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Chapter 1

Introduction

This course assumes that one has done an introductory course on set theory,
including statements of all the standard ZF axioms, the development of the
transfinite ordinal and cardinal numbers, transfinite induction and recursion,
and equivalents of the Axiom of Choice, and an introductory course in logic going
at least as far as the Completeness Theorem for first-order predicate calculus.

I plan to edit these lecture notes from time to time throughout the term.

(14th October 2025): Many thanks to various people who pointed out the
error in the Separation Scheme.

Videos from the time of the lockdowns are still (I believe) up on the website.
They were done by Dr Suabedissen, following a different set of lecture notes but
on the same syllabus.

One of our main aims in this course is to prove the following:

Theorem 1.1 (Gddel 19538) If set theory without the Axziom of Choice (ZF) is
consistent (i.e. does not lead to a contradiction), then set theory with the axiom
of choice (ZFC) is consistent.

Importance of this result: Set theory is the axiomatization of mathematics, and
without AC no-one seriously doubts its truth, or at least consistency. However,
much of mathematics requires AC (eg. every vector space has a basis, every ideal
can be extended to a maximal ideal). Probably most mathematicians don’t
doubt the truth, or at least consistency, of set theory with AC, but it does lead
to some bizarre, seemingly paradoxical results—eg. the Banach-Tarski paradox
. Hence it is comforting to have Godel’s theorem.

To complement Gédel’s theorem, there is also the following result which is
beyond this course:

Proposition 1.2 (Cohen 1963) If ZF is consistent, so is ZF with —AC.

ISee Andreas Blass, “On the inadequacy of inner models”, JSL 37 no. 3 (Sept 72) 569-571.
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We shall also discuss Cantor’s continuum problem which is the following.

Cantor defined the cardinality, or size, of an arbitrary set. The cardinality
of A is denoted |A|. He showed that |R| > |N|, but could not find any set S
such that [R| > |s| > |NJ, so conjectured:

Cantor’s Continuum Hypothesis For any set S, either |S| < |N|, or |S| >
IR].

Again Godel (1938) showed:

Theorem 1.3 If ZF is consistent, so is ZF+AC+CH,
and Cohen (1963) showed:

Proposition 1.4 If ZF is consistent, so is ZF+AC+—CH.

We shall prove Godel’s theorem but not Cohen’s.

Of course Godel’s theorem on CH was perhaps not so mathematically press-
ing as his theorem on AC since mathematicians rarely want to assume CH, and
if they do, then they say so.

We first make Godel’s theorem precise, by defining set theory and its lan-
guage.

These notes were originally created by Ronald Jensen, and adapted by Peter
Koepke, Alex Wilkie, and the current lecturer.



Chapter 2

The language of set theory,
and the axioms

See D. Goldrei Classic Set Theory, Chapman and Hall 1996, or H.B. Enderton
Elements of Set Theory, Academic Press, 1977.

Definition 2.1 The language of set theory, LST, is first-order predicate calcu-
lus with equality having the membership relation € (which is binary) as its only
non-logical symbol.

Thus the basic symbols of LST are: =, €, V, =, ¥V, ( and ), and an infi-
nite list vo,V1,...,Un,... of variables (although for clarity we shall often use
T, Yy 2yt .o U0, ... ete. as variables).

The well-formed formulas, or just formulas, of LST are those expressions
that can be built up from the atomic formulas: v; = v;, v; € v;, using the rules:

1. if ¢ is a formula, so is —¢,

2. if ¢ and ¥ are formulas, so is (¢ V1), and
3. if ¢ is a formula, so is Vv; ¢.

We write

L (¢ A o) for =(=¢ V —¢));

(¢ = ) for (= V );

(¢ & ) for (¢ = ) A (= ¢));

. 3z ¢ for ~Vz —¢;

Az for Vy(¢ < = y);

. dx ey for Iz (x € y A ¢;

N o ot A W N

.V ey for Va (z € y — §);
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8. Va,y ¢ (etc.) for VaVy ¢;
9. z ¢y for ~x €y.

We shall also often write ¢ as ¢(x) to indicate free occurrences of a variable
x in ¢. The formula ¢(z) (say) then denotes the result of substituting every free
occurrence of x in ¢ by z. Similarly for ¢(x,y), ¢(z,y, 2),. .., etc.

We interpret formulae of the language in suitable structures in the usual
way. We use a suitable first-order proof theory, which yields the Completeness
Theorem, the Compactness Theorem, and the Lowenheim-Skolem Theorem.

One wrinkle is that we will want to build structures whose domains are
proper classes. This will require care.

The Axioms of Set Theory are the following.

Extensionality
Ve,y(x =y Vit €x <t €vy))

Two sets are equal iff they have the same members.

Empty set
JeVyy ¢ x

There is a set with no members, the empty set, denoted &.

Pairing
Ve,y3zVt(t €z (t=axVit=y))

For any sets x,y there is a set, denoted {x,y}, whose only elements are 2 and
V.

Union
Ve IyVt(t € y + Jw(w € x At € w))

For any set x, there is a set, denoted | Jx, whose members are the members of
the members of z.

Separation Scheme If ¢(x,y) is a formula of LST, the following is an axiom:
VxVudzVy(y € z < (y € u A d(x,y))

For given sets x, u there is a set, denoted {y € u : ¢(x,y)}, whose elements are
those elements y of u which satisfy the formula ¢(x, y).

Replacement Scheme If ¢(x,y) is a formula of LST (possibly with other free
variables u, say) then the following is an axiom:

Vu Ve, y, v (¢(z,y) ANo(x,y') »y=1y') = Vs3zVy (y € z <> Tz € sp(z,y))]

The set z is denoted {y : Jx d(x,y) Az € s}.



Power Set
VeyVt(t ey <> Vz(z €t — z € 2))

For any set = there is a set, denoted p(x), whose members are exactly the
subsets of x.

Infinity
[Py (yeaxnVz(z¢yAVy(yex — z(z€xAVE(t €z (t €yVi=1y))))]

There is a set z such that @ € x and whenever y € z, they y U {y} € . (Such
a set is called a successor set.

Foundation
Ve(3zze€x—Tz(z€xAVy € zy ¢ x))

If the set x is non-empty, then for some z € z, z has no members in common
with z.

Axiom of Choice (AC)
Vul[Ve € udyy € zAVa,y ((x € uhy € uhx £ y) = Vz(z ¢ a2V ¢ y))] = FoVe € uTly (y € xAy € v)]

We write ZFC for the complete list; ZF for ZFC without the Axiom of
Choice, and ZF* for ZF without Foundation.

We will be aiming to prove that if ZF is consistent, then so are ZFC, and
ZFC together with CH.

The axioms of ZF are of three types: (a) those that assert that all sets have
a certain property (Extensionality, Foundation), (b) those that sets with certain
properties exist (Empty Set, Infinity), and (c) those that tell us how we may
construct new sets out of given sets (Pairing, Union, Separation, Replacement,
Power Set). Our aim here is to combine the operations implicit in the axioms
of type (c) to obtain more ways of constructing sets and to introduce notations
for these constructions (just as, for example, we introduced the notation |J z for
the set y given by Union).

Notation 2.2 We write {x : ¢(x)} for the collection (or class) of sets x satis-
fying the LST formula ¢(x).t

As we have seen, such a class need not be a set. However, in the following
definitions it can be shown (from the axioms ZF*) that we always do get a set.
This amounts to showing that for some set a, if b is any set such that ¢(b) holds
(ie. V* E ¢(b)) then b € a, so that {z : #(z)} = {z € a : #(x)} which is a set by
A5. T leave all the required proofs as exercises—they can also be found in the
books.

In the following, A,B,...,a,b,c,..., f,g,a1,a2,...,ay,... etc. all denote
sets.

L Actually, ¢(z) will be allowed to have parameters (ie. names for given sets), so is not
strictly a formula of LST. Notice, however, that parameters are allowed in Separation and

Replacement (the “x” and “u”).



8 CHAPTER 2. THE LANGUAGE OF SET THEORY, AND THE AXIOMS

Proposition 2.3 The following set-theoretic notions and operations are defin-
able in the language of set theory:

1. Finite sets: {a1,...,an} :={x:2=a1V...V2=a,}.
2. Basic set algebra:

(a) aUb : = |J{a,b} ={x:x€aVaeb}.
(b) anb :={z:xcanzcb}.
(¢) a\b :={z:zx€aAx¢b}.
. J{x:Vyecarcy}ifa#o
() ﬂa.—{ undefined if a = @ ‘
8. Ordered pairs and products:

(a) (a,b) :={{a},{a,b}}. Recall that {a,b) = (c,d) <> (a=cAb=4d).
(b) axb :={zx:3c€alde bx=c,d)}. (The proof via Comprehension

2.0

that a x b is a set requires mot only “bounding the x’s”, but also
showing that the expression ‘Ic € a3d € bx = (¢,d)” can be written
as a formula of LST (with parameters a,b).)

(c) axbxc:=ax(bxc),..., etec

(d) a®> :=axa,a® :=axaxa,..., etc.
4. Inclusion: we write a C b for Vo € a(x € b).
5. Relations and orders:

(a) c is a binary relation on a we take to mean ¢ C a®. (Similarly for
ternary,. . ., n-ary, ...relations.)
(b) If A is a binary relation on a we usually write xAy for (x,y) € A.
A is called a (strict) partial order on a iff
i. Vao,y € a(xAy — —yAzx),
i. Vx,y,z € a((xAy AN yAzx) — zAz).
If in addition we have (3)Vx,y € a(x = yV xAy V yAzx), then A is
called a (strict) total (or linear) order of a.

6. Functions. (Note that we are taking a function to be determined by its
graph; if we want to formalise category theory within set theory we will
need to do a bit of coding to represent arrows correctly.)

(a) Write f :a — b (f is a function with domain a and codomain b, or
simply f is a function from a to b) if f C a x b and Ve € a3ld €
blc,dy € f. Write f(c) for this unique d.

(b) If f : a — b, [ is called injective (or one-to-one) if Ve, d € a(c #
d — f(c) # f(d)), surjective (or onto) if Vd € bdc € af(c) = d, and
bijective if it is both injective and surjective.



(c) b :={f:f:a—b}.
7. The natural numbers:

(a) A set a is called a successor set if

i. @ €a and

. Vb(b € a—bU{b} € a).
The azxiom of infinity states that a successor set exists and it can
be further shown that a unique such set, denoted w, exists with the
property that w C a for every successor set a. The set w is called the
set of natural numbers. If n,m € w we often write n + 1 for nU {n}
and n < m forn € m and 0 for @ (in this context). The relation
€ (ie. <) is a total order of w (more precisely {{x,y) : x € w,y €
wAz €y} is a total order of w).

(b) The setw satisfies the principle of mathematical induction, ie. if )(x)
is any formula of LST such that ¥(0) AVn € w(tp(n) — ¢¥(n + 1))
holds, then ¥n € wi(n) holds.

(c) The set w also satisfies the well-ordering principle, ie. for any set a,
ifa Cw and a # @ then 3b € aVe € a(c > bV e=0b).
(d) Definition by recursion
Suppose that f : A — A is a function and a € A. Then there is a
unique function g : w — A such that:
i. g(0) =a, and
ii. Yn € wg(n+1) = f(g(n)).
(Thus, g(n) = f(f---(fa))--")).)
——
n times
More generally, if f: BXwx A — A and h: B — A are functions,
then there is a unique function g : B x w — A such that
i. ¥b € Bg(b,0) = h(b), and
1. Vb € BVn € wg(b,n+1) = f(b,n, g(b,n)).
(I have adopted here the usual convention of writing g(b,n + 1) for
g((b,n + 1Y). Similarly for f.)
Using this result one can define the addition, multiplication and ex-
ponentiation functions on w.

8. Cardinality:

(a) We write a ~ b, or |a| = |b|, if If(f : a = bA [ bijective). (We won't
define the notation |a| until later in the course.)

(b) A set a is called finite iff In € wa ~ n.
(c) A set a is called countably infinite iff a ~ w.
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(d) A seta is called countable iff a is finite or countably infinite. (Equiv-
alently: iff 3f(f : a = w A f injective).)
(Recall that pw is not countable. In fact, for no set A do we have
A ~ pa. (Cantor))



Chapter 3

Classes, class terms and
recursion

Definition 3.1 We call collections of the form {x : ¢(x)}, where ¢ is a formula
of LST, classes.

Definition 3.2 V*=the collection of all sets (assuming only ZF*).
Proposition 3.3 Every set is a class.
Proof. a ={x:x € a}. (so ¢(x) is « € a here). O

We must be careful in their use—we cannot quantify over them but some
operations will still apply.

Notation 3.4 If Uy = {z: ¢(x)} and Uy = {z : ¢(x)}, then

UrnNUz = {z:é(z) Ap(x)}
U1uUx = {z:é(z)Vy(r)}
Urx Uy = {x:3y(y=(s,t) No(s) NY(t)}

(3.1)

and so on. (x € Uy means ¢(x) and Uy C Uy means Ya(d(x) — ¥(x))).
Classes are only a notation—we can always eliminate their use.

Proposition 3.5 V* is a class.
Proof. V¥ ={x:x=2z}. O
Definition 3.6 If F,Uy,Us are classes with the properties that F C Uy x Uy
and Vx € Uy € Us{x,y) € F, then F is called a class term, or just a term,
and we write F(z) =y instead of (z,y) € F.

We also write F' : Uy — Us, although F may not be a function, as Uy may
not be a set.

11
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Soif FF={x: 3y, y2(x = (y1,92) Ay2 = Jy1)}, so for all sets F(x) = =,
then F' is a class term. We need class terms for higher recursion.
Recursion (Use only ZF* throughout.)

Theorem 3.7 Suppose G : U — U is a class term and a € U. Then there is a
term F :w — U (which is therefore a function) such that

1. F(0) =a and
2. ¥n € wF(n+1)=G(F(n)).
Some applications:

Definition 3.8 A set a is called transitive if Vo € aVy € 2y € a. (ie. © € a —
xCa, ora2a.)

Lemma 3.9 w is transitive; and if n € w, then n is transitive.

Theorem 3.10 For any set a, there is a unique set b, denoted TC(a), and
called the transitive closure of a, such that

1. a Cb,
2. b is transitive,

3. whenever a C ¢ and c is transitive, then b C c.

Proof. Uniqueness is clear since if ¢ C b; and a C bo, by and by transitive and
both satisfying (3), then b; C by and by C by, so by = bs.

For existence let G be the class term given by G(z) = Jz (for z € V*).
Apply 3.7, to get a term F such that

1. F(0) = a, and
2. VnewF(n+1)=G(F(n)) =JF(n).

By replacement, there is a set B such that B = {y : 3z € wF(x) = y}.
Let b= B =J{F(n):n € w}. Then

1. Since a = F(0) and F(0) € B, we have a € B,soa C|JB =b.

2. Suppose z € band y € x. We must show y € b. But 2 € bimplies z € | J B
implies « € F(n) for some n € w implies  C |J F(n), so y € |JF(n), so
yeFn+1),so0yelUB,soy¢€bd.

3. Suppose a C ¢, ¢ transitive.

We prove by induction on n that F'(n) C c.
F(0)=aCec.
Suppose F(n) C c.
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We want to show that F'(n+1) C ¢, sosuppose z € F(n+1),iex € | F(n).
Then for some y € F(n), z €y. Thusz €y € F(n) C¢,s0x €y € ¢, so
T € ¢, since c is transitive, as required.

Thus, by induction, Vn € wF(n) C ¢, so | J{F(n) : n € w} C ¢, ie. b C ¢,
as required.

Recursion on €.

Theorem 3.11 (Requires Foundation—ie. assume ZF') For ip(x) any formula
of LST (with parameters) if Ve(Vy € xy(y) — (), then Vry(zx). (The hy-
pothesis trivially implies 1 (2).)

Proof. Suppose Vz(Vy € z(y) — (x)), but that there is some set a such
that —4(a). Then a # &. Let b = TC(a), so a C b, and hence b # @&. Let
C={zxeb:(x)}. Then C # &, since otherwise we would have Vx € bi)(x),
hence Va € ay)(x) (since a C b), and hence ¢ (a), contradiction.

By foundation there is some d € C such that dNC = @, ie. d € b, —9(d),
but Vz € dx € b (since b is transitive) and x ¢ C. But this means Vo € di(x),
so0 1(d)—contradiction. OJ

Our present aim is to prove that if ZF* is consistent then so is ZF—so we
won’t use 3.11. Instead we find another generalization of induction.

Definition 3.12 Suppose that a is a set and R is a binary relation on a. Then
R is called a well-ordering of a if

1. R is a total ordering of a.

2. If b is a non-empty subset of a, then b contains an R-least element.
ie. dx € bWy € b(y = = V zRy).

Remark: AC iff every set is well-orderable.

Definition 3.13 Suppose that Ry is a total order of a, and Rs is a total order
of b. Then we say that {a, R1) is order-isomorphic to (b, Ra), written {(a, R1) ~
(b, Ra), if there is a bijective function f : a — b such that Vz,y € a(z < y +
fl@) < f(y)).

Definition 3.14 We say z is an ordinal, On(z), or x € On, if
1. x is transitive, and
2. € is a well-ordering of x.

We usually use «, B, etc., for ordinals.
On is a class.

Theorem 3.15 1. If R is a well-order of the set a, then there is a unique
ordinal o such that (a, R) ~ (o, €).
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@ € On. (Write @ =0.)

a € On — a+1 € On (so all natural numbers are ordinals, by induction,).
If a is a set and a C On, then | Ja € On. (Hence w € On.)

If a, 8 € On, either a = 3, a € B, or B € a, and exactly one occurs.

If a, B,7v€ On, and o € B and B € v, then o € 7.

Ifa,€O0n, aCBiffacf ora=24.

SO B S R

If « € On and a € «, then a € On.
(Note that (3) implies that On is not a set.)

Theorem 3.16 (Which is required to prove the above.) Suppose that ¢(x) is a
formula of LST, such that Vo € On(Vf € ap(B) — ¢(a)). Then Yo € Ond(a).

Proof. Suppose Va € On(Vf € ag(B8) — ¢(«)), and suppose that there is some
v € On such that =¢(7y). Let X = {a € v: ~¢()}, then X is aset and X C ~.
Also X # @, since if Vo € y¢(7y), then ¢(7).

Let o be the least element of X. Then ag € X, so =¢(w), and for all
a€e X a=qqor ay € a.

Now let @ be any member of og. Then « € ~, since 7 is transitive. Now we
cannot have a € X, for then oy € a or ay € «, and € would not be a strict
total ordering of ~.

So we have o € v, a ¢ X, so ¢(«a) holds.

In other words Va € ap¢(ar). But then ¢(ap), giving us a contradiction. [J

Definition 3.17 (1) An ordinal « is called a successor ordinal if o = S U {3}
for some (necessarily unique) ordinal 8. (Write « = 4+ 1.)

(2) An ordinal o is called o limit ordinal if o # @ and « is not a successor
ordinal.

Theorem 3.16 is often applied in the following way:
To prove Yo € On ¢(a):

1. Show ¢(0)
2. Show Va(é(a) = dla+1))
3. Show Va < d¢(a) — ¢(9)

Theorem 3.18 (Definition by recursion on On) Suppose F : V* — V* is a
class term, and a € V*. Then there is a unique class term G : On — V* such
that

1. G0) =a
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2. Gla+1) = F(G(a))
3. G(0) = Upes for 6 a limit.

Proof.Proof Let ¢(g, @) be the formula of LST expressing:

“g is a function with domain a+ 1 such that V5 < ag(8+1) = F(g(5)) and
if B is a limit g(B) = U{9(@) : « < 8} and ¢g(0) = a”.

((*) Note that if ¢(g, ) and 8 < a, then ¢(g18 + 1, 5).)

Lemma 3.19 Va € On3lg ¢(g, o).

Proof. Induction on a.

a = 0: Clearly g = {(0,a)} is the only set satisfying ¢(g,0).

Suppose true for . Let g be the unique set satisfying ¢(g,a). (Note g :
a+1 — V*) Certainly g* = gU{(a+1, F(g(«)))} satisfies ¢(g*, a+1). If ¢’ also
satisfied ¢(g’, @ + 1), then ¢(¢'[a + 1, ) holds, so by the inductive hypothesis
g =¢'la+1 But ¢(¢',a+ 1) implies ¢'(a + 1) = F(¢'(«v)) = F(g(e)). So
g =gU{{a+1,F(g(x)))} = g*, as required.

Suppose § is a limit and Vo < §3lgp(g, ). For given v < § let the unique
g be go. Notice that S = {g, : @ < ¢} is a set by Replacement. But oy < as
implies go, = ga, a1 + 1. Let ¢* = |JS. Then g¢* is a function with domain
{a:a <} =90, and Va < 0g*(a + 1) = F(¢9*(«)) and if § is a limit < §, then
9*(B8) = U{9*(a) : @« < B} and ¢g*(0) = a. (Since for any a < d, g* coincides
with g, on @+1, and the g,’s satisfy the condition by the inductive hypothesis.)
Further ¢g* is the only such function by (*).

Now define g = g* U {(6,U{9*(e) : @ < §})}. Then g is unique such that
?(g,9).

Now set G = {(z, @) : g(d(g, ) A g(a) = z)).

Then G satisfies the required conditions since by the lemma for each a € On,
Gla + 1 is the unique g such that ¢(g, @).

We get uniqueness of G by induction. [

Theorem 3.20 Suppose F' : V* — V* and H : V* — V* are class terms.
Then there is a unique class term G : V* x On — V* such that

1. G(z,0) = H(x)
2. Gz,a+1) = F(z,G(z,))

3. G(z,0) =U,.s G(z,a) for d a limit.

a<d
Some applications:

Definition 3.21 Ordinal addition: Set F(z,y) = yU {y}, H(z) = . We get
G such that

1. G(z,0) =z
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2. G(z,aa+1) =G(z,a) U{G(z,a)}
3. G(z,0)=U
Suppose «, 8 € On. Write a + 8 for G(«, 8). Then:

wes Gz, ).
1. a+0=a«
2.a+(B+1)=(a+p)+1
Soa+d=Ugsa+p.
Definition 3.22 Ordinal multiplication:
1. «.0=0 (So H(z) =0)
2. a(f+1l)=ab+a (So F(z,y) =y+z)

3. = g5 B



Chapter 4

The Cumulative Hierarchy
and the consistency of the
Axiom of Foundation

We apply Theorem 3.18 with a = @ and F(x) = px, to obtain the following:

Definition 4.1 We define a class term V : On — V* so that
1. V(0) =2
2. Vie+1) =pV(a), and
8. V(0) = Uges Va) for é a limit.

We write V,, for V(a). Each V, is a set and we also write V' for the class
{r:3a€O0nz e Vo}“="U,con V-

Theorem 4.2 For each o € On,
1. 'V, 1is transitive,
2. Vo CVoy1,
3. a€e Vi

Proof. Simultaneous induction on a.

a =0V, = @, which is transitive. V) C V4, and 0 = & € {@} = V1.

Suppose true for c.

(1) Suppose € y € Voi1. Vo1 = @Va, so 2 € y C V,, so x € V,,. Since
Vo € Vg1 by the inductive hypothesis, we get © € V41 as required.

(2) Suppose z € V,y1. Then x C V,,. But V,, C V,41 by the inductive
hypothesis, so x C V,41. Hence x € V{q11)11, as required.

17
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(3) @ € V41 by hypothesis. So o C V41, since V41 is transitive. Thus
aU{a} C Voyr. Hence a+1=aU{a} € Viqq1)41, as required.

—Hence the result is true for o + 1.

Suppose § a limit and (1), (2) and (3) are true for all a < 0.

(1) Suppose = € y € Vs = Jpes Va- Then 2 € y € V, for some o < §. So
x € Vi by ind hyp. But V,, C Vs, so x € V5.

(2) Suppose & € Vs. Since y € x € Vs = y € Vs, we have © C Vs, so
x € Vsp1. Thus Vs C Vsig.

(3) Now for all a« < §, @ € V41, by the inductive hypothesis. So Va <
da € Vi (since Vpq1 € Vs). Thus 6 C Vs (note § = {a : @ < §}) and so
dinpVs = Vsi1, as required. [

Corollary 4.3 (1) V is a transitive class (ie. x € y € V — x € V') containing
all the ordinals.

(2) Yo < BV C V.
Theorem 4.4 (V,€)E ZF.

Proof. (Note that (V,€) is a substructure of (V*, €), so for a,b € V, (V, €
JEaebiffaeb and (V,€)Fa=0biff a =10.)

Extensionality. Suppose z,y € V, and (V,€) EVt(t €z < t € y) (*). We
must show (V,€) Ex =y, ie & = y. Suppose = # y. Say a € x, a ¢ y. Since
a €z €V wehave a € V (by Corollary 4.3). But by (*),Vte V., texz < tey.
In particular a € z <+ a € y—contradiction.

Sox=y.

Empty Set. We must show (V,€) F JaVyy ¢ x. Since & € V, we have
@ eV, and clearly Vy € V, ¢ .

Pairing. Suppose a,b € V. We must show (V,€) EIVi(t € z + (¢t =
aVt="»)). Let ¢ = {a,b}. Now by 4.3 (ii), there is some « such that a,b € V.
So ¢ C Vg, 80 ¢ € Voii, so ¢ € V. It remains to show Vt € V(t € ¢ + (t =
aVt="5)), which is clear since this is true Vt € V*.

Union. (V,€) E Unions—exercise.

Power Set. Suppose a € V. We must show (V, €) E JyVi(t € y <> Vz(z €
t— z € a)).

Now suppose a € V.

Ezercise: Yo € On, if b € a € V,, then b € V.

It follows that Vb € p(a), b € V,,. Thus p(a) C V,, so p(a) € Vot1. So
p(a) € V. Let ¢ = p(a).

We show (V,€) EVE(t € c <> Vz(z €t — z € a)).

So suppose t € V.

=) I (V,e)t € ¢, thent € ¢,s0t C a,ie. V2 € V(2 €t — z € a), thus
VzeV(zet—z€a).

<): Suppose (V,€) EVz(z € t = z € a) (*) (le. (V,€)Ft C a). We show
that really, ¢ C a. Suppose d € t. Since t € V, we have d € V (by 4.3 (i)).
Hence, by (*), d € a. Thust Ca, sot € ¢, so (V,€) Et € ¢ as required.
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[Remark: Won’t always be the case that p(a) in substructure is real p(a)—
fudge this for now?]

Infinity. Exercise (Note: w € V41, sow € V).

Foundation. Suppose a € V, a # @. We must find b € a such that
bNa=0.

[Since then b € V, by transitivity, and (V, €) EVy € by ¢ a.]

Let z € a. Then z € V', so x € V,, for some «. This shows Ja € On,anV, #
@. Choose 8 minimal such that aNV3 # @. Then § is a successor ordinal since,
for § a limit, a N Vs = aNUyes Va = Uacs(@NVy), so if aNVs # @, then
a NV, # @ for some a < 4.

Say 8 =+ 1. Now choose 8 € an V3.

We claim that bNa = @. Suppose x € anNb. Now b € Vg,s0b C V,, so
z €V,. But z € a, so aNV, # @—a contradiction to the minimality of 5.

Separation. Suppose ¢(z1,...,%n,y) is a formula of LST and a4, ...,a, €
V,and v € V. We want b € V such that

(V.e)EVy(y €b > (y €undlar,...,an,y))).

Definition 4.5 Relativization of formulas Suppose U is a class, say U = {x :
®(x)}, and ¢(v1, . .., vx) is a formula of LST. We define the formula ¢V (v1, ..., vx)
(or ¢®(v1,...,vx)), which has the same free variables as ¢, as follows (by re-
cursion on @):

1. If ¢ is v; = v; or v; € vj, then ¢V is just ¢.
2. If ¢ is —p, then ¢U is —pU.
3. If ¢ is (W V'), then ¢V is (Y v (¥")V).
4. If ¢ is Vv, then ¢V is Yo, (®(v;) — ¥Y).
(We tacitly assume ¢ and ® have no bound variables in common.)

Lemma 4.6 For any ¢(v1,...,v;) and a1,...,a; € U, (U, €) E ¢(as,...,a)
foasU(a’lv"'vak)‘

Proof. Obvious. [J

To return to the proof of A5 in (V, €): Suppose u € V,,. Let b = {y € u:
¢V (a1,...,ax,y)}. Then b C u € V,, so b € V, (by an exercise), so b € V.

Suppose y € V.

We want to show (V,€)Ey b+ (y cuAdlar,...,an,y)).

=): Suppose y € b. Then y € u, and ¢" (ay,...,a,,y). Hence, by lemma
4.6, (V,eyEy e undlay,...,an,y).

<): Suppose (V, €) Fy € urg(a1,-..,an,y). Theny € uand ¢V (a1, ..., an,y)
(by 4.6), so y € b, as required.

Replacement. Suppose ¢(x,y) is a formula of LST (possibly involving
parameters from V).

Suppose (V, €) EV,y, 4 ((6(z,y) Aoz, y) = y=1).
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V(x) V(y)

—
Let ¢(x,y) be x € V Ay € V A¢Y (z,y). [Note V(x) has no parameters.]
Then we have (in V*) Va, y, ' (¢ (z,y) Ap(x,y')) = y =), by lemma 4.6.
Let se V.
Hence there is a set z such that

Vy(y € z <> Jz € sp(z,y)) (%)

(by replacement in V*). We want to show z € V.

Now by (*), if y € z, then 3z € sy(x,y), so Jx € s(x € VAy € VASY (z,v),
soy € V. We want to show z € V.

Thus for each y € z, da € On,y € V,,.

Let x(u,v) be “u € z A v is the least ordinal such that v € V,,”.

Then by replacement in V*, there is a set S such that

Yo(Ju € z(x(u,v)) <> v e S).

Clearly S is a set of ordinals, so |J S is an ordinal, § say.

Clearly Vy € z,y € V3. Hence 2 C V3,50 2 € Vg41,50 2 € V.

We must show (V, €) EVy(y € z <> 3z € s¢(z,y)).

=): So suppose y € V and y € z.

By (*), 3z € sy(z,y), ie. 3w € s(x € VAy € VAPV (z,y)), so (V,€) F Iz €
so(z,y).

<): Conversely, if y € V, and (V,€) E3z € s¢(z,y), then Iz € S(z €
VAV (2,9),s0 Fx€s(zx e VAyeV AoV (x,y)),ie Iz € sip(x,y), so by (*),
y €z O

Corollary 4.7 If ZF* is consistent, then so is ZF.

Proof. If ¢ is an axiom of ZF, we have shown that ZF* F ¢¥. Hence if
01,09, ..,0) were a proof of a contradiction from ZF, then (roughly) o}, ..., oV

could be converted into one from ZF*. [

From now on we assume Foundation, and hence (exercise) that ZF=ZF*.
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Lévy’s Reflection Principle

Theorem 5.1 (Lévy’s Reflection Principle, or (LRP)) (ZF—for each individ-

ual x)
Suppose W : On — V is a class term, and write W, for W(a). Suppose W

satisfies:
1. a<pB—W,CWs (Va,5 € On)
2. Ws = Ua66 Wy for all limit ordinals .
Let W= Wo (={z:3a € On,x € W,}, so W is a class; each W,

is a set.)

Suppose x(v1,...,v,) is a formula of LST (without parameters). Then, for
any o € On, there is f € On such that > o, and such that Vay,...a, € Wpg,
(W,e)Ex(ar,...,an) iff (Wp,€)FE x(a1,-..,a,); ie. for lall aq,...,a, € Wpg,
XWa,...,an) < xWe(a,. .. an).

Definition 5.2 We say that a class U of ordinals is unbounded iff for all or-
dinals 7y, there exists § > =y such that § € U.

We say that U is closed if and only if, whenever W is a non-empty subset
of U, UW e U.

We say that U is closed unbounded, or club, if and only if it is closed and
unbounded.

aeOn

Lemma 5.3 The intersection of two clubs is club.

Proof. Suppose that Uy and Us are club.

Suppose that ~ is an ordinal.

Define dx by recursion on w so that for all k, dox € Uy and doxy1 € Us,
and v < dp and O < 41 using the fact that Uy and U, are unbounded. Let
0w = Ukew Ok~ Then because U; and U, are closed, d,, belongs to both. So
U1 NUs is unbounded.

Now suppose that W is a non-empty subset of U; N Us. Then because W
is a subset of Uy, |JW € Uj, and because W is a subset of Us, |[JW € Us. So
U1 NUs; is closed. [
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Lemma 5.4 The class of ordinals U such that if « € U, then for allay,...,a, €

W,, if (W,€) E3z¢(z,a1,...,an), then for somex € W, (W, €) E ¢(z,a1,...,an),

s club.

Proof. We first show that U is unbounded.

Let v be an ordinal. We define ordinals dy, for k € w, by recursion as follows.

Let 50 =7 + 1.

Suppose we have Jj.

For each aq,...,a,, define F(ai,...,,) to be 0 + 1 if there does not exist
x such that (W, €) F ¢(x,a1,...,a,), and otherwise, define it to be the least
¢ > d, such that there exists © € W¢ such that (W, €) E ¢(z,a1,...,a,). Now,
by Replacement, we may define d;41 to be the supremum of all the F(aq,...,ay)
for ai,...,a, € W,.

Now ¢, = Ukew Ok > 7, and it is an element of U.

We now show that U is closed.

Let Y be a non-empty subset of U.

If Y has a greatest element v, then v = [JY, and is an element of U.

If now Y does not have a greatest element, then if a1,...,a, € |JY, for
each i, let 7; be such that a; € W,4;. Let v be the greatest of these ;.
Then if (W, €) E 3z ¢(x,aq,...,a,), then there exists x € W, such that (W, €
) E é(x,a1,...,a,). But then z € W, also. So v € U as required. O

Proof. (proof of Theorem 5.1) Suppose, without loss of generality, using a mild
abuse of notation, that the only quantifier occuring in y is 3.

Let ® be the set of subformulae of .

We argue, by induction on the complexity of formulae, that for all elements
é(xo,...,xn) of &, we can find a class of ordinals Uy such that for all v € Uy, for
all ag,...,an € Wy, (W,,€) E ¢(ao, ..., an) iff (W,€) E d(ao,...,an), is club.

(We can do this in the language, rather than the metalanguage, because ®
is finite, and so we can write out different versions of the preceding paragraph
referring to the different elements of ® one by one.)

For the base case, when ¢ is atomic, we can simply let Uy = On.

If ¢ = =0, then let Uy = Us.

Ifo=(0—1),let Uy =UpNUy.

If ¢ = Jxp(x,x1,...,2,), then let Y be the class of all ordinals v such that
if a1,...,a, € W,, and (W, €) E Jz9p(x,71,...,7n), then there exists z € W,
such that (W, €) E ¢(x,v1,...,an).

Now Y is club. By the inductive hypothesis, we may assume that Uy, is club.

We now let Uy =Y NUy.

This class is club.

Also, if v € Uy, a1,...,a, € W,, and (W, €) E ¢(a1,...,a,), then because
v € Y, then there exists x € W, such that (W, €)E ¢(z,a1,...,a,). But
now y € Uy, so (W, €) EY(x,a1,...,a,). So (Wy,€)FE¢(ai,...,a,) as re-
quired. If now (W, €) E =¢(ay,...,a,), then (W, €) EVr—)(x,a1,...,a,), s0
certainly for all x € W, (W,€)E —¢(z,a1,...,a,). Since v € Uy, (W,, €
) E(z,a1,...,a,). So (W, €) EVe—)(z,a1,...,a,) as required.
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Having completed the recursion, let a be any ordinal. Now U, is club, so
let 3 > a be some element of U,. [
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Chapter 6

Godel’s Constructible
Universe

Definition 6.1 For any set a and n € w we define "a to be {f : f :n — a},
and <“a =), "a.

(Exercise: this is a set.)
We shall construct a class term G : w x V x V — V such that

Vn € wVa,s € VG(m,a,s) C a.

Further to each formula ¢ (v, . .., vp—1, vy, ) of LST with free variables amongst
V0y -« -, U (With n > 1), there will be assigned a number m € w (m = "¢ (vg,...,vn)")
with the property that for alla,s € V, G(m,a,s) ={b € a: {(a,€) E¥(s(0),...,s(n—
1),b0)} if s € <¥a and doms > n and & otherwise.

Definition 6.2 We define the class term Def : V — V by
Def(a) = {G(m,a,s) :m € w, s € ““a}.

Thus Def(a) consists of all the definable (with parameters) subsets of the struc-
ture {a, €).

Definition 6.3 (The constructible hierarchy)
We define the class term L : On — V (writing L, for L(a)) by recursion on
On as follows:

1. L() = @,’
2. Lot1 = Def(La);
8. Ls = Upyes La for limit 6.

L is called the Constructible Universe.
Throughout we assume ZF holds in V.

25
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Lemma 6.4 For all o, § € On:
1. a<fB = Lo C Lg;
2. a<fB = Ly € Lg;
3. Lg s transitive;
4. Lg C Vy;
5. OnNnLg=p.

Proof. Fix a. We prove (1)—(5) (simultaneously) by induction on g.

B = 0: trivial.

The successor case: Suppose (1)—(5) true for 5.

(1) Suffices to show Lg C Lgy1. Suppose x € Lg. Then « C Lg (by IH(3)).
Let s = {(0,x); then s € <“Lg and doms = 1. Then A = G("v1 € vy, Lg, s) €
Def(ng) = LB+1'

Also A ={be Lg: (Lg,€)Fb € s(0)} ={be Lg:bex} =x (since
x C Lﬁ).

Thus x € Lg41 as required.

(2) Suffices to show (by (1)) that Lg € Lg4+1. (Since if @ < 8 then L, € Lg
(by TH) and Lz € Lg41 (by (1)).

Must show that Lg € Def(Lg).

Let s =@. Then G("v1 = vy, Lg,s) ={be€ Lg:(Lg,€) =b=">b} = Lg, so
Lg € Def(Lg), as required.

(3) If x € Lg41, then  C Lg. But Lg C Lgi1, by (1), so # € Lg41. Thus
Lgy1 is transitive.

(4) By IH Lj C V.

Alsox € Lgy1 w2 CLg =2 C Vg =€ pVg=Vgy.

Thus Lngl g VﬁJrl.

(5) By IHOnnN Lg = 6.

Suppose £ € On N Lgyi. Then x € On and = C Lg.

But every member of x is an ordinal, so x C LgNOn, so z C 3. Thus either
x € forx=p. Ineither case x € SU{B} = B+ 1. Thus OnNLgt; C B+ 1.

Suppose € f+1. Then either z € 3, in which case x € OnNLg C OnNLgy1
(by (1)), or = . So it remains to show 8 € Lg41.

Let s = @.

Then A = G("On(vg)", Lg,s) = {b € Lg : (Lg,€)EOn(b)}, and A €
Def(Lg) = Lgy1. We show A = (.

But On(vg) is a Xg-formula (exercise this week) and hence absolute between
transitive classes.

Thus Vb € Lg, (Lg,€) E On(f) iff b € On.

Thus A = LgN On = f by IH, as required.

The Limit Step Suppose ¢ > 0 is a limit ordinal and (1)—(5) hold for all
B < 4. Since Ls = g Lp, (1)-(5) for ¢ are all easy. U
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Lemma 6.5 For alln € w, L, =V,.

Proof. By induction on n.

For n = 0, this is clear.

Suppose now that L, = V,,.

Now Ly41 C V41 by 6.4.

Suppose x € V,41. Then x C V,,, so z is finite. Also x C L,, by IH. Say
x ={ag,...,ax—1} (k € w), so that ag,...,ax—1 € L.

Let s = {(0,a0),...,{k—1,a5_1)}, s0 s € ¥L,.

Let A=G("(vp =wvo V- Vo =051 Ln,s) ={b€ Ly : (Ln,€)F (b=
ao\/---\/b:ak_l)} = {ao,...,ak_l} =x.

Thus « € Def(L,) = Lp41-

Thus Vn—i—l g Ln—i—l-

So VnJrl = Ln+1. O

Lemma 6.6 Suppose a,c € L. Then
1. {a,b} € L.
2. Ja € L.

3. (pPanL) e L.

Proof. (1) Suppose a,c € Ly. Define s = {(0,a),(1,¢)}, so s € <¥L,.

Then Loy1 2 G(Tva = vg Vwe = v1 7, Lalpha,s) = {b € Ly : (Lo,2)Eb =
aVb=c}=LyN{a,c}={a,c}.

So {a,c} € Lat1 € L.

(2) Suppose a € L,. Let s = {(0,a)}. Then Lyy1 D G("Tve € vo(v1 €
v2) ", La,8) ={b € Ly : (La,€) F vz € a(b € v2)} = A, say.

We claim that A = Ja.

Suppose that b € A.

Then (L, €) E Jvg € a(b € vg).

Say d € L, is such that (Ly,€)Ed € anbed.

ThendeaAnbed, sobeJa.

Conversely, suppose b € |Ja. Then for some d € a, b € d. But L, is
transitive, and a € L, so d € L, and hence b € L,,.

So (La,€)Fdeanbed Hence (Ly,€}FE v € a(b € vy) (and b € L) so
b € A as required.

Thus |Ja € Lo41 € L.

(3) Let f : pa — On be defined so that f(z) is the least o such that z € L,
if there is one, f(z) = 0 otherwise.

Then by replacement ran f is a set, and hence 38 € On such that 8 > « for
all @ € ran f.

Clearly paNL C Lg (using 6.4 (1)).

We may also suppose that a € Lg.

Let s = {{0,a)}.
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Then Lgi1 3 G("Vug € vi(ve € v9)7,Lg,s) = {b € Lg : (Lg,€) EVuy €
b(vy € a)} = A, say.

Suffices to show A = pa N L.

Suppose b € A. Then b € Lg (so b e L) and (Lg, €) E Vs € b(vs € a).

Now suppose d € b. Then d € Lg since Lg is transitive. Hence (Lg,€) F d €
bAd € a,sodEeE a.

Hence b C a,s0b € pan L. Thus A C pan L.

Conversely suppose b € paN L. Then b € Lg.

Also Yvg € b(ve € a). Hence Yvg € Lg(ve € b — vg € a), so (Lg,€) E Vv, €
b(va € a).

So b e A.

Hence panNL = A. O

It is now easy to check that

Corollary 6.7 Extensionality, empty-set, pairs, unions, power-set, infinity are
all true in L (tho’ PS is less easy).

Lemma 6.8 (L,€)F separation.

Proof. Suppose uw € L, and ag,...,a, € L. Say u,ag,...,a, € Lo. Let
é(vo, ..., Unt1) be a formula of LST. By Lévy’s Reflection Principle, there is

some 3 > « such that Ve, cq,...,ch11 € L
(Lg,€)E (c € cny1N@(co, ... cn,0)) < (L, €)E (¢ € cns1Ad(cos - CnsC)). (%)
Let 9 (vo, ..., Vnt2) = (Vn42 € Vng1 A G(Vos - -+ Uy Ung2)-

Let s = {(0,a0),...,{n,an), (n + 1, u)}.
Then Lg1+1 3 G("Y(vo, ..., vny2) ", Lg,s) ={b€ Lg : (Lg,€) E(ao,...,an,u,b)} =
{beLg:(Lg,€)E(beundglag,...,an,b)} =A, say. (So AeL.)
Sufficient to show (L, €) EVa(z € A <> (x € u A ¢(ag, ..., an,T))).
=): Suppose x € L and z € A. Then = € Lg, and (Lg,in)Fz € u A
d(ag, ..., an, ).
By (*), (L,€) Ex € uA ¢(ag, .. .,an,x), as required.
<): Suppose z € L, and = € u A phi(ag,...,an,x). Then x € Lg, since
x € Lg and Lg is transitive. Hence, using (*), (Lg, €) F € uA¢(ag, - .., an, ),
so x € A, as required. [J

Lemma 6.9 (L, €) E replacement.

Proof. Suppose ag,...,a, € L, a = {(ag,...,an), u € L, ¢(x,y, z) a formula of
LST, and (L, €) F Vz,y,5'((¢(a, 2,y) A d(a, 2,y) =y =1y).

Now choose 3 so large that ag, a1, ..., an,u € Lg, and such that (by LRP) for
allz € Lg (L,€) FoATy(d(a, z,y)Az € u) & (Lg,€) FE oAJy(é(a, z,y) Az € u),
and for all ¢,d € Lg , (L, €)¢(a, c,d) iff (Lg, €) F ¢(a,c,d).

Now let A={be Lg:(Lg,€)F Iz u(¢(a,z0b)}, so A€ Lgi.

Then, as in the proof of separation, (L, €) FVz € u(Jyp(a,z,y) « Jy €
A(é(a, z,y)), as required. O
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Lemma 6.10 (L,€) F Foundation.

Proof. Suppose a € L. Choose b € V such that b € a AbNa = @. Since L is
transitive, b € L and clearly (L,€)FbeanbNa=2. O

Theorem 6.11 (L, €) E ZF.
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Chapter 7

Absolute classes of formulae

Definition 7.1 The ¥y-formulas of LST are defined as follows:
1. zey, x=y, "x €y, "x =1y are Yg-formulas for any variables x and y.

2. If ¢, ¢ are Xg-formulas, so are Y Ao, YV ¢, Vo € yo and Jx € y¢ (where
x and y are distinct variables).

3. Nothing else is a ¥qg formula.

Lemma 7.2 If ¢ is a X formula, then —¢ is logically equivalent to a ¥¢ for-
mula.

Proof. Easy induction on ¢. Note that =V € y¢ is logically equivalent to
dr € y—\(ﬁ. O

Lemma 7.3 If ¢(x1,...,2,) is a Xo-formula and Uy and Usz are transitive
classes such that Uy C Us, then for all a1, ...,a, € Uy,

<U7 €> = ¢(a’15 e aan) = <U27 €> F ¢(a1; .. ;an)-
We say ¢ is absolute between Uy and Us.

Proof. Exercise—induction on ¢. [

Definition 7.4 The ¥;-formulas of LST are defined as follows:
1. zey, x=y, "x €y, "x =y are X1-formulas for any variables x and y.

2. If ¢, ¢ are Xq-formulas, so are Y Ao, YV ¢, Vo € yo and Jx € y¢ (where

x and y are distinct variables), and Jxd.

3. Nothing else is a 31 formula.

Remark 7.5 Note that every Xo formula is 3.

31



32 CHAPTER 7. ABSOLUTE CLASSES OF FORMULAE

Lemma 7.6 If ¢(x1,...,2,) is a X1-formula, and Uy and Us are transitive
classes with Uy C Us, then for all aq,...,a, € Uy

(Uy,€) E dla,...,an) = (U, €) E d(as,...,an,).
(ie. ¢ is preserved up or is upward absolute between Uy and Us.)

Definition 7.7 (1) A formula ¢(x) is called SFE (respectively X2 ) if there is
a Yo (or ¥1) formula 1 (x) such that ZF- Vx(p(x) < P (x)).

(2) A formula ¢ is called AZY if ¢ and —¢ are XIF.

(3) Suppose n € w and F : V™ — V is a class term. Then F is called AZT
if the formula ¢(x1,..., %0, Tny1) defining F(x1,...,2) = Tpe1 is AZE | and
if ZF proves that F is a class term.

Remark 7.8 We need only verify that ¢ in part (3) is X2F | since —¢ is LZF
thus:

ZFENZy, . o, X1 (0(21, - ooy Ty Tpg1) < FY(D(21, oy T, YATY = Tig1))
—and the bit on the right is SZE if ¢ is.
Remark 7.9 Every ¢ formula is AZT by 7.2 and 7.5.

Theorem 7.10 Suppose ¢(x1,...,2,) is A and Uy and Uy are transitive
classes such that Uy C Us and (U;, €) F ZF (i = 1,2). Then for all aq,...,a, €
U17

{U,eyEolar,...,an) < (U, €) F @d(ay,...,an).

(te. ¢ is ZF-absolute.)

Proof. Let ¢(x1,...,2,) be X1 such that ZFF ¥x(é(x) < (x) (*).
Then

(U, e)Ed(a) = (Up,€)Ey(a) (*) and (U, €) E ZF
= (Us,€)E(a) by 7.6
=

Uz, €) F ¢(a) (*) and (Uy,€) F ZF

(7.1)
Now let x(x1,...,2,) be X1 such that ZFF Vx(—¢(x) < ¥(x) (*).
Then as above,
(Uy,€) E—g(a) = (Uy,€)F x(a) (*) and (Uy, €) E ZF
= (Us,€)F x(a) by 7.6
= (Uz, €)F —¢(a) (*) and (Uy, €) EZF
(7.2)



33

Theorem 7.11 The following formulas and class terms are all 2§ (and hence

=

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
2.
25.
26.

S v e

r=y
T EY
xCy
F(z1,...,2y) ={x1,..., 2} (for each n)
F(x1,...,2n) = {(x1,...,2n) (for each n)
(wheren > 1 and0 <i <n—1) F(x) = z; if x is ann-tuple (xg, ..., Tpn_1),
& otherwise.
x,y) =xUy
F(z,y)=2x2Ny

F(z)=Nz if x # &, F(x) = & otherwise.

y)=z\y.

x is an n-tuple.

F(
(
F(x) =
(
F(z,

x 18 an n-ary relation on y.
x 1s a function.

F(x) = domx if x is a function, & otherwise.

)
)

x) =ranx if T is a function, & otherwise.

o

x,y) =xfy] (={x(t) : t € y}) if x is a function, & otherwise.

!

x,y) = zy if x is a function, & otherwise.

!

(
(
(
(
(r) = 27! if z is a function, & otherwise.
F(z) =z U{z}.

x 18 transitive.

x s an ordinal.

T 18 a successor ordinal.

x s a limit ordinal.

Ty — 2.

Ty~ 2.
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27. x is a natural number.
28. T =w.

29. x is a finite sequence of elements of y.

Proof. (Selections) (3) x C y < Vz € z(z € y) which is Xo.

Note that all the class terms F' above are in ZF provably class terms, so we
only have to show that the statement F(x) = y can be put in %y form.

(4) F(x1,...,2p) =y S 21 €EYyAT2a €E YA... Nxp € yAVz € y(z =
21 V... Vz=2,).

(5) F(z1,m2) =y < Iz €yFzm e y(zr = {mt Az ={z1, 2z} AVE€ y(t =
z1 V't = z9)), which is Xy by (4).

(12) x is a 2-tuple iff Iz € 23z € 21329 € z1(x = (@1, 22)), which is Xy by
(5).

(13) x is a 2-ary relation on y iff Vz € 23y, € yIy2 € y(z = (y1, y2)), which

(29) x is a natural number iff (z is an ordinal)A(x is not a limit ordinal)A(Vy €
x y is not a limit ordinal), which is 3o by (24), (26) and the fact that ©Z* for-
mulas are closed under —. [

Lemma 7.12 Suppose F and G are A?T class terms. Then “F(x) = G(y)” is
AFE.
Proof. Let 1(x,z) and x(y,t) be X1 formulas defining (in ZF) F(x) = y and
G(y) = t respectively. Then
F(x) = G(y) & 3z((x,2) Ax(y, 2)),
ZF
which is ¥, and
F(x) # G(y)ﬁ/ﬂzﬂt(w(x, 2) A x(y,t) Az =1t),
ZF

which is Y.

Hence “F(x) = G(y)” is AZF. O

Theorem 7.13 Suppose F : V xV — V is a AZY class term. Then the class
term G defined from F by recursion on On, ie:

1 G0,2) =
2. Gla+1,z) = F(G(a,x),x) for all « € On
3. G(d,x) = U,cs G, x) for all limit 6 € On
4. G(

G(y,x) =@ for ally ¢ On
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is AZE,

Proof. As in the proof of 3.18 define ¢(g, o, x) by

On(a) X1
A g is a function X2
A domg = a U {a} X3
A 9(0) ==z X4
A VB € adyiFya(yr = BU{B} Aya = g(B) Ng(y1) = F(y2)) x5
A VB € af is a limit ordinal — g(8) = J{g(a) : a € B}). x5

(7.3)

X1 is BEF by 7.11 (24); x2 is BET by (14); xs is by (15), (22) and 7.12;
Xa can be rewritten as Jy((Vz € y(—z € 2) A g(y) = z) so is BZF by (17);
x5 is LZF by (22), (17) and the fact that F is $#F, and using 7.12; xe is
YZF by (26) and the fact that “g(8) = J{g(a) : @ € B}” is equivalent to
Jy3z(y = g[B] A 2 = Jy A g(B) = 2), which is ©ZF by (18), (9) and (17).

Hence ¢(g, a, z) is L2,

Now recall from the proof of 3.18 that G can be defined by:

Gla,z) =y < 3g(d(g, v, 2) A gla) =y) V (=On(a) Ny = @).

This shows G is ©#F and hence AZF by 7.8. O
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Corollary 7.14 Assuming the class term G (from the beginning of section 6)
is AZF | then so is the class term L : On — V. (Strictly L : V. — V, where

L(z) =@ ifx ¢ On.)

Proof. By 7.13 it is sufficient to show Def is AZ¥. Recall that Def : V — V is
defined by
Def(a) = {G(m,a,s) : m € w,s € ““a}.

Hence Def(a) = y iff JwIz(w = wAz = <YaAVm € wVs € 23t(t = G(m,a, s) A
t €y)) AVt € yIm € w3s € z(t = G(m,a,s))).

Now x = <“a is AZF | s0 Def is BZF by 7.11 (29), (30), (31), and because
G is.

Hence Def is AZF by 7.8. O

Definition 7.15 V=L is the sentence of LST: Va3a(On(a)Az € L(w)) (writing
L, for L(a)).

Theorem 7.16 (L,c€)F V=L.

Proof. Suppose a € L. We must show (L, €) F Ja(On(a) Aa € L(a)). Now
choose a such that a € L, ie. (V,€)F € L(a).

Let X be the set L(a) (ie. Ly). Then X € Loy1 by 6.4 (2). Hence X € L.
Since (V,€) Fa € X we have (L,€) Fa € X. Now (V,€) FOn(a) A X = L(a).
But the formula “z = L(y)” is AZF, and On(a) is AZF, so by 7.10 (since
a, X € L),

(L,e)FOn(a) AN X = L(a)Na € X.
Hence (L, in) F Ja3z(On(a) Az = L(a) Aa € z), so (L,€) F Ja(On(a) Aa €
L(a)), as required. O]

Corollary 7.17 If ZF is consistent, so is ZF+V=L.

(Same argument as for Foundation.)
Later we’ll show ZF+V=L+-AC, GCH.
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Godel numbering and the
construction of Def

Notation 8.1 If we say “F : Uy x --- x U, — V is a A?Y term” we mean
that the classes Uy, ..., U, are A?Y (ie. defined by AZY formulas) and that

“F(x1,...,2n) =y” can be expressed by a 31 formula.

This clearly guarantees that the extension F’ : V" — V of F defined by
F'(z1,...,2n) = F(z1,...,2,) if &1 € Uy, ...z, € U, and = & otherwise, is
A#F in the sense given.)

Definition 8.2 We first define F : w® — w by F(n,m,l) = 2"3"5!. Then F
is injective and easily seen to be AZY . Write [n,m,l] for F(n,m,l). We now
define "¢ by induction on ¢:

rvzfvj—l = [057'5]]7
U'Levj—l = [157’5.7]7
"oV = 2,79
rﬁ¢7 — [3, r¢77|’¢7];
I—vvi(bj - [45 7:5 ’_(b—‘]'

(8.1)

Of course this definition does not take place in ZF and is not actually used
in the following definition of Def. However it should be borne in mind in order
to see what’s going on.

Definition 8.3 Define the class term Sub : V4 — V by Sub(a, f,i,c) = f(c/i)
if f € <¥a,c€aandi € w and = @ otherwise; where if f € <¥a, c € a and
i € w, f(c/i) € “¥a is defined by dom(f(c/i)) = domf, and for j € domf,
F(e/D)G) = £(G) if j # i, and ¢ if j = i.

Lemma 8.4 Sub is AZF,

37
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We now define a class term Sat : w x V — V. The idea is that if m € w and
m ="¢(vo,...,Tn, )", for some formula ¢ of LST, and a € V, then

Sat(m,a) = {f € ““a :domf >n A {a,€) F ¢(f(0),...,f(n—1))}. (%)

We simply mimic the definition of satisfaction from predicate logic. (This def-
inition uses a version of the recursion theorem which is slightly different from
the usual one, and which I give later.)

Definition 8.5 Firstly if a € V., m € w but m is not of the form [i, j, k], for any
i,7,k € w with i <5, then Sat(m,a) = @. Otherwise, if a € V and m = [i, j, k|
with © < 5, then

Sat([0,7,k],a) = {f € ~“a:j,kedomfA f(j)= f(k)}.

Sat([1,7,k],a) = {f€ “¥a:jkedomfA f(j)e€ f(k)}.

Sat([2,7,k],a) = Sat(j,a)U Sat(k,a).

Sat([3,7,k],a) = (“*a\ Sat(j,a))N{g € ““a:3f € Sat(j,a)domf < domg}.
Sat([4,7,k],a) = {f€ <Ya:je€ domf AVz € a,Sub(a, f,j,z) € Sat(k,a)}.

(8.2)
The generalized version of the recursion theorem (on w) required here is:

Lemma 8.6 Suppose that 71, m2,m3 : w — w are AYY class terms and H :
Vixw—Visa AZY class term. Suppose further that ¥n € w\ {0} m;(n) <n
fori=1,2,3. Then there is a AZ?F class term F : w x V — V such that

1. F(0,a)=0
2. and Vn € w\ {0}

F(n,a) = H(F(mi(n), (a)), F(m2(n), (a), F(73(n), (a)),

a,n

).
(Thus instead of defining F(n,a) in terms of F(n—1, a), we are defining F(n,a)
in terms of three specified previous values.)

Proof. Similar to the proof of the usual recursion theorem on w. O

Thus the definition of Sat in 8.5 is an application of 8.6 with 71 (n) = 4 if for
some j,k < n, [i,7,k] = n, = 0 otherwise; and 7o and 73 are defined similarly,
picking out j and k respectively from [i, j, k], and with H : V4 x w — V defined
so that

{f € <¥a:m(n),m3(n) € domf A f(m2(n))
{f € ¥a:m(n),m3(n) € domf A f(m2(n))
yUz

(<“a\y)N{g € <“a:3f € ydomf < domg}

{f € <¥a:m(n) € domf AVz € aSub(a, f,m2(n),x) € z}
0

= f(ms(n))}
€ f(ms

(m3(n))}

H(z,y,2,a,n) =

otherwise.
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(The F got from this H,my, ms, w3 (in 8.6) is Sat.)

It is completely routine to show that Sat so defined satisfies the required
statement (*) (just before 8.5)—by induction on ¢.

Before defining G we must introduce a term that picks out the largest n € w
such that “v, occurs free” in the “formula coded by m”.

More formally:

Definition 8.7 We define Fr(m) (“the set of i such that v; occurs free in the
formula coded by m”) as follows (again using 8.6):

Fr([0,4,5]) = {5}

Fr([1,4,5]) = {ij}
Fr = Fr(i) UFr(j);
Fr([3,4,7

= F@)\5
= &, if x not of the above form.

)

)
1) = Fr(i);
)

)

Lemma 8.8 Fr(x) is a finite set of natural numbers for any set x.

Definition 8.9 Define
0(z) = max(Fr(z)).

0 is AZT.

Lemma 8.10 If ¢ is any formula of LST and m = "¢7, then 8(m) is the largest
n such that v, occurs as a free variable in ¢, and that if f € Sat(m,a), for any

a €V, then domf > 14 6(m) (ie. 0,1,...,0(m) € domf).

Proof. This is proved by induction on ¢ and it is for this reason that we defined
Sat([3, 4, k], a) as we did (rather than just as <“a \ Sat(j,a)). O

Definition 8.11 We can now define G by

G(m, a,s) = { {bea:(sU{(8(m),b)}) € Sat(m,a)} if s € <“a and doms = O(m)(={0,...,0(m)—1}),

%] otherwise.
Lemma 8.12 Then G is A7,

Proof. This follows because 0, Sat are AZ¥. 0

Lemma 8.13 G has the required properties mentioned at the beginning of sec-
tion 6.

Proof. This is because of (*) (just before 8.5). O

Another consequence of this is the following:
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Lemma 8.14 Suppose W is a transitive class such that On C W and W £ ZF.
Then L CW.

Proof. Suppose a € L, say a € Lg.
We have ZFF Va € On3y(y = L,); hence (W, €) EVa(On(a) — Fy(y =
L,)).
But On C W, so 3 € W, and “On(B)” is AZF so (W, €) F Iy = Lg.
Let b € W be such that (W, €) E b= L,.
But “y = L,” is AZF (and W is transitive), so (V,€) Eb = Lg, ie. b = L.
Soa€beW. But W is transitive, soa € W. O
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ZF+V=LF AC

We first construct a class term H : V. — V such that if (a,R) € V and R
is a well-ordering of the set a, then H((a, R)) = (w X <“a, R’), where R’ is a
well-ordering of w x <¥a.

[We don’t need absoluteness, though it holds]

Definition 9.1 We define H(x) = y iff = is not of the form (a, R), where R
well-orders a, and y = &, or x is of this form, and y is an ordered pair the
first coordinate of which is w x <“a and the second coordinate is R', where
R C (w x <¥a)?, and satisfies: ((n,s),(n’,s')) € R" iff

1. n<n/, or
2. n=n', and doms < doms’, or

3. n=n', and doms = doms’ = k, say, and 3j < k such that VI < j(s(l) =
s(I') A (s(7),8'(4)) € R).

(This is basically lexicographic order within chunks based on domain size.)
Theorem 9.2 H has the required property.
Now let G :w x V x V — V be as at the beginning of section 6.

Definition 9.3 Define J : On — V so that J(0) = 0, and J(a + 1) is the
unique binary relation S on Loy1 such that for oll x,y € Lo+,

1. Ifx € Ly and y & Ly, then (z,y) € S;
2. Ifx € Lo and y € Ly, then (z,y) € S iff (x,y) € J(a);

3. Ifz,y € Lat1 \ Lo and H({Ly, J(a))) = (w X <“ Ly, R), and (m, s) € w X
<“q is R-minimal such that G(m, s, L,) =z, and (m’/,s') € wX <¥a is R-
minimal such that G(m',s', L) =y, then (z,y) € S iff ({m,s), (m',s')) €
R.

41
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And J(0) = Uyes J (@) if 6 is a limit.
Then, from this definition, we immediately have by induction on «:

Lemma 9.4 (ZF) Va € On, J(«) is a well-ordering of Ly, and J(a) C J(a +
1), and Lo+1 is an initial segment of Lo+1 under the ordering J(a + 1).

Corollary 9.5 (ZF) The formula ®(z,y) : = Ja(a € On A (z,y) € J(a)) is a
well-ordering of L. (ie. ® satisfies the axioms for a total ordering of L, and
every a € L has a ®-least element. In particular Va € L, {{z,y) € a® : ®(z,y)}
is a well-ordering of a.)

Theorem 9.6 ZF+V=LF every set can be well-ordered, so ZF+V=LF AC.

Proof. Immediate from 9.5. [
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Cardinal Arithmetic

Recall A ~ B means there is a bijection between A and B.
Definition 10.1 An ordinal « is called a cardinal if for no f < « is 8 ~ «a.

Cardinals are usually denoted &, A, u. Card denotes the class of all cardinals.
Now every well-ordered set is bijective with an ordinal (using an order-preserving
bijection). (Provable in ZF.) Hence if we assume ZFC, as we do throughout this
section, then every set is bijective with an ordinal.

Definition 10.2 (ZFC) The class term | | : V. — On is defined so that |x| is
the least ordinal o such that o ~ x.

Lemma 10.3 (ZFC) (1) The range of | | is precisely the class of cardinals.

(2) For all cardinals k there is a cardinal v such that p > k. (k7 is the least
such p.)

(3) If X is a set of cardinals with no greatest element then sup X is a car-
dinal.

(4) |k| = k for all cardinals k.

Proof. (1) Exercise

(2) Consider |pk| (though this result is provable in ZFC)

(3) Let 8 = supX. Suppose Iy < B(y ~ B). Choose k € X, k > 7.
Then id, is an injection from vy to k. However x € X, so Kk < (3, so by the
Schroder-Bernstein Theorem x ~ y—contradicting the fact that « is a cardinal.

(4) Exercise. O

(2) and (3) allow us to make the following

Definition 10.4 (ZFC) The class term X : On — Card is defined by (writing
R, for N, )

1. Xg = w (ie. |N])
2. Nop1 =R, 7T

43
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3. N5 = Ua<5N5 for 6 a limit.

Lemma 10.5 {R, : « € On} is the class of all infinite cardinals (enumerated
in increasing order). Thus Ry is the smallest uncountable cardinal.

Proof. Exercise. [

Definition 10.6 Suppose k, A are cardinals.
1. s+ A=k x{0}) U (A x{1})].
2. KA =Kk XA
3. KN = ‘)‘FL’.
Theorem 10.7 Suppose k, A, i are non-zero cardinals. Then
1. kM = A kM,
2. KM = (kMR
3. (KA = kEAR.
4. (ZFC) 28 > k.
5. (ZFC) If k or X is infinite, k + A = k.A = max{k, A}.
6. +, . and exp are (weakly) order-preserving.
Proof. See the books. [
Definition 10.8 The Generalized Continuum Hypothesis (GCH) is the state-
ment of LST: for all infinite cardinals k, 2% = k+ (ie. Yo € On(2% = N,41)).

Definition 10.9 Suppose 5 > 0 is an ordinal and 0 = (kq : a < B) is a -
sequence of cardinals (ie. o is a function with domain f and o(a) = ko for all

a < B). Then we define
1 Facs = |Uacplhia x {a})

2 laes = ‘{f:f:ﬁ—)UKﬁna, Va < B(f(a) € ra)}|.

Lemma 10.10 These definitions agree with the previous ones for = 2. Fur-
ther, if k, \ are cardinals, then Kk = [Tocr 5

Proof. Easy exercise. [
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Lemma 10.11 (1) Suppose 7,0 are non-zero ordinals and (ka,p : a < 7y, 5 < J)
is a sequence of cardinals (indexed by v x 6). Then

11D res=2>" 11 ks

a<ly <5 fers a<ly

(ie. ] distributes over y_.)
(2) Suppose B is a non-zero ordinal and (ks : « < () is a B-sequence of
cardinals and k is any cardinal. Then
(a) K. Z Ko = Z(K.HQ).
a<f a<fp

(b) If Ko, = K for all a < 3, then Zna: Zn:|ﬂ|.n.
a<f a<fp
(3) >, 1 are (weakly) order-preserving.

Proof. Exercises. [

Theorem 10.12 (“The Konig Inequality”) Suppose ko < Ao for all a < B.

Then
Z Ka < H Aa-

a<pf a<fB

Proof. Define f: U, 5(ka x {a}) = [[,5Aa by

Fma ={, " Fue

Clearly f is injective, so >°, 5 ka < [[,<45Aa-

Now suppose that h : (J, (ka0 X {a}) = [[,<5 Aa- We show that & is not
onto.

For v < B, define h, : U, 5(ka x {a}) = Ay by

hy (0, ) = (((n, ) () ()

Since ky < Ay, hy[ky X {7} cannot map onto A, so there is an a, € A, \
hoyly X {7}] (%)

Define g € [[,.5Aa by g(7) = a, (for v < B).

Then g ¢ ranh, since if h({y,a)) = g, then h({y,a))(v) = g(v) for all
v < B, s0 h({y, ) (@) = g(a) = aa, ie ha({y,®)) = aa, 50 aa € halka X {a}],
contradicting (**). O

Definition 10.13 (1) Let o be a limit ordinal and suppose S C . Then S is
unbounded in « if VB < aIy € S(y > f).

(2) Let k be a cardinal. Then cof(k) is the least ordinal o such that there
exists a function f: a — Kk such that ran f is unbounded in k.
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Remark 10.14 Suppose cof(k) = @ and vy < a, y ~ . Sayp:v = «a is a
bijection. Let f : a — Kk be such that ran f is unbounded in k. Now clearly
ran f = ran(fp), so fp: v — Kk is a function whose range is unbounded in k.
Since v < « this contradicts the definition of cof(k). Hence no such v exists,
ie. cof(k) is always a cardinal. Clearly cof(k) < k.

Definition 10.15 An infinite cardinal k is called regular if cof (k) = k.

Examples 10.16 (a) cof(Rg) = Rg (obvious).

(b) cof (V1) = Ny, since if cof (N1) < Ry, then cof(Ry) = Ng. Say f: Vg — ¥y
is unbounded. Then Ny = |, _y, f(n), and is a countable union of countable
sets, and thus (in ZFC) countable, which is impossible.

(c) cof(N,) = Rg. > is clear. Consider f: Ry — R, defined so that f(n) =
N,

Theorem 10.17 For any infinite cardinal K, cof(k) is the least ordinal 8 such
that there is a B-sequence (ko : o < ) of cardinals such that

1. Ko < K for all a < j3,
2. Y a<p Ko = K.
Proof. Exercise. [

Theorem 10.18 For any infinite cardinal k,
1. kT is regular,
2. cof(2") > k.

Proof. (1) Let B = cof(x™) and suppose 8 < k*. Then 8 < k. By 10.17, there
are ko < KT (for a < ) such that Za<5 ko = k1. Then ko < k for all a. But
Yoacpta S D qeph S Kk = k% = k—a contradiction.

(2) Suppose p = cof(2"), and p < k. Choose (kq : o < p) such that k£, < 2"
for all @ < p and such that }° _ Ka = 2"

By Konig, >°, ., ka <[[,<, 2% le. 27 <], 2"

But [],., 2" = (2")" = 2%# = 2" (since u < ). This is a contradiction. [

Examples 10.19 cof(280) > Ng; and this is the only provable constraint on the
value of 280, —So, for example, 280 # X,.

Theorem 10.20 Suppose « is an infinite ordinal. Then |L,| = «.

Proof. Induction on «.

For a = w, L, = U,
not finite), | Ly, | = Vg = |w].
Suppose |Lqo| = |

Now Lot1 = {G(m,a,8):m Ew, s € <“Ly}.

L,. Since each L,, is finite, and w C L, (so L, is
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However, for z infinite, |<“z| = |z|.

S0 |Las1| < Ro. |[<9“La| = Ro. |La| = Ro. o] = |a] = |a+ 1.

Also Ly C Lot1, 80 |Lat1] > |La| = |o| = |a+ 1.

For ¢ a limit, |Ls| = }Ua<5 La} < Za<5 |Lo| < No+ Zw§a<§ |Lo| = No +
Y wcacs laf (TH) < Vo437 (510 = Ro + |6]* = |8] (since § is infinite).

—and the other way round too: § C Ls, so that works. (O
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Chapter 11

The
Mostowski-Shepherdson
Collapsing Lemma

Lemma 11.1 Suppose X is a set and My, My are transitive sets. Suppose
™+ X = M; are €-isomorphisms (ie. Vx,y € X (z € y <> m(x) € mi(y))). Then
71 = ma (and hence My = Ms).

Proof. Define ¢(z) < x ¢ X Vmi(x) = ma(x).

We prove Vz ¢(z) by €-induction (see 3.11).

Suppose z is any set, and ¢(y) holds for all y € . If z ¢ X we are done.
Hence suppose © € X, and 71 (z) # m2(z). Then there is z such that (say) z €
mi(x) and z ¢ me(x). Since M; is transitive and pii(x) € M;, we have z € M.
Hence (since m is onto), Jy € X such that 7 (y) = z. Since m(y) € m(x),
we have y € x, and hence (by IH), z = m (y) = m(y) and m2(y) € ma(x). So
z € ma(x)—a contradiction.

Thus ¢(x) holds, hence result by 3.11. O

Theorem 11.2 Suppose X is any set such that (X, €) & Extensionality. (ie. if
a,b € X and a # b, then Iz € X such that x € a Az ¢ b or vice versa.) Then
there is a unique transitive set M and a unique function w such that © is an
€-isomorphism from X to M.

Proof.

Uniqueness is by 11.1. For existence, we prove by induction on o € On, that
Ime : X NV, ~ M, for some transitive set M,. (Since X C V,, for some «,
this is sufficient.

Note that Vo € On, (X NV,, €) E Extensionality (since V,, is transitive).
Now suppose 74, M, exist for all @ < 8. It’s easy to show (by 11.1) that they
are unique and Vo < o < 8 M, C My, and 7o = mo [M,. Hence if 8 is a
limit ordinal, then take Mg = J,.5 Mo and 75 =, Ta-
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So suppose 3 =y + 1. We have 7, : XNV, ~ M,. For x € X N V,,4, note
that yc 2N X =y € X NV,, so we may define

Tyti(z) ={my(y) :y €N X}

Let My11 = my1[X NVyq1]. Then myyq : X N V41 — M, 41 is surjective.

Suppose a,b € X NV,11, a # b. Since (X N V,41,€) F Extensionality,
Jdec € X NV,41 such that (say) c€aAc ¢ b.

Then myy1(a) ={my(y) :y € anN X} > my(c).

Suppose m,(¢) € my41(b). Then my(c) = m,(t) for some ¢t € bN X. Since
¢ ¢ bN X, we have ¢ # t, so 7y is not injective—contradiction.

Thus 7., (c) ¢ 7y+1(b), s0 piyti(a) # my4+1(b) and so w41 is injective.

We now show that if z € X NV, (C X NV,41), then 7y (z) = 741 (z) (¥)

For, y € my(x) implies y € my(z) € M, implies y € M, (since M, is
transitive), say 7, (t) =y (t € X NV,).

Then 74 (t) € my(z), so t € z, hence t € N X.

Thus my41(x) ={my(2) : z€ 2N X} 3 7,(t) = y.

This shows 7 (z) C myt1(2).

Conversely, suppose y € my4i1(x). Then y = m,(¢) for some ¢t € z N X.
Since t € x € X NV, we have m,(t) € m,(z) (since 7, is an €-isomorphism).
Ie. y € my(x). So my41(z) C my(x), and we have (*).

Now suppose a,b € XNV, anda €b (soa e X NV,).

Then my41(b) = {my(y) 1y € bNX}. But a € bN X, so my(a) € my11(b).
Hence by (*) my+1(a) € my41(b).

Finally, M, is transitive, since if a € b € M1, then b = w1 (z) for some
z € X NVy41, and hence a = 7, (y) for some y € x N X. Since y € X NV, we
have, by (*), 7y (y) = my41(y), 80 a € ranmy+1 = My 41, as required. O



Chapter 12

The Condensation Lemma
and GCH

Theorem 12.1 (The Condensation Lemma) Let o be a limit ordinal and sup-
pose X = L, (ie. Vaq,...,a, € X, and formulas ¢(v1,...,v,) of LST, (X, €
YEd(ar,...,an) iff (La,€) E@(ar,...,an), although we only need this when ¢
is a Xy formula). Then there is unique ™ and B such that 8 < o and 7w : X ~ Lg
is an €-isomorphism. Further if Y C X and Y is transitive, then w(y) =y for
allyeY.

We prove this in stages.
Lemma 12.2 Vm e w, L,, C X.

Proof. Clear for m = 0. Suppose L,, € X and let a € L,,4+1, so a =
{a1,...,an} C Ly,. Then L, F Jz((a1 € xA...ANap, € 2)AVy €x(y =a1 V...V
y=ay)). Hence X E3x((a1 € xA...Nap €E)AVy €Ex(y =a1V...Vy = ay)).
Clearly such an x must be a, so a € X. Hence L,,+1 C X. Hence the result
follows by induction. [J

Lemma 12.3 X F FEaxtensionality.

Proof. For suppose a,b € X and a #b. Then Je,c € aAc ¢ b (say), and ¢ € L,
since Ly is transitive. Thus L, F3z(z € aAz ¢ b), so X F Jz(x € a ANz ¢ D),
as required. [J

By 11.2 there is transitive M and 7 : X ~ M. Now since M is transitive, M N
On is a transitive set of ordinals so is an ordinal, 3, say. Then 8 < « (exercise—
suppose 3 > a, so 7 !(a) € X. Show 7 !(a) = a to get contradiction). We
show M = Lg.

An admission! For this proof we need the fact that most of the formulas that
we have proven A#F" are in fact absolute between transitive classes satisfying
much weaker axioms than ZF—in fact BS—basic Set Theory (see Devlin). BS is
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such that L, F BS for any limit ordinal & > w. In particular, the formula On(x),
and ®(z,y) : = On(z) Ay = L., is AZF and hence absolute between V and
L, and between V and M. (Since M is transitive.) As an application, suppose
B =~U{~}. Since 8 ¢ M, and v € M, and M F On(vy) (since On(v) really is
Yo and M is transitive), we have M E Ja(On(x) AVyy # zU{z}). Now X ~ M,
so X F Jz(On(x) AVyy # x U {z}), hence L, F F Jz(On(z) A Vyy # = U {z}),

which is a contradiction, since « is a limit ordinal. Hence, we have shown:
Lemma 12.4 (3 is a limit ordinal.
Lemma 12.5 Lg C M.

Proof. Since § is a limit, Lg = |J

L,C M.
Now for any n < «, L,, € Lq. Since LoNOn = a, we have L, F Vz(On(z) — Jy@(z,y)).

y<p Ly, so fix v < . Sufficient to show

[oa

Hence X F o, since X < L, so M F g, since X ~ M.

Since Yo € M, MEOn(u) & u € On Au < f3, we have in particular
M E 3y®(y,y)—say a € M and M F ®(v,a). By absoluteness a = L., so
L, e M,so L, C M since M is transitive. [J

Lemma 12.6 M C Lg.

Proof. Since Lo =J.,_,, L, we have Ly F V23y3z(On(y) A (y,z) Az € 2).

y<a

Hence X £ 7 (since X <X L), hence M E 7 (since X ~ M.
Let a € M. Then for some ¢,d € M,

M E On(c) A ®(c,d) Na € d.
By absoluteness, ¢ € On, and hence ¢ < 8, and d = L, and a € L.. Hence
a € U,5 Ly = Lg, as required. [J
Lemma 12.7 Suppose Y C X, Y transitive. ThenVy €Y w(y) =vy.

Proof. 1t’s easy to show «[Y] is transitive and 7 : Y ~ #[Y]. However, id]Y ~ Y.
Hence by 11.1, # = 4dJY. I

We have now completed the proof of 12.1.

Lemma 12.8 (ZFC) Let A be any set andY C A. Then there is a set X such
that Y C X C A and (X, €) X (A, €), and | X| = max(Ro, | X]).

Proof. This is the downward Léwenheim-Skolem Theorem. [J

Theorem 12.9 (ZF+V=L) Let  be a cardinal, and suppose x is a bounded
subset of k. Then x € L.
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Proof. Clear if kK < w, so assume k > w. Now =z C « for some w < a < K, s0
€ C Ly. Then L, U {a} is transitive.

Using V=L, let A be a limit ordinal such that A > «, and L, U {z} C L,.
By 12.8, with A = Ly and Y = L, U {z}, let X be such that L, U {z} C X
and X < Ly, with | X| < |LoU{z}| = |a|]. Let 7 : X ~ Lg be as in 12.1.
Then |5] = |Lg| = |X| < |a| < K, so f < k. But Ly U {z} is transitive so, in
particular, 7(z) = z, so ¢ € Lg C L, as required. [J

Corollary 12.10 ZF+V=L-GCH. Hence if ZF is consistent, so is ZFC+GCH.

Proof. By 12.9. ZF+V=L} for all infinite x, px C L,+. But ZFI for all infinite
K, |Le+| = k7, hence ZF+V=Lt for all infinite &, |pr| < k*. So 27 < kT, and
> is obvious. [



