
B8.5 Graph Theory Lecture Notes

Michaelmas Term 2025, 16 lectures

Lecturer: Oliver Riordan

Last updated: October 15, 2025

These notes are to accompany the lectures in Michaelmas Term 2025 on graph theory for

Oxford Part B Mathematics. These are indirectly based on notes due to Colin McDiarmid,

then adapted by Alex Scott, myself, and Paul Balister. They also owe much to the book

Modern Graph Theory, Springer-Verlag, 1998 by Béla Bollobás. No major changes from

Paul Balister’s 2024 version are planned, but there are some changes in notation. The

notes will be updated through the term. If you spot any errors or have any comments,

email: oliver.riordan@maths.ox.ac.uk.

Relationship to Part A Graph Theory

Part A Graph Theory is recommended but not required as a prerequisite. The course

as lectured should be self-contained, though a few key results covered in Part A will be

stated as exercises to complete yourself if you did not do Part A Graph Theory.

1 Introduction

We start with some preliminary definitions and notation (see the end of these notes for

a summary). We write [n] for the set {1, 2, . . . , n}. For any set S, we write
(
S
k

)
for the

set of subsets of S of size k, that is,
(
S
k

)
= {A ⊆ S : |A| = k}. Thus if |S| = n then

(
S
k

)
consists of

(
n
k

)
sets. Some authors write S(k) instead of

(
S
k

)
.

A (simple) graph G is an ordered pair (V,E), where V is a set and E ⊆
(
V
2

)
. In

this course V will almost always be finite and non-empty – this is assumed unless stated

otherwise. The elements of V are called the vertices of G and the elements of E the

edges of G.

For brevity, we often write uv for the edge {u, v} (so uv means the same as vu). We say

that u and v are adjacent in G if uv is an edge of G. A vertex v and an edge e are

incident if v is one of the end vertices of e, i.e., one of the two vertices in e. Two

edges meet, or intersect if they intersect, i.e., share a vertex. Graphically, we represent

vertices as points (or more often blobs) and edges as lines or curves joining pairs of points

(blobs); how a graph is drawn is irrelevant as far as the structure of the graph itself is

concerned. The reason for using blobs is that it makes clear in the drawing where the

vertices are: we may have to draw the lines/curves for two edges so that they cross even

though the edges do not share a vertex.

1

a b

cd

a

b c

d

Figure 1: Two ways of drawing the same graph G = ({a, b, c, d}, {ab, ac, ad, bd, cd}).

If G = (V,E), we write V (G) for V and E(G) for E. The order of a graph G, denoted

by |G| or v(G), is the number of vertices, so |G| = v(G) = |V (G)|. The size of G is the

number of edges, e(G) = |E(G)|; however, sometimes ‘size’ is used to mean ‘order’, so it

is safest to avoid this term.

Graphs G and H are isomorphic if there exists a bijection φ : V (G) → V (H) such that,

for each x, y ∈ V (G), xy ∈ E(G) iff φ(x)φ(y) ∈ E(H). In this case we say that φ is an

isomorphism,1 and write G ∼= H. It is easy to check that isomorphism of graphs is an

equivalence relation, and simply amounts to a ‘relabeling’ of the vertices. Often we do

not make a distinction between isomorphic graphs, treating them as the same.2

A graph G is complete if all possible edges are present, i.e., E(G) =
(
V (G)
2

)
. We write

Kn = ([n],
(
[n]
2

)
) for the complete graph on the vertex set [n]. Clearly any complete

graph of order n is isomorphic to Kn. A graph G is empty if E(G) = ∅. We write

En = ([n], ∅) for the empty graph on the vertex set [n]. Any empty graph of order

n is isomorphic to En. For n ⩾ 3 a graph G is a cycle on n vertices, or a cycle of

length n, if it is isomorphic to Cn := ([n], {12, 23, . . . , (n− 1)n, n1}). There is no cycle

of length 1 or 2. A graph G is a path of length n, (n ⩾ 0), if it is isomorphic to

Pn := ({0, 1, . . . , n}, {01, 12, . . . , (n − 1)n}). Note that a path of length n has n edges

and n+ 1 vertices.

Warning. Some authors define Pn as a path with n vertices, while in this course Pn has

n edges. Similarly, the length of a path is almost always the number of edges, but some

use it to mean the number of vertices. Always check which definitions are being used!

Sometimes the term edge length is used to emphasise that it is the number of edges

being counted.

Another commonly encountered graph is the complete bipartite graph Ka,b, which has

vertex set A ∪ B with |A| = a, |B| = b, A ∩ B = ∅, and all edges between A and B:

E = {xy : x ∈ A, y ∈ B}. The special case when a = 1 is also called a star.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A spanning

subgraph is one that includes all the vertices: V (H) = V (G). An induced subgraph

is one that includes all possible edges, i.e., all edges with both end vertices in V (H):

E(H) = E(G) ∩
(
V (H)

2

)
. Given any W ⊆ V (G) there is a unique induced subgraph with

1More generally we can define a graph homomorphism as a map φ : V (G) → V (H) such that
xy ∈ E(G) implies φ(x)φ(y) ∈ E(H). An isomorphism is then just an invertible map φ such that both
φ and φ−1 are homomorphisms.

2Sometimes we talk of ‘labelled graphs’, meaning the actual values of the vertices are important, and
‘unlabelled graphs’ for graphs considered only up to isomorphism.

2

K4 E4 C4 P4 K2,3 K1,6

Figure 2: Some special graphs.

vertex set W which we write as G[W], and which we call the subgraph of G induced

by W .

We often say that H is a subgraph of G (or more precisely, that G contains a copy of H)

to mean that G has a subgraph isomorphic to H.3

The complement of a graph G = (V,E) is G = (V,
(
V
2

)
\ E). Thus Kn = En and

En = Kn. For an edge e, we write4 G − e for the subgraph (V,E \ {e}), obtained by

deleting the edge e from G. For e ∈ E(G), G + e = (V,E ∪ {e}) is the graph obtained

by adding the edge e to G. For a vertex v, we write G − v for the subgraph induced

by V \ {v}, i.e., the subgraph obtained from G by deleting v and (as we must) all edges

incident with v. We similarly define G− S when S is a set of edges, or a set of vertices,

in the obvious way.

In much of the following, unless otherwise indicated, the implicitly assumed setting is

that of an arbitrary graph G = (V,E).

Degrees

The degree of a vertex v is the number of incident edges,

d(v) =
∣∣{w ∈ V : vw ∈ E}

∣∣.
We write dG(v) if we want to specify the graph. If d(v) = 0, v is an isolated vertex.

A vertex w is a neighbour of v if v and w are adjacent, i.e., vw ∈ E. The set N(v) =

NG(v) = {w ∈ V : vw ∈ E} is the neighbourhood of v, so d(v) = |N(v)|. Some

authors write Γ(v) instead of N(v).

A graph G is r-regular if every vertex has degree r. If V = {v1, . . . , vn}, the degree

sequence of G is the sequence d(v1), d(v2), . . . , d(vn), often (but not always!) arranged

in nondecreasing order. For example, Kn is (n − 1)-regular and the degree sequence of

P4 is 1, 1, 2, 2, 2.

Lemma 1.1 (Handshaking Lemma). For any graph G,∑
v∈V (G)

d(v) = 2e(G).

Proof. Consider the number of pairs (v, e) where v is a vertex of G and e is an edge of G

incident with v. We count them in two different ways. Firstly, each vertex v is in exactly

3Equivalently, there is an injective homomorphism from H to G.
4Some people write G \ e for G− e. Not to be confused with G/e, defined later.

3

d(v) such pairs, so there are
∑

v∈V (G) d(v) pairs in total. Secondly, each edge e of G is in

exactly two such pairs, so there are 2|E(G)| = 2e(G) pairs.

Corollary 1.2. For any graph G, the number of vertices with odd degree is even.

Paths, cycles and walks in graphs

A path of length t in G is a subgraph of G isomorphic to Pt; a cycle of length t

in G is a subgraph isomorphic to Ct. We usually just list the vertices to describe a path

or cycle. Thus v0v1 · · · vt5 is a path of length t (with t + 1 vertices) in G if and only if

v0, . . . , vt are distinct vertices of G and v0v1, v1v2, . . . , vt−1vt are edges of G.6 Similarly,

v1v2 · · · vt7 forms a cycle in G if and only if t ⩾ 3, v1, . . . , vt are distinct vertices of G,

and v1v2, . . . , vt−1vt, vtv1 are edges of G. A graph is acyclic if it contains no cycles.

More generally, we say v0v1 · · · vt is a walk in G if v0, v1, . . . , vt are (not necessarily

distinct) vertices of G such that vivi+1 ∈ E(G) for each i = 0, 1, . . . , t − 1. The length

of a walk is the number of steps, here t. If x = v0 and y = vt then we speak of a walk

from x to y, or an x–y walk; an x–y path is defined similarly. A walk v0 · · · vt is closed
if vt = v0.

Exercise. Let G be a graph and x, y ∈ V (G). Then G contains an x–y walk if and only

if G contains an x–y path.

In other words, if we want to get from x to y, then allowing ourselves to revisit vertices

does not help. This simple observation is useful, allowing us to switch back and forth

between using paths and walks to define connectedness, at any point using whichever

definition is easiest to work with. The cleanest proof of the exercise is to consider a

shortest x–y walk and show that it is a path (see Problem Sheet 0).

A graph G is connected if for all x, y ∈ V (G) there is at least one x–y path (or walk)

in G. The components of a general graph G are the maximal connected subgraphs.

It is easy to check that G is the disjoint union of its components. Indeed, consider the

relation ∼ on V (G) defined by “x ∼ y iff there exists an x–y walk”. It is easy to check

that this is an equivalence relation, and that the components are the subgraphs induced

by the equivalence classes.

We finish this section with a simple lemma giving a condition under which we are guar-

anteed that G contains a cycle.

Lemma 1.3. Let G be a finite graph in which every vertex has degree at least 2. Then

G contains a cycle.

5For paths/walks it is often convenient to start numbering from 0, though of course not compulsory
6The two definitions of path in G are not quite the same: for existence, they are equivalent, but for

counting paths, they differ by a factor of 2 for t ⩾ 2 as the subgraph corresponding to v0v1 · · · vt is the
same as for vtvt−1 · · · v0. A similar comment applies to cycles with a different factor.

7It might make more sense to write v1v2 · · · vtv1 to indicate all the edges, but we will stick to the more
standard convention of not repeating a vertex. Thus ‘the path xyz’ and ‘the cycle xyz’ mean different
things.

4

(a) (b)

Figure 3: (a) A connected graph. (b) A graph with 3 components. (Look carefully!)

Proof. Pick v0 ∈ V (G) and v1 ∈ N(v0). Now for each i ⩾ 1 we can successively pick

vi+1 ∈ N(vi) such that vi+1 ̸= vi−1 (since |N(vi)| ⩾ 2). Thus we have a sequence

v0, v1, v2, . . . such that vi−1vi ∈ E(G) for every i, and vi−1, vi and vi+1 are always distinct.

Since G has only finitely many vertices, some vertex must appear more than once. Pick

i < j such that vi = vj and j is minimal. Then j − i ⩾ 3 and, by minimality of j,

vi, . . . , vj−1 are distinct. Thus vi · · · vj−1 forms a cycle in G.

2 Trees

A tree is simply an acyclic connected graph. A general acyclic graph, or equivalently, a

graph in which each component is a tree, is sometimes called a forest.

(a) (b)

Figure 4: (a) A tree. (b) A forest with 3 components.

Lemma 2.1. The following are equivalent, where minimality/maximality is with respect

to deleting/adding edges.

(a) T is a tree,

(b) T is a minimal connected graph,

(c) T is a maximal acyclic graph.

The precise meaning of (b) is that T = (V,E) is connected, but that for any strict subset

E ′ ⊊ E, (V,E ′) is not connected. Equivalently, T is connected, but for any edge e of T ,

T −e is not connected. Similarly in (c), T = (V,E) is acyclic, but (V,E ′) contains a cycle

for any strict superset E ′ ⊋ E. Equivalently, T is acyclic, but for any edge e of T , T + e

is not acyclic.

Proof. Revision from Part A or exercise, as applicable. See Problem Sheet 0.

An edge e in a connected graph is called a bridge if G− e is disconnected. (In a general

graph, e is a bridge if G − e has more components than G.) Thus Lemma 2.1 implies

that a connected graph G is a tree iff each edge is a bridge. Indeed, it is easy to see that

for any edge e in a graph, e is a bridge iff e is not in any cycle.

5

A spanning tree of a graph G is a spanning subgraph of G that is a tree, i.e., a subgraph

of G that is a tree containing all the vertices of G.

Corollary 2.2. Every connected graph G has at least one spanning tree.

Proof. Remove edges one by one, keeping the graph connected, until we can remove no

more. The graph T that remains is a minimal connected graph with vertex set V (G); by

Lemma 2.1, T is a tree.

A vertex v of a graph G is called a leaf if d(v) = 1. This term is most often used in the

context of trees/forests.

Lemma 2.3. Every tree on n ⩾ 2 vertices has at least one leaf.

Proof. T is connected, so it has no isolated vertices (vertices of degree 0), since there can

be no path from such a vertex to any other. But T has no cycle, so by Lemma 1.3 it

must have a vertex of degree less than 2. Therefore it has a vertex v with degree 1.

In fact, every tree with at least 2 vertices has at least two leaves; there are many proofs

of this fact. One involves modifying the argument above slightly. Another way is to

consider a longest path v0 · · · vt in the tree and show that t > 0 and that v0 and vt are

both leaves (see Problem Sheet 0).

The significance of leaves is shown by the following simple result.

Lemma 2.4. Let v be a leaf of a graph G. Then G is a tree iff G− v is a tree.

Proof. (Revision if you did Part A.) If G if connected and x, y ∈ V (G) \ {v}, then there

is an x–y path P in G. But every vertex of P other than x and y has degree 2 in P , and

hence degree at least 2 in G, so cannot be v. Thus P is an x–y path in G− v, so G− v is

connected. Conversely, if G− v is connected then G is as every vertex in G (including v)

has a path to the neighbour of v in G and so lies in the same component.

If G − v has a cycle then obviously so does G. If G has a cycle C then all the vertices

of C have degree at least 2 in G and so C cannot include v. Thus C is a cycle in G− v.

Hence G is connected and acyclic iff G− v is connected and acyclic.

Lemma 2.5. If T is a tree on n vertices, then e(T) = n− 1.

Proof. We use induction on n; the case n = 1 is trivial. Let T be any tree with n ⩾ 2

vertices. By Lemma 2.3, T has a leaf v. By Lemma 2.4, T ′ = T −v is a tree. Since T ′ has

n− 1 vertices, by induction it has n− 2 edges. Thus T has n− 1 edges, since removing

v from T removes precisely d(v) = 1 edge.

Combining Lemmas 2.1 and 2.5 gives some further characterisations of trees.

Corollary 2.6. Let G be a graph with n vertices. The following are equivalent.

(a) G is a tree,

6

(b) G is connected and e(G) = n− 1,

(c) G is acyclic and e(G) = n− 1.

Proof. (a) implies (b) and (c) by the definition of a tree and Lemma 2.5. Suppose that (b)

holds. Then G has a spanning tree T which, by Lemma 2.5, has n− 1 edges. A spanning

subgraph includes all the vertices by definition, and since e(T) = n−1 = e(G), in this case

it includes all the edges too. Thus T = G and so G is a tree, completing the proof that

(b) implies (a). To see that (c) implies (a), one can argue similarly, finding a maximal

acyclic graph containing G. Alternatively, each component Ci of G is connected and

acyclic, so is a tree. Thus e(Ci) = |Ci|− 1 and so e(G) =
∑

e(Ci) =
∑

(|Ci|− 1) = n− c,

where c is the number of components. Thus c = 1 and G is connected.

This corollary shows that for a graph G with n vertices, any two of ‘G is connected’, ‘G

is acyclic’ and ‘e(G) = n− 1’ imply the third.

Counting trees

Let’s start with a simpler question: how many graphs G = (V,E) are there with vertex

set [n]? Each of the
(
n
2

)
possible edges may or may not be included in E, with all possibil-

ities allowed, so the answer is 2(
n
2). Note that we are not asking how many isomorphism

classes there are: this is a much harder question. (Sometimes, counting graphs on a

given vertex set is referred to as ‘counting labelled graphs’; counting isomorphism classes

is referred to as ‘counting unlabelled graphs’.)

Counting trees is much harder than counting all graphs. The answer was found (but not

really proved) by Cayley in 1889, though implicitly earlier by Borchardt in 1860; it is

now known as Cayley’s formula.

Theorem 2.7. For any n ⩾ 1 there are exactly nn−2 trees T with vertex set [n].

Proof. The result is trivial for n = 1 and 2, so fix n ⩾ 3. We shall map each tree on

[n] to its Prüfer code c = (c1, c2, . . . , cn−2), where 1 ⩽ ci ⩽ n. (The ci need not be

distinct.) Since there are nn−2 possible codes, it suffices to show that the map gives a

bijection between trees on [n] and codes.

Given a tree T on [n] we construct its code as follows:

T1 := T has at least one leaf. Find the leaf v1 with the smallest number, remove it,

and write down the number c1 of the (unique) vertex v1 was adjacent to. Repeat until

exactly two vertices remain. Thus, for example, v2 is the smallest leaf of T2 := T − v1,

and c2 is the vertex of T2 that v2 is adjacent to. In general vi is the smallest leaf of

Ti := T − v1− · · ·− vi−1 and ci is the vertex of Ti it is adjacent to. Note that c1, . . . , cn−2

form the code, not v1, . . . , vn−2.

7

i leaves of Ti vi ci
1 {2, 3, 5, 6} 2 4

2 {3, 5, 6} 3 4

3 {4, 5, 6} 4 1

4 {5, 6} 5 1

Prüfer Code = 4411
6

1

5 4

3 2

T = T1

6

1

5 4

3

T2

6

1

5 4

T3

6

1

5

T4

6

1

T5

Figure 5: Example of a Prüfer code.

The following observation is key to the proof: a vertex w with degree d in T appears

exactly d − 1 times in the code c. Indeed, we write w down in the code each time

we delete a neighbour of w, i.e., each time its degree decreases. The final degree of w is

always 1: either w is deleted when it is a leaf, or w is left at the end as one of the two final

vertices, which are then leaves. More generally, if the degree of w in T−v1−v2−· · ·−vi−1

is d, then w occurs d− 1 times in ci, . . . , cn−2. It follows from this that

v1 = min
{
[n] \ {c1, . . . , cn−2}

}
v2 = min

{
[n] \ {v1, c2 . . . , cn−2}

}
· · ·

vi = min
{
[n] \ {v1, . . . , vi−1, ci, . . . , cn−2}

}
(1 ⩽ i ⩽ n− 2) (1)

Let us write vn−1 and vn (with wlog vn−1 < vn) for the two vertices left at the end when

we constructed the code, so

{vn−1, vn} = [n] \ {v1, . . . , vn−2}. (2)

Then, since we deleted the edge vici at step i, and were left with the edge vn−1vn between

the final two vertices,

E(T) = {v1c1, . . . , vn−2cn−2, vn−1vn}. (3)

The formulae above describe T , the tree that we started with, in terms of its code

c = (c1, . . . , cn−2). Does this mean that the proof is complete? No! We started by

assuming that T was a tree, with code c, and then showed that given c, we could identify

T (i.e., the map from trees to codes is injective). So for any code coming from a tree,

there is a unique tree with that code. We still need to show that for every code c, there

is a tree with code c (i.e., the map from trees to codes is surjective).

The formulae above tell us where to look: if there is a tree with code c, it must be as

described above. So let us check.

Formally, let c be any possible code (c1, . . . , cn−2). Then we may use (1) to define

v1, . . . , vn−2. (Each time we take the minimum of a non-empty set, which makes sense.)

8

Also, from (1) we see that vi is not equal to any of v1, . . . , vi−1. Thus v1, . . . , vn−2 are

distinct.

Next, we define vn−1 < vn to be the two remaining elements of [n], as in (2), so v1, . . . , vn
are distinct; they are 1, 2, . . . , n in some order.

Finally, we let T be the graph with vertex set [n] and edge set given by (3). We need to

check that T is indeed a tree, and that it has code c. We do this step by step: first note

that from our definition (1) of vi, it is distinct from cj, j ⩾ i. Thus cj is distinct from vi,

i ⩽ j, so for each j, cj ∈ {vj+1, . . . , vn}. Let Ti be the graph with

V (Ti) = {vi, . . . , vn} and E(Ti) = {vici, . . . , vn−2cn−2, vn−1vn}.

(This makes sense since the ends of the edges are distinct and lie in V (Ti).) Then Tn−1 is

a tree with two vertices. Also, Ti is constructed from Ti+1 by adding a new vertex vi and

one edge vici. So, by Lemma 2.4, Ti is a tree for i = n− 2, n− 3, . . . , 2, 1. In particular,

T = T1 is a tree. That the code of T is c is an exercise; see Problem Sheet 1.

9

Summary of Notation

[n] = {1, 2, . . . , n}.(
X
k

)
= {A ⊆ X : |A| = k} is the set of k-element subsets of X.

V (G), the vertex set of the graph G.

E(G),
−→
E (G), the edge set a graph or directed graph G.

uv = vu = {u, v}, an edge of a graph.

|G| = |V (G)|, the order, or number of vertices in G

e(G) = |E(G)|, the size, or number of edges in G

e(A) = e(G[A]), the number of edges of G with both endpoints inside A.

E(A,B),
−→
E (A,B), the set of edges ab in a graph or digraph with a ∈ A, b ∈ B.

e(A,B) = |E(A,B)|, the number of edges ab of G with a ∈ A and b ∈ B.

N(v) = NG(v) = {u : uv ∈ E}, the neighbourhood of v ∈ V (G).

N+(v) = {u : vu ∈
−→
E }, the out-neighbourhood of a vertex in a directed graph.

N−(v) = {u : uv ∈
−→
E }, the in-neighbourhood of a vertex in a directed graph.

NA(v) = A ∩N(v), the set of neighbours of v that lie in A ⊆ V (G).

N(S) =
⋃

x∈S N(x), the neighbourhood of a set of vertices.

d(v) = dG(v) = |N(v)|, the degree of v.

dA(v) = |NA(v)|, the degree of v into A, A ⊆ V (G).

δ(G) = minv∈V (G) d(v), the minimum degree of the vertices of G.

∆(G) = maxv∈V (G) d(v), the maximum degree of the vertices of G.

d̄(G) = 1
|G|

∑
v∈V (G) d(v), the average degree of the vertices of G.

G ∼= H, graphs G and H are isomorphic.

G[S] = (S,E(G) ∩
(
S
2

)
), the subgraph of G induced by S ⊆ V (G).

G = (V,
(
V
2

)
\ E), the complement of G = (V,E).

10

G− e = (V,E \ {e}), the graph obtained by deleting e ∈ E(G) from G.

G− S = (V,E \ S), the graph obtained by removing all edges in S, S ⊆ E(G).

G+ e = (V,E ∪ {e}), the graph obtained by adding e ∈ E(G) to G.

G− v = G[V \ {v}], the graph obtained by deleting the vertex v and any incident edges.

G− S = G[V (G) \ S], the graph with all vertices in S ⊆ V (G) removed.

G/e, the graph with e contracted (end vertices merged into a single vertex).

G ∪H = (V ∪ V ′, E ∪ E ′), the union of two graphs.

L(G), the line graph of G with vertex set E(G) and edges ef iff e, f meet.

G∗, the dual of a plane graph G.

∂f , the boundary of a face of a plane graph G as a subgraph of G.

d(f), the number of edges in ∂f , counting bridges twice.

Kn, the complete graph on n ⩾ 1 vertices, Kn = ([n],
(
[n]
2

)
).

En, the empty graph on n ⩾ 1 vertices, En = ([n], ∅).

Pn, the path of length n ⩾ 0 (n+ 1 vertices), Pn = ({0, 1, . . . , n}, {12, 23, . . . , (n− 1)n}).

Cn, the cycle on n ⩾ 3 vertices (also n edges), Cn = ([n], {12, 23, . . . , (n− 1)n, n1}).

Ka,b, the complete bipartite graph with a vertices in one part and b in the other.

Kr(t), the complete r-partite graph with t vertices in each of the r partite classes.

Tr(n), the Turán graph – complete r-partite graph with n vertices partitioned as equitably

as possible.

tr(n) = e(Tr(n)), the Turán number – the number of edges in the Turán graph.

χ(G) = min{k : ∃k-colouring of G}, the chromatic number of G.

pG(x), the chromatic polynomial of G: pG(k) = |{k-colourings of G}|.

χ′(G) = min{k : ∃k-edge-colouring of G}, the edge-chromatic number of G.

ω(G), the clique number, or largest order of a complete subgraph of G.

α(G), the independence number, or size of the largest set of vertices, none of which are

adjacent in G.

11

κ(G) = max{k : G is k-connected}, the (vertex) connectivity of G.

κG(x, y) = min{|S| : S ⊆ V (G) \ {x, y}, S separates x and y}.

λ(G) = max{k : G is k-edge-connected}, the edge connectivity of G.

λG(x, y) = min{|S| : S ⊆ E(G), S separates x and y}.

If (v) =
∑

u∈N+(v) f(uv)−
∑

u∈N−(v) f(vu), net flow out of a vertex.

v(f) = If (s) = −If (t), the value of a flow with source s and sink t.

c(S, T) =
∑

uv∈
−→
E (S,T)

c(uv), the capacity of a cut.

q(G), the number of odd components in G (in Tutte’s 1-factor theorem).

ex(n,H), the maximum number of edges in an H-free graph on n vertices.

EX(n,H), the set of H-free graphs on n vertices with ex(n,H) edges.

z(n, t), the maximum number of edges in a Kt,t-free subgraph of Kn,n.

If you find an error please check the website, and if it has not already been corrected,

e-mail: oliver.riordan@maths.ox.ac.uk.

12

