk-colouring of G}, the chromatic number of G.

pe(z), the chromatic polynomial of G: pg(k) = |[{k-colourings of G}|.

X'(G) = min{k : Jk-edge-colouring of G}, the edge-chromatic number of G.
w(G), the clique number, or largest order of a complete subgraph of G.

a(G), the independence number, or size of the largest set of vertices, none of which are
adjacent in G.

11

k(G) = max{k : G is k-connected}, the (vertex) connectivity of G.
ke(z,y) = min{|S|: S C V(G) \ {z,y}, S separates x and y}.

AMG) = max{k : G is k-edge-connected}, the edge connectivity of G.
A¢(z,y) = min{|S|: S C E(G), S separates x and y}.

I(v) = 3 e n+(o) [(W0) = 22 cn-(v) f(vu), net flow out of a vertex.

v(f) = 1Is(s) = —I(t), the value of a flow with source s and sink ¢.
c(S,T) = ZUUEE(&T) c(uv), the capacity of a cut.

q(G), the number of odd components in G (in Tutte’s 1-factor theorem).
ex(n, H), the maximum number of edges in an H-free graph on n vertices.
EX(n, H), the set of H-free graphs on n vertices with ex(n, H) edges.

z(n, t), the maximum number of edges in a K ,-free subgraph of K, ,.

If you find an error please check the website, and if it has not already been corrected,
e-mail: oliver.riordan@maths.ox.ac.uk.

12

