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Chapter 1

Introduction

1

This course assumes that one has done an introductory course on set theory,
including statements of all the standard ZF axioms, the development of the
transfinite ordinal and cardinal numbers, transfinite induction and recursion,
and equivalents of the Axiom of Choice, and an introductory course in logic going
at least as far as the Completeness Theorem for first-order predicate calculus.

I plan to edit these lecture notes from time to time throughout the term.

(14th October 2025): Many thanks to various people who pointed out the
error in the Separation Scheme.

Videos from the time of the lockdowns are still (I believe) up on the website.
They were done by Dr Suabedissen, following a different set of lecture notes but
on the same syllabus.

One of our main aims in this course is to prove the following:

Theorem 1.1 (Gödel 1938) If set theory without the Axiom of Choice (ZF) is
consistent (i.e. does not lead to a contradiction), then set theory with the axiom
of choice (ZFC) is consistent.

Importance of this result: Set theory is the axiomatization of mathematics, and
without AC no-one seriously doubts its truth, or at least consistency. However,
much of mathematics requires AC (eg. every vector space has a basis, every ideal
can be extended to a maximal ideal). Probably most mathematicians don’t
doubt the truth, or at least consistency, of set theory with AC, but it does lead
to some bizarre, seemingly paradoxical results—eg. the Banach-Tarski paradox
. Hence it is comforting to have Gödel’s theorem.

To complement Gödel’s theorem, there is also the following result which is
beyond this course:

Proposition 1.2 (Cohen 1963) If ZF is consistent, so is ZF with ¬AC.

1See Andreas Blass, “On the inadequacy of inner models”, JSL 37 no. 3 (Sept 72) 569–571.
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4 CHAPTER 1. INTRODUCTION

We shall also discuss Cantor’s continuum problem which is the following.
Cantor defined the cardinality, or size, of an arbitrary set. The cardinality

of A is denoted |A|. He showed that |R| > |N|, but could not find any set S
such that |R| > |s| > |N|, so conjectured:

Cantor’s Continuum Hypothesis For any set S, either |S| ≤ |N|, or |S| ≥
|R|.

Again Gödel (1938) showed:

Theorem 1.3 If ZF is consistent, so is ZF+AC+CH,

and Cohen (1963) showed:

Proposition 1.4 If ZF is consistent, so is ZF+AC+¬CH.

We shall prove Gödel’s theorem but not Cohen’s.
Of course Gödel’s theorem on CH was perhaps not so mathematically press-

ing as his theorem on AC since mathematicians rarely want to assume CH, and
if they do, then they say so.

We first make Gödel’s theorem precise, by defining set theory and its lan-
guage.

These notes were originally created by Ronald Jensen, and adapted by Peter
Koepke, Alex Wilkie, and the current lecturer.



Chapter 2

The language of set theory,

and the axioms

See D. Goldrei Classic Set Theory, Chapman and Hall 1996, or H.B. Enderton
Elements of Set Theory, Academic Press, 1977.

Definition 2.1 The language of set theory, LST, is first-order predicate calcu-
lus with equality having the membership relation ∈ (which is binary) as its only
non-logical symbol.

Thus the basic symbols of LST are: =, ∈, ∨, ¬, ∀, ( and ), and an infi-
nite list v0, v1, . . . , vn, . . . of variables (although for clarity we shall often use
x, y, z, t, . . . , u, v, . . . etc. as variables).

The well-formed formulas, or just formulas, of LST are those expressions
that can be built up from the atomic formulas: vi = vj, vi ∈ vj, using the rules:

1. if φ is a formula, so is ¬φ,

2. if φ and ψ are formulas, so is (φ ∨ ψ), and

3. if φ is a formula, so is ∀vi φ.

We write

1. (φ ∧ ψ) for ¬(¬φ ∨ ¬ψ);

2. (φ→ ψ) for (¬φ ∨ ψ);

3. (φ↔ ψ) for ((φ→ ψ) ∧ (ψ → φ));

4. ∃xφ for ¬∀x¬φ;

5. ∃!xφ for ∀y(φ↔ x = y);

6. ∃x ∈ y φ for ∃x (x ∈ y ∧ φ;

7. ∀x ∈ y φ for ∀x (x ∈ y → φ);
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8. ∀x, y φ (etc.) for ∀x∀y φ;

9. x /∈ y for ¬x ∈ y.

We shall also often write φ as φ(x) to indicate free occurrences of a variable
x in φ. The formula φ(z) (say) then denotes the result of substituting every free
occurrence of x in φ by z. Similarly for φ(x, y), φ(x, y, z),. . . , etc.

We interpret formulae of the language in suitable structures in the usual
way. We use a suitable first-order proof theory, which yields the Completeness
Theorem, the Compactness Theorem, and the Löwenheim-Skolem Theorem.

One wrinkle is that we will want to build structures whose domains are
proper classes. This will require care.

The Axioms of Set Theory are the following.

Extensionality
∀x, y (x = y ↔ ∀t(t ∈ x↔ t ∈ y))

Two sets are equal iff they have the same members.

Empty set
∃x∀y y /∈ x

There is a set with no members, the empty set, denoted ∅.

Pairing
∀x, y ∃z ∀t (t ∈ z ↔ (t = x ∨ t = y))

For any sets x, y there is a set, denoted {x, y}, whose only elements are x and
y.

Union
∀x∃y ∀t (t ∈ y ↔ ∃w(w ∈ x ∧ t ∈ w))

For any set x, there is a set, denoted
⋃
x, whose members are the members of

the members of x.

Separation Scheme If φ(x,y) is a formula of LST, the following is an axiom:

∀x∀u ∃z ∀y (y ∈ z ↔ (y ∈ u ∧ φ(x, y))

For given sets x, u there is a set, denoted {y ∈ u : φ(x, y)}, whose elements are
those elements y of u which satisfy the formula φ(x, y).

Replacement Scheme If φ(x, y) is a formula of LST (possibly with other free
variables u, say) then the following is an axiom:

∀u [∀x, y, y′ ((φ(x, y) ∧ φ(x, y′)) → y = y′) → ∀s ∃z ∀y (y ∈ z ↔ ∃x ∈ sφ(x, y))]

The set z is denoted {y : ∃xφ(x, y) ∧ x ∈ s}.
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Power Set
∀x∃y ∀t (t ∈ y ↔ ∀z (z ∈ t→ z ∈ x))

For any set x there is a set, denoted ℘(x), whose members are exactly the
subsets of x.

Infinity

∃x [∃y (y ∈ x∧∀z (z /∈ y)∧∀y (y ∈ x→ ∃z (z ∈ x∧∀t (t ∈ z ↔ (t ∈ y∨ t = y))))]

There is a set x such that ∅ ∈ x and whenever y ∈ x, they y ∪ {y} ∈ x. (Such
a set is called a successor set.

Foundation
∀x (∃z z ∈ x→ ∃z (z ∈ x ∧ ∀y ∈ z y /∈ x))

If the set x is non-empty, then for some z ∈ x, z has no members in common
with x.

Axiom of Choice (AC)

∀u [[∀x ∈ u ∃y y ∈ x∧∀x, y ((x ∈ u∧y ∈ u∧x 6= y) → ∀z (z /∈ x∨ /∈ y))] → ∃v ∀x ∈ u ∃!y (y ∈ x∧y ∈ v)]

We write ZFC for the complete list; ZF for ZFC without the Axiom of
Choice, and ZF∗ for ZF without Foundation.

We will be aiming to prove that if ZF is consistent, then so are ZFC, and
ZFC together with CH.

The axioms of ZF are of three types: (a) those that assert that all sets have
a certain property (Extensionality, Foundation), (b) those that sets with certain
properties exist (Empty Set, Infinity), and (c) those that tell us how we may
construct new sets out of given sets (Pairing, Union, Separation, Replacement,
Power Set). Our aim here is to combine the operations implicit in the axioms
of type (c) to obtain more ways of constructing sets and to introduce notations
for these constructions (just as, for example, we introduced the notation

⋃
x for

the set y given by Union).

Notation 2.2 We write {x : φ(x)} for the collection (or class) of sets x satis-
fying the LST formula φ(x).1

As we have seen, such a class need not be a set. However, in the following
definitions it can be shown (from the axioms ZF∗) that we always do get a set.
This amounts to showing that for some set a, if b is any set such that φ(b) holds
(ie. V ∗ � φ(b)) then b ∈ a, so that {x : φ(x)} = {x ∈ a : φ(x)} which is a set by
A5. I leave all the required proofs as exercises—they can also be found in the
books.

In the following, A,B, . . . , a, b, c, . . . , f, g, a1, a2, . . . , an, . . . etc. all denote
sets.

1Actually, φ(x) will be allowed to have parameters (ie. names for given sets), so is not
strictly a formula of LST. Notice, however, that parameters are allowed in Separation and
Replacement (the “x” and “u”).
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Proposition 2.3 The following set-theoretic notions and operations are defin-
able in the language of set theory:

1. Finite sets: {a1, . . . , an} : = {x : x = a1 ∨ . . . ∨ x = an}.

2. Basic set algebra:

(a) a ∪ b : =
⋃
{a, b} = {x : x ∈ a ∨ x ∈ b}.

(b) a ∩ b : = {x : x ∈ a ∧ x ∈ b}.

(c) a \ b : = {x : x ∈ a ∧ x /∈ b}.

(d)
⋂
a : =

{
{x : ∀y ∈ ax ∈ y} if a 6= ∅

undefined if a = ∅
.

3. Ordered pairs and products:

(a) 〈a, b〉 : = {{a}, {a, b}}. Recall that 〈a, b〉 = 〈c, d〉 ↔ (a = c ∧ b = d).

(b) a×b : = {x : ∃c ∈ a∃d ∈ bx = 〈c, d〉}. (The proof via Comprehension
that a × b is a set requires not only “bounding the x’s”, but also
showing that the expression “∃c ∈ a∃d ∈ bx = 〈c, d〉” can be written
as a formula of LST (with parameters a, b).)

(c) a× b × c : = a× (b × c),. . . , etc.

(d) a2 : = a× a, a3 : = a× a× a,. . . , etc.

4. Inclusion: we write a ⊆ b for ∀x ∈ a(x ∈ b).

5. Relations and orders:

(a) c is a binary relation on a we take to mean c ⊆ a2. (Similarly for
ternary,. . . , n-ary, . . . relations.)

(b) If A is a binary relation on a we usually write xAy for 〈x, y〉 ∈ A.

A is called a (strict) partial order on a iff

i. ∀x, y ∈ a(xAy → ¬yAx),

ii. ∀x, y, z ∈ a((xAy ∧ yAx) → xAz).

If in addition we have (3) ∀x, y ∈ a(x = y ∨ xAy ∨ yAx), then A is
called a (strict) total (or linear) order of a.

6. Functions. (Note that we are taking a function to be determined by its
graph; if we want to formalise category theory within set theory we will
need to do a bit of coding to represent arrows correctly.)

(a) Write f : a → b (f is a function with domain a and codomain b, or
simply f is a function from a to b) if f ⊆ a × b and ∀c ∈ a∃!d ∈
b〈c, d〉 ∈ f . Write f(c) for this unique d.

(b) If f : a → b, f is called injective (or one-to-one) if ∀c, d ∈ a(c 6=
d → f(c) 6= f(d)), surjective (or onto) if ∀d ∈ b∃c ∈ af(c) = d, and
bijective if it is both injective and surjective.
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(c) ab : = {f : f : a→ b}.

7. The natural numbers:

(a) A set a is called a successor set if

i. ∅ ∈ a and

ii. ∀b(b ∈ a→ b ∪ {b} ∈ a).

The axiom of infinity states that a successor set exists and it can
be further shown that a unique such set, denoted ω, exists with the
property that ω ⊆ a for every successor set a. The set ω is called the
set of natural numbers. If n,m ∈ ω we often write n+ 1 for n ∪ {n}
and n < m for n ∈ m and 0 for ∅ (in this context). The relation
∈ (ie. <) is a total order of ω (more precisely {〈x, y〉 : x ∈ ω, y ∈
ω ∧ x ∈ y} is a total order of ω).

(b) The set ω satisfies the principle of mathematical induction, ie. if ψ(x)
is any formula of LST such that ψ(0) ∧ ∀n ∈ ω(ψ(n) → ψ(n + 1))
holds, then ∀n ∈ ωψ(n) holds.

(c) The set ω also satisfies the well-ordering principle, ie. for any set a,
if a ⊆ ω and a 6= ∅ then ∃b ∈ a∀c ∈ a(c > b ∨ c = b).

(d) Definition by recursion

Suppose that f : A → A is a function and a ∈ A. Then there is a
unique function g : ω → A such that:

i. g(0) = a, and

ii. ∀n ∈ ωg(n+ 1) = f(g(n)).

(Thus, g(n) = f(f · · · (f
︸ ︷︷ ︸

n times

a)) · · ·)).)

More generally, if f : B × ω ×A→ A and h : B → A are functions,
then there is a unique function g : B × ω → A such that

i. ∀b ∈ Bg(b, 0) = h(b), and

ii. ∀b ∈ B∀n ∈ ωg(b, n+ 1) = f(b, n, g(b, n)).

(I have adopted here the usual convention of writing g(b, n + 1) for
g(〈b, n+ 1〉). Similarly for f .)

Using this result one can define the addition, multiplication and ex-
ponentiation functions on ω.

8. Cardinality:

(a) We write a ∼ b, or |a| = |b|, if ∃f(f : a→ b∧f bijective). (We won’t
define the notation |a| until later in the course.)

(b) A set a is called finite iff ∃n ∈ ωa ∼ n.

(c) A set a is called countably infinite iff a ∼ ω.
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(d) A set a is called countable iff a is finite or countably infinite. (Equiv-
alently: iff ∃f(f : a→ ω ∧ f injective).)

(Recall that ℘ω is not countable. In fact, for no set A do we have
A ∼ ℘a. (Cantor))



Chapter 3

Classes, class terms and

recursion

Definition 3.1 We call collections of the form {x : φ(x)}, where φ is a formula
of LST, classes.

Definition 3.2 V ∗=the collection of all sets (assuming only ZF∗).

Proposition 3.3 Every set is a class.

Proof. a = {x : x ∈ a}. (so φ(x) is x ∈ a here). �

We must be careful in their use—we cannot quantify over them but some
operations will still apply.

Notation 3.4 If U1 = {x : φ(x)} and U2 = {x : ψ(x)}, then

U1 ∩ U2 = {x : φ(x) ∧ ψ(x)}

U1 ∪ U2 = {x : φ(x) ∨ ψ(x)}

U1 × U2 = {x : ∃y(y = 〈s, t〉 ∧ φ(s) ∧ ψ(t))}

(3.1)

and so on. (x ∈ U1 means φ(x) and U1 ⊆ U2 means ∀x(φ(x) → ψ(x))).

Classes are only a notation—we can always eliminate their use.

Proposition 3.5 V ∗ is a class.

Proof. V ∗ = {x : x = x}. �

Definition 3.6 If F,U1, U2 are classes with the properties that F ⊆ U1 × U2

and ∀x ∈ U1∃!y ∈ U2〈x, y〉 ∈ F , then F is called a class term, or just a term,
and we write F (x) = y instead of 〈x, y〉 ∈ F .

We also write F : U1 → U2, although F may not be a function, as U1 may
not be a set.

11



12 CHAPTER 3. CLASSES, CLASS TERMS AND RECURSION

So if F = {x : ∃y1, y2(x = 〈y1, y2〉 ∧ y2 =
⋃
y1)}, so for all sets F (x) =

⋃
x,

then F is a class term. We need class terms for higher recursion.
Recursion (Use only ZF∗ throughout.)

Theorem 3.7 Suppose G : U → U is a class term and a ∈ U . Then there is a
term F : ω → U (which is therefore a function) such that

1. F (0) = a and

2. ∀n ∈ ωF (n+ 1) = G(F (n)).

Some applications:

Definition 3.8 A set a is called transitive if ∀x ∈ a∀y ∈ xy ∈ a. (ie. x ∈ a→
x ⊆ a, or a ⊇

⋃
a.)

Lemma 3.9 ω is transitive; and if n ∈ ω, then n is transitive.

Theorem 3.10 For any set a, there is a unique set b, denoted TC(a), and
called the transitive closure of a, such that

1. a ⊆ b,

2. b is transitive,

3. whenever a ⊆ c and c is transitive, then b ⊆ c.

Proof. Uniqueness is clear since if a ⊆ b1 and a ⊆ b2, b1 and b2 transitive and
both satisfying (3), then b1 ⊆ b2 and b2 ⊆ b1, so b1 = b2.

For existence let G be the class term given by G(x) =
⋃
x (for x ∈ V ∗).

Apply 3.7, to get a term F such that

1. F (0) = a, and

2. ∀n ∈ ωF (n+ 1) = G(F (n)) =
⋃
F (n).

By replacement, there is a set B such that B = {y : ∃x ∈ ωF (x) = y}.
Let b =

⋃
B =

⋃
{F (n) : n ∈ ω}. Then

1. Since a = F (0) and F (0) ∈ B, we have a ∈ B, so a ⊆
⋃
B = b.

2. Suppose x ∈ b and y ∈ x. We must show y ∈ b. But x ∈ b implies x ∈
⋃
B

implies x ∈ F (n) for some n ∈ ω implies x ⊆
⋃
F (n), so y ∈

⋃
F (n), so

y ∈ F (n+ 1), so y ∈
⋃
B, so y ∈ b.

3. Suppose a ⊆ c, c transitive.

We prove by induction on n that F (n) ⊆ c.

F (0) = a ⊆ c.

Suppose F (n) ⊆ c.
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We want to show that F (n+1) ⊆ c, so suppose x ∈ F (n+1), ie x ∈
⋃
F (n).

Then for some y ∈ F (n), x ∈ y. Thus x ∈ y ∈ F (n) ⊆ c, so x ∈ y ∈ c, so
x ∈ c, since c is transitive, as required.

Thus, by induction, ∀n ∈ ωF (n) ⊆ c, so
⋃
{F (n) : n ∈ ω} ⊆ c, ie. b ⊆ c,

as required.

�

Recursion on ∈.

Theorem 3.11 (Requires Foundation—ie. assume ZF) For ψ(x) any formula
of LST (with parameters) if ∀x(∀y ∈ xψ(y) → ψ(x)), then ∀xψ(x). (The hy-
pothesis trivially implies ψ(∅).)

Proof. Suppose ∀x(∀y ∈ xψ(y) → ψ(x)), but that there is some set a such
that ¬ψ(a). Then a 6= ∅. Let b = TC(a), so a ⊆ b, and hence b 6= ∅. Let
C = {x ∈ b : ¬ψ(x)}. Then C 6= ∅, since otherwise we would have ∀x ∈ bψ(x),
hence ∀x ∈ aψ(x) (since a ⊆ b), and hence ψ(a), contradiction.

By foundation there is some d ∈ C such that d ∩ C = ∅, ie. d ∈ b, ¬ψ(d),
but ∀x ∈ dx ∈ b (since b is transitive) and x /∈ C. But this means ∀x ∈ dψ(x),
so ψ(d)—contradiction. �

Our present aim is to prove that if ZF∗ is consistent then so is ZF—so we
won’t use 3.11. Instead we find another generalization of induction.

Definition 3.12 Suppose that a is a set and R is a binary relation on a. Then
R is called a well-ordering of a if

1. R is a total ordering of a.

2. If b is a non-empty subset of a, then b contains an R-least element.
ie. ∃x ∈ b∀y ∈ b(y = x ∨ xRy).

Remark: AC iff every set is well-orderable.

Definition 3.13 Suppose that R1 is a total order of a, and R2 is a total order
of b. Then we say that 〈a,R1〉 is order-isomorphic to 〈b, R2〉, written 〈a,R1〉 ∼
〈b, R2〉, if there is a bijective function f : a → b such that ∀x, y ∈ a(x < y ↔
f(x) < f(y)).

Definition 3.14 We say x is an ordinal, On(x), or x ∈ On, if

1. x is transitive, and

2. ∈ is a well-ordering of x.

We usually use α, β, etc., for ordinals.
On is a class.

Theorem 3.15 1. If R is a well-order of the set a, then there is a unique
ordinal α such that 〈a,R〉 ∼ 〈α,∈〉.
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2. ∅ ∈ On. (Write ∅ = 0.)

3. α ∈ On → α+1 ∈ On (so all natural numbers are ordinals, by induction).

4. If a is a set and a ⊆ On, then
⋃
a ∈ On. (Hence ω ∈ On.)

5. If α, β ∈ On, either α = β, α ∈ β, or β ∈ α, and exactly one occurs.

6. If α, β, γ ∈ On, and α ∈ β and β ∈ γ, then α ∈ γ.

7. If α, β ∈ On, α ⊆ β iff α ∈ β or α = β.

8. If α ∈ On and a ∈ α, then a ∈ On.

(Note that (3) implies that On is not a set.)

Theorem 3.16 (Which is required to prove the above.) Suppose that φ(x) is a
formula of LST, such that ∀α ∈ On(∀β ∈ αφ(β) → φ(α)). Then ∀α ∈ Onφ(α).

Proof. Suppose ∀α ∈ On(∀β ∈ αφ(β) → φ(α)), and suppose that there is some
γ ∈ On such that ¬φ(γ). Let X = {α ∈ γ : ¬φ(α)}, then X is a set and X ⊆ γ.
Also X 6= ∅, since if ∀α ∈ γφ(γ), then φ(γ).

Let α0 be the least element of X . Then α0 ∈ X , so ¬φ(α0), and for all
α ∈ X α = α0 or α0 ∈ α.

Now let α be any member of α0. Then α ∈ γ, since γ is transitive. Now we
cannot have α ∈ X , for then α0 ∈ α or α0 ∈ α, and ∈ would not be a strict
total ordering of γ.

So we have α ∈ γ, α /∈ X , so φ(α) holds.
In other words ∀α ∈ α0φ(α). But then φ(α0), giving us a contradiction. �

Definition 3.17 (1) An ordinal α is called a successor ordinal if α = β ∪ {β}
for some (necessarily unique) ordinal β. (Write α = β + 1.)

(2) An ordinal α is called a limit ordinal if α 6= ∅ and α is not a successor
ordinal.

Theorem 3.16 is often applied in the following way:
To prove ∀α ∈ Onφ(α):

1. Show φ(0)

2. Show ∀α(φ(α) → φ(α + 1))

3. Show ∀α < δφ(α) → φ(δ)

Theorem 3.18 (Definition by recursion on On) Suppose F : V ∗ → V ∗ is a
class term, and a ∈ V ∗. Then there is a unique class term G : On → V ∗ such
that

1. G(0) = a
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2. G(α + 1) = F (G(α))

3. G(δ) =
⋃

α∈δ for δ a limit.

Proof.Proof Let φ(g, α) be the formula of LST expressing:
“g is a function with domain α+1 such that ∀β < αg(β+1) = F (g(β)) and

if β is a limit g(β) =
⋃
{g(α) : α < β} and g(0) = a”.

((*) Note that if φ(g, α) and β ≤ α, then φ(g↾β + 1, β).)

Lemma 3.19 ∀α ∈ On ∃!g φ(g, α).

Proof. Induction on α.
α = 0: Clearly g = {〈0, a〉} is the only set satisfying φ(g, 0).
Suppose true for α. Let g be the unique set satisfying φ(g, α). (Note g :

α+1 → V ∗.) Certainly g∗ = g∪{〈α+1, F (g(α))〉} satisfies φ(g∗, α+1). If g′ also
satisfied φ(g′, α + 1), then φ(g′↾α + 1, α) holds, so by the inductive hypothesis
g = g′↾α + 1. But φ(g′, α + 1) implies g′(α + 1) = F (g′(α)) = F (g(α)). So
g′ = g ∪ {〈α+ 1, F (g(α))〉} = g∗, as required.

Suppose δ is a limit and ∀α < δ∃!gφ(g, α). For given α < δ let the unique
g be gα. Notice that S = {gα : α < δ} is a set by Replacement. But α1 < α2

implies gα1
= gα2

↾α1 + 1. Let g∗ =
⋃
S. Then g∗ is a function with domain

{α : α < δ} = δ, and ∀α < δg∗(α+ 1) = F (g∗(α)) and if β is a limit < δ, then
g∗(β) =

⋃
{g∗(α) : α < β} and g∗(0) = a. (Since for any α < δ, g∗ coincides

with gα on α+1, and the gα’s satisfy the condition by the inductive hypothesis.)
Further g∗ is the only such function by (*).

Now define g = g∗ ∪ {〈δ,
⋃
{g∗(α) : α < δ}〉}. Then g is unique such that

φ(g, δ).
Now set G = {〈x, α〉 : ∃g(φ(g, α) ∧ g(α) = x)).
Then G satisfies the required conditions since by the lemma for each α ∈ On,

G↾α+ 1 is the unique g such that φ(g, α).
We get uniqueness of G by induction. �

Theorem 3.20 Suppose F : V ∗ → V ∗ and H : V ∗ → V ∗ are class terms.
Then there is a unique class term G : V ∗ ×On → V ∗ such that

1. G(x, 0) = H(x)

2. G(x, α + 1) = F (x,G(x, α))

3. G(x, δ) =
⋃

α<δ G(x, α) for δ a limit.

Some applications:

Definition 3.21 Ordinal addition: Set F (x, y) = y ∪ {y}, H(x) = x. We get
G such that

1. G(x, 0) = x
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2. G(x, α + 1) = G(x, α) ∪ {G(x, α)}

3. G(x, δ) =
⋃

α<δ G(x, α).

Suppose α, β ∈ On. Write α+ β for G(α, β). Then:

1. α+ 0 = α

2. α+ (β + 1) = (α+ β) + 1

3. α+ δ =
⋃

β<δ α+ β.

Definition 3.22 Ordinal multiplication:

1. α.0 = 0 (So H(x) = 0)

2. α.(β + 1) = α.β + α (So F (x, y) = y + x)

3. α.δ =
⋃

β<δ α.β.



Chapter 4

The Cumulative Hierarchy

and the consistency of the

Axiom of Foundation

We apply Theorem 3.18 with a = ∅ and F (x) = ℘x, to obtain the following:

Definition 4.1 We define a class term V : On → V ∗ so that

1. V (0) = ∅

2. V (α+ 1) = ℘V (α), and

3. V (δ) =
⋃

α<δ V (α) for δ a limit.

We write Vα for V (α). Each Vα is a set and we also write V for the class
{x : ∃α ∈ Onx ∈ Vα}“ = ”

⋃

α∈On
Vα.

Theorem 4.2 For each α ∈ On,

1. Vα is transitive,

2. Vα ⊆ Vα+1,

3. α ∈ Vα+1.

Proof. Simultaneous induction on α.
α = 0 V0 = ∅, which is transitive. V0 ⊆ V1, and 0 = ∅ ∈ {∅} = V1.
Suppose true for α.
(1) Suppose x ∈ y ∈ Vα+1. Vα+1 = ℘Vα, so x ∈ y ⊆ Vα, so x ∈ Vα. Since

Vα ⊆ Vα+1 by the inductive hypothesis, we get x ∈ Vα+1 as required.
(2) Suppose x ∈ Vα+1. Then x ⊆ Vα. But Vα ⊆ Vα+1 by the inductive

hypothesis, so x ⊆ Vα+1. Hence x ∈ V(α+1)+1, as required.

17
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(3) α ∈ Vα+1 by hypothesis. So α ⊆ Vα+1, since Vα+1 is transitive. Thus
α ∪ {α} ⊆ Vα+1. Hence α+ 1 = α ∪ {α} ∈ V(α+1)+1, as required.

—Hence the result is true for α+ 1.
Suppose δ a limit and (1), (2) and (3) are true for all α < δ.
(1) Suppose x ∈ y ∈ Vδ =

⋃

α<δ Vα. Then x ∈ y ∈ Vα for some α < δ. So
x ∈ Vα by ind hyp. But Vα ⊆ Vδ, so x ∈ Vδ.

(2) Suppose x ∈ Vδ. Since y ∈ x ∈ Vδ → y ∈ Vδ, we have x ⊆ Vδ, so
x ∈ Vδ+1. Thus Vδ ⊆ Vδ+1.

(3) Now for all α < δ, α ∈ Vα+1, by the inductive hypothesis. So ∀α <
δα ∈ Vδ (since Vα+1 ⊆ Vδ). Thus δ ⊆ Vδ (note δ = {α : α < δ}) and so
δin℘Vδ = Vδ+1, as required. �

Corollary 4.3 (1) V is a transitive class (ie. x ∈ y ∈ V → x ∈ V ) containing
all the ordinals.

(2) ∀α < β Vα ⊆ Vβ .

Theorem 4.4 (V,∈) � ZF.

Proof. (Note that (V,∈) is a substructure of (V ∗,∈), so for a, b ∈ V , (V,∈
) � a ∈ b iff a ∈ b, and (V,∈) � a = b iff a = b.)

Extensionality. Suppose x, y ∈ V , and 〈V,∈〉 � ∀t(t ∈ x ↔ t ∈ y) (*). We
must show 〈V,∈〉 � x = y, ie x = y. Suppose x 6= y. Say a ∈ x, a /∈ y. Since
a ∈ x ∈ V we have a ∈ V (by Corollary 4.3). But by (*), ∀t ∈ V , t ∈ x↔ t ∈ y.
In particular a ∈ x↔ a ∈ y—contradiction.

So x = y.
Empty Set. We must show 〈V,∈〉 � ∃x∀yy /∈ x. Since ∅ ∈ V , we have

∅ ∈ V , and clearly ∀y ∈ V, /∈ ∅.
Pairing. Suppose a, b ∈ V . We must show 〈V,∈〉 � ∃z∀t(t ∈ z ↔ (t =

a∨ t = b)). Let c = {a, b}. Now by 4.3 (ii), there is some α such that a, b ∈ Vα.
So c ⊆ Vα, so c ∈ Vα+1, so c ∈ V . It remains to show ∀t ∈ V (t ∈ c ↔ (t =
a ∨ t = b)), which is clear since this is true ∀t ∈ V ∗.

Union. 〈V,∈〉 � Unions—exercise.
Power Set. Suppose a ∈ V . We must show 〈V,∈〉 � ∃y∀t(t ∈ y ↔ ∀z(z ∈

t→ z ∈ a)).
Now suppose a ∈ Vα.
Exercise: ∀α ∈ On, if b ∈ a ∈ Vα, then b ∈ Vα.
It follows that ∀b ∈ ℘(a), b ∈ Vα. Thus ℘(a) ⊆ Vα, so ℘(a) ∈ Vα+1. So

℘(a) ∈ V . Let c = ℘(a).
We show 〈V,∈〉 � ∀t(t ∈ c↔ ∀z(z ∈ t→ z ∈ a)).
So suppose t ∈ V .
⇒): If 〈V,∈〉t ∈ c, then t ∈ c, so t ⊆ a, ie. ∀z ∈ V ∗(z ∈ t → z ∈ a), thus

∀z ∈ V (z ∈ t→ z ∈ a).
⇐): Suppose 〈V,∈〉 � ∀z(z ∈ t → z ∈ a) (*) (ie. 〈V,∈〉 � t ⊆ a). We show

that really, t ⊆ a. Suppose d ∈ t. Since t ∈ V , we have d ∈ V (by 4.3 (i)).
Hence, by (*), d ∈ a. Thus t ⊆ a, so t ∈ c, so 〈V,∈〉 � t ∈ c as required.
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[Remark: Won’t always be the case that ℘(a) in substructure is real ℘(a)—
fudge this for now?]

Infinity. Exercise (Note: ω ∈ Vω+1, so ω ∈ V ).
Foundation. Suppose a ∈ V , a 6= ∅. We must find b ∈ a such that

b ∩ a = ∅.
[Since then b ∈ V , by transitivity, and 〈V,∈〉 � ∀y ∈ by /∈ a.]
Let x ∈ a. Then x ∈ V , so x ∈ Vα for some α. This shows ∃α ∈ On, a∩Vα 6=

∅. Choose β minimal such that a∩Vβ 6= ∅. Then β is a successor ordinal since,
for δ a limit, a ∩ Vδ = a ∩

⋃

α<δ Vα =
⋃

α<δ(a ∩ Vα), so if a ∩ Vδ 6= ∅, then
a ∩ Vα 6= ∅ for some α < δ.

Say β = γ + 1. Now choose β ∈ a ∩ Vβ .
We claim that b ∩ a = ∅. Suppose x ∈ a ∩ b. Now b ∈ Vβ , so b ⊆ Vγ , so

x ∈ Vγ . But x ∈ a, so a ∩ Vγ 6= ∅—a contradiction to the minimality of β.
Separation. Suppose φ(x1, . . . , xn, y) is a formula of LST and a1, . . . , an ∈

V , and u ∈ V . We want b ∈ V such that

〈V,∈〉 � ∀y(y ∈ b↔ (y ∈ u ∧ φ(a1, . . . , an, y))).

Definition 4.5 Relativization of formulas Suppose U is a class, say U = {x :
Φ(x)}, and φ(v1, . . . , vk) is a formula of LST. We define the formula φU (v1, . . . , vk)
(or φΦ(v1, . . . , vk)), which has the same free variables as φ, as follows (by re-
cursion on φ):

1. If φ is vi = vj or vi ∈ vj, then φ
U is just φ.

2. If φ is ¬ψ, then φU is ¬ψU .

3. If φ is (ψ ∨ ψ′), then φU is (ψU ∨ (ψ′)U ).

4. If φ is ∀viψ, then φ
U is ∀vi(Φ(vi) → ψU ).

(We tacitly assume φ and Φ have no bound variables in common.)

Lemma 4.6 For any φ(v1, . . . , vk) and a1, . . . , ak ∈ U , 〈U,∈〉 � φ(a1, . . . , ak)
iff φU (a1, . . . , ak).

Proof. Obvious. �

To return to the proof of A5 in 〈V,∈〉: Suppose u ∈ Vα. Let b = {y ∈ u :
φV (a1, . . . , ak, y)}. Then b ⊆ u ∈ Vα, so b ∈ Vα (by an exercise), so b ∈ V .

Suppose y ∈ V .
We want to show 〈V,∈〉 � y ∈ b↔ (y ∈ u ∧ φ(a1, . . . , an, y)).
⇒): Suppose y ∈ b. Then y ∈ u, and φV (a1, . . . , an, y). Hence, by lemma

4.6, 〈V,∈〉 � y ∈ u ∧ φ(a1, . . . , an, y).
⇐): Suppose 〈V,∈〉 � y ∈ u∧φ(a1, . . . , an, y). Then y ∈ u and φV (a1, . . . , an, y)

(by 4.6), so y ∈ b, as required.
Replacement. Suppose φ(x, y) is a formula of LST (possibly involving

parameters from V ).
Suppose 〈V,∈〉 � ∀x, y, y′((φ(x, y) ∧ φ(x, y′)) → y = y′).
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Let ψ(x, y) be

V (x)
︷ ︸︸ ︷

x ∈ V ∧

V (y)
︷ ︸︸ ︷

y ∈ V ∧φV (x, y). [Note V (x) has no parameters.]
Then we have (in V ∗) ∀x, y, y′((ψ(x, y)∧ψ(x, y′)) → y = y′), by lemma 4.6.
Let s ∈ V .
Hence there is a set z such that

∀y(y ∈ z ↔ ∃x ∈ sψ(x, y)) (*)

(by replacement in V ∗). We want to show z ∈ V .
Now by (*), if y ∈ z, then ∃x ∈ sψ(x, y), so ∃x ∈ s(x ∈ V ∧y ∈ V ∧φV (x, y),

so y ∈ V . We want to show z ∈ V .
Thus for each y ∈ z, ∃α ∈ On, y ∈ Vα.
Let χ(u, v) be “u ∈ z ∧ v is the least ordinal such that u ∈ Vv”.
Then by replacement in V ∗, there is a set S such that

∀v(∃u ∈ z(χ(u, v)) ↔ v ∈ S).

Clearly S is a set of ordinals, so
⋃
S is an ordinal, β say.

Clearly ∀y ∈ z, y ∈ Vβ . Hence z ⊆ Vβ , so z ∈ Vβ+1, so z ∈ V .
We must show 〈V,∈〉 � ∀y(y ∈ z ↔ ∃x ∈ sφ(x, y)).
⇒): So suppose y ∈ V and y ∈ z.
By (*), ∃x ∈ sψ(x, y), ie. ∃x ∈ s(x ∈ V ∧ y ∈ V ∧φV (x, y)), so 〈V,∈〉 � ∃x ∈

sφ(x, y).
⇐): Conversely, if y ∈ V , and 〈V,∈〉 � ∃x ∈ sφ(x, y), then ∃x ∈ S(x ∈

V ∧ φV (x, y)), so ∃x ∈ s(x ∈ V ∧ y ∈ V ∧ φV (x, y)), ie ∃x ∈ sψ(x, y), so by (*),
y ∈ z. �

Corollary 4.7 If ZF∗ is consistent, then so is ZF.

Proof. If σ is an axiom of ZF, we have shown that ZF∗ ⊢ σV . Hence if
σ1, σ2, . . . , σk were a proof of a contradiction from ZF, then (roughly) σV1 , . . . , σ

V
k

could be converted into one from ZF∗. �

From now on we assume Foundation, and hence (exercise) that ZF=ZF∗.
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Lévy’s Reflection Principle

Theorem 5.1 (Lévy’s Reflection Principle, or (LRP)) (ZF—for each individ-
ual χ)

Suppose W̃ : On→ V is a class term, and write Wα for W̃ (α). Suppose W̃
satisfies:

1. α < β →Wα ⊆Wβ (∀α, β ∈ On)

2. Wδ =
⋃

α∈δWα for all limit ordinals δ.

Let W =
⋃

α∈OnWα (= {x : ∃α ∈ On, x ∈ Wα}, so W is a class; each Wα

is a set.)
Suppose χ(v1, . . . , vn) is a formula of LST (without parameters). Then, for

any α ∈ On, there is β ∈ On such that β ≥ α, and such that ∀a1, . . . an ∈ Wβ,
〈W,∈〉 � χ(a1, . . . , an) iff 〈Wβ ,∈〉 � χ(a1, . . . , an); ie. for lall a1, . . . , an ∈ Wβ,
χW (a1, . . . , an) ↔ χWβ (a1, . . . , an).

Definition 5.2 We say that a class U of ordinals is unbounded iff for all or-
dinals γ, there exists δ > γ such that δ ∈ U .

We say that U is closed if and only if, whenever W is a non-empty subset
of U ,

⋃
W ∈ U .

We say that U is closed unbounded, or club, if and only if it is closed and
unbounded.

Lemma 5.3 The intersection of two clubs is club.

Proof. Suppose that U1 and U2 are club.
Suppose that γ is an ordinal.
Define δk by recursion on ω so that for all k, δ2k ∈ U1 and δ2k+1 ∈ U2,

and γ < δ0 and δk < δk+1 using the fact that U1 and U2 are unbounded. Let
δω =

⋃

k∈ω δk. Then because U1 and U2 are closed, δω belongs to both. So
U1 ∩ U2 is unbounded.

Now suppose that W is a non-empty subset of U1 ∩ U2. Then because W
is a subset of U1,

⋃
W ∈ U1, and because W is a subset of U2,

⋃
W ∈ U2. So

U1 ∩ U2 is closed. �
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Lemma 5.4 The class of ordinals U such that if α ∈ U , then for all a1, . . . , an ∈
Wγ , if 〈W,∈〉 � ∃xφ(x, a1, . . . , an), then for some x ∈ Wγ , 〈W,∈〉 � φ(x, a1, . . . , an),
is club.

Proof. We first show that U is unbounded.
Let γ be an ordinal. We define ordinals δk, for k ∈ ω, by recursion as follows.
Let δ0 = γ + 1.
Suppose we have δk.
For each a1, . . . , an, define F (a1, . . . ,n ) to be δk + 1 if there does not exist

x such that 〈W,∈〉 � φ(x, a1, . . . , an), and otherwise, define it to be the least
ζ > δk such that there exists x ∈ Wζ such that 〈W,∈〉 � φ(x, a1, . . . , an). Now,
by Replacement, we may define δk+1 to be the supremum of all the F (a1, . . . , an)
for a1, . . . , an ∈Wγ .

Now δω =
⋃

k∈ω δk > γ, and it is an element of U .
We now show that U is closed.
Let Y be a non-empty subset of U .
If Y has a greatest element γ, then γ =

⋃
Y , and is an element of U .

If now Y does not have a greatest element, then if a1, . . . , an ∈
⋃
Y , for

each i, let γi be such that ai ∈ Wγ+i. Let γ be the greatest of these γi.
Then if 〈W,∈〉 � ∃xφ(x, a1, . . . , an), then there exists x ∈ Wγi such that 〈W,∈
〉 � φ(x, a1, . . . , an). But then x ∈ Wγ also. So γ ∈ U as required. �

Proof. (proof of Theorem 5.1) Suppose, without loss of generality, using a mild
abuse of notation, that the only quantifier occuring in χ is ∃.

Let Φ be the set of subformulae of χ.
We argue, by induction on the complexity of formulae, that for all elements

φ(x0, . . . , xn) of Φ, we can find a class of ordinals Uφ such that for all γ ∈ Uφ, for
all a0, . . . , an ∈Wγ , 〈Wγ ,∈〉 � φ(a0, . . . , an) iff 〈W,∈〉 � φ(a0, . . . , an), is club.

(We can do this in the language, rather than the metalanguage, because Φ
is finite, and so we can write out different versions of the preceding paragraph
referring to the different elements of Φ one by one.)

For the base case, when φ is atomic, we can simply let Uφ = On.
If φ = ¬θ, then let Uφ = Uθ.
If φ = (θ → ψ), let Uφ = Uθ ∩ Uψ.
If φ = ∃xψ(x, x1, . . . , xn), then let Y be the class of all ordinals γ such that

if a1, . . . , an ∈ Wγ , and 〈W,∈〉 � ∃xψ(x, γ1, . . . , γn), then there exists x ∈ Wγ

such that 〈W,∈〉 � ψ(x, γ1, . . . , an).
Now Y is club. By the inductive hypothesis, we may assume that Uψ is club.
We now let Uφ = Y ∩ Uψ.
This class is club.
Also, if γ ∈ Uφ, a1, . . . , an ∈ Wγ , and 〈W,∈〉 � φ(a1, . . . , an), then because

γ ∈ Y , then there exists x ∈ Wγ such that 〈W,∈) � ψ(x, a1, . . . , an). But
now γ ∈ Uψ, so 〈Wγ ,∈〉 � ψ(x, a1, . . . , an). So 〈Wγ ,∈〉 � φ(a1, . . . , an) as re-
quired. If now 〈W,∈〉 � ¬φ(a1, . . . , an), then 〈W,∈〉 � ∀x¬ψ(x, a1, . . . , an), so
certainly for all x ∈ Wγ , 〈W,∈) � ¬ψ(x, a1, . . . , an). Since γ ∈ Uψ, 〈Wγ ,∈
〉 � ¬ψ(x, a1, . . . , an). So 〈Wγ ,∈〉 � ∀x¬ψ(x, a1, . . . , an) as required.
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Having completed the recursion, let α be any ordinal. Now Uχ is club, so
let β > α be some element of Uχ. �
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Chapter 6

Gödel’s Constructible

Universe

Definition 6.1 For any set a and n ∈ ω we define na to be {f : f : n → a},
and <ωa =

⋃

n∈ω
na.

(Exercise: this is a set.)
We shall construct a class term G : ω × V × V → V such that

∀n ∈ ω ∀a, s ∈ V G(m, a, s) ⊆ a.

Further to each formula ψ(v0, . . . , vn−1, vn) of LST with free variables amongst
v0, . . . , vn (with n ≥ 1), there will be assigned a numberm ∈ ω (m = pψ(v0, . . . , vn)q)
with the property that for all a, s ∈ V , G(m, a, s) = {b ∈ a : 〈a,∈〉 � ψ(s(0), . . . , s(n−
1), b)} if s ∈ <ωa and doms ≥ n and ∅ otherwise.

Definition 6.2 We define the class term Def : V → V by

Def(a) = {G(m, a, s) : m ∈ ω, s ∈ <ωa}.

Thus Def(a) consists of all the definable (with parameters) subsets of the struc-
ture 〈a,∈〉.

Definition 6.3 (The constructible hierarchy)
We define the class term L : On→ V (writing Lα for L(α)) by recursion on

On as follows:

1. L0 = ∅;

2. Lα+1 = Def(Lα);

3. Lδ =
⋃

α<δ Lα for limit δ.

L is called the Constructible Universe.
Throughout we assume ZF holds in V .
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Lemma 6.4 For all α, β ∈ On:

1. α < β → Lα ⊆ Lβ;

2. α < β → Lα ∈ Lβ;

3. Lβ is transitive;

4. Lβ ⊆ Vβ ;

5. On ∩ Lβ = β.

Proof. Fix α. We prove (1)–(5) (simultaneously) by induction on β.
β = 0: trivial.
The successor case: Suppose (1)–(5) true for β.
(1) Suffices to show Lβ ⊆ Lβ+1. Suppose x ∈ Lβ. Then x ⊆ Lβ (by IH(3)).

Let s = {〈0, x〉; then s ∈ <ωLβ and doms = 1. Then A = G(pv1 ∈ v0q, Lβ, s) ∈
Def(Lβ) = Lβ+1.

Also A = {b ∈ Lβ : 〈Lβ ,∈〉 � b ∈ s(0)} = {b ∈ Lβ : b ∈ x} = x (since
x ⊆ Lβ).

Thus x ∈ Lβ+1 as required.
(2) Suffices to show (by (1)) that Lβ ∈ Lβ+1. (Since if α < β then Lα ∈ Lβ

(by IH) and Lβ ⊆ Lβ+1 (by (1)).
Must show that Lβ ∈ Def(Lβ).
Let s = ∅. Then G(pv1 = v0q, Lβ, s) = {b ∈ Lβ : 〈Lβ,∈〉 = b = b} = Lβ, so

Lβ ∈ Def(Lβ), as required.
(3) If x ∈ Lβ+1, then x ⊆ Lβ. But Lβ ⊆ Lβ+1, by (1), so x ⊆ Lβ+1. Thus

Lβ+1 is transitive.
(4) By IH Lβ ⊆ Vβ .
Also x ∈ Lβ+1 → x ⊆ Lβ → x ⊆ Vβ → x ∈ ℘Vβ = Vβ+1.
Thus Lβ+1 ⊆ Vβ+1.
(5) By IH On ∩ Lβ = β.
Suppose x ∈ On ∩ Lβ+1. Then x ∈ On and x ⊆ Lβ .
But every member of x is an ordinal, so x ⊆ Lβ ∩On, so x ⊆ β. Thus either

x ∈ β or x = β. In either case x ∈ β ∪ {β} = β + 1. Thus On ∩ Lβ+1 ⊆ β + 1.
Suppose x ∈ β+1. Then either x ∈ β, in which case x ∈ On∩Lβ ⊆ On∩Lβ+1

(by (1)), or x = β. So it remains to show β ∈ Lβ+1.
Let s = ∅.
Then A = G(pOn(v0)q, Lβ, s) = {b ∈ Lβ : 〈Lβ ,∈〉 � On(b)}, and A ∈

Def(Lβ) = Lβ+1. We show A = β.
But On(v0) is a Σ0-formula (exercise this week) and hence absolute between

transitive classes.
Thus ∀b ∈ Lβ, 〈Lβ ,∈〉 � On(β) iff b ∈ On.
Thus A = Lβ ∩On = β by IH, as required.
The Limit Step Suppose δ > 0 is a limit ordinal and (1)–(5) hold for all

β < δ. Since Lδ =
⋃

β<δ Lβ , (1)–(5) for δ are all easy. �
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Lemma 6.5 For all n ∈ ω, Ln = Vn.

Proof. By induction on n.
For n = 0, this is clear.
Suppose now that Ln = Vn.
Now Ln+1 ⊆ Vn+1 by 6.4.
Suppose x ∈ Vn+1. Then x ⊆ Vn, so x is finite. Also x ⊆ Ln by IH. Say

x = {a0, . . . , ak−1} (k ∈ ω), so that a0, . . . , ak−1 ∈ Ln.
Let s = {〈0, a0〉, . . . , 〈k − 1, ak−1〉}, so s ∈

kLn.
Let A = G(p(vk = v0 ∨ · · · ∨ vk = vk−1q, Ln, s) = {b ∈ Ln : 〈Ln,∈〉 � (b =

a0 ∨ · · · ∨ b = ak−1)} = {a0, . . . , ak−1} = x.
Thus x ∈ Def(Ln) = Ln+1.
Thus Vn+1 ⊆ Ln+1.
So Vn+1 = Ln+1. �

Lemma 6.6 Suppose a, c ∈ L. Then

1. {a, b} ∈ L.

2.
⋃
a ∈ L.

3. (℘Pa ∩ L) ∈ L.

Proof. (1) Suppose a, c ∈ Lα. Define s = {〈0, a〉, 〈1, c〉}, so s ∈ <ωLα.
Then Lα+1 ∋ G(pv2 = v0 ∨ v2 = v1q, Lalpha, s) = {b ∈ Lα : 〈Lα,∋〉 � b =

a ∨ b = c} = Lα ∩ {a, c} = {a, c}.
So {a, c} ∈ Lα+1 ⊆ L.
(2) Suppose a ∈ Lα. Let s = {〈0, a〉}. Then Lα+1 ∋ G(p∃v2 ∈ v0(v1 ∈

v2)q, Lα, s) = {b ∈ Lα : 〈Lα,∈〉 � ∃v2 ∈ a(b ∈ v2)} = A, say.
We claim that A =

⋃
a.

Suppose that b ∈ A.
Then 〈Lα,∈〉 � ∃v2 ∈ a(b ∈ v2).
Say d ∈ Lα is such that 〈Lα,∈〉 � d ∈ a ∧ b ∈ d.
Then d ∈ a ∧ b ∈ d, so b ∈

⋃
a.

Conversely, suppose b ∈
⋃
a. Then for some d ∈ a, b ∈ d. But Lα is

transitive, and a ∈ Lα, so d ∈ Lα, and hence b ∈ Lα.
So 〈Lα,∈〉 � d ∈ a ∧ b ∈ d. Hence 〈Lα,∈} � ∃v2 ∈ a(b ∈ v2) (and b ∈ Lα) so

b ∈ A as required.
Thus

⋃
a ∈ Lα+1 ∈ L.

(3) Let f : ℘a→ On be defined so that f(x) is the least α such that x ∈ Lα
if there is one, f(x) = 0 otherwise.

Then by replacement ranf is a set, and hence ∃β ∈ On such that β > α for
all α ∈ ranf .

Clearly ℘a ∩ L ⊆ Lβ (using 6.4 (1)).
We may also suppose that a ∈ Lβ.
Let s = {〈0, a〉}.
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Then Lβ+1 ∋ G(p∀v2 ∈ v1(v2 ∈ v0)q, Lβ, s) = {b ∈ Lβ : 〈Lβ,∈〉 � ∀v2 ∈
b(v2 ∈ a)} = A, say.

Suffices to show A = ℘a ∩ L.
Suppose b ∈ A. Then b ∈ Lβ (so b ∈ L) and 〈Lβ ,∈〉 � ∀v2 ∈ b(v2 ∈ a).
Now suppose d ∈ b. Then d ∈ Lβ since Lβ is transitive. Hence 〈Lβ,∈〉 � d ∈

b ∧ d ∈ a, so d ∈ a.
Hence b ⊆ a, so b ∈ ℘a ∩ L. Thus A ⊆ ℘a ∩ L.
Conversely suppose b ∈ ℘a ∩ L. Then b ∈ Lβ.
Also ∀v2 ∈ b(v2 ∈ a). Hence ∀v2 ∈ Lβ(v2 ∈ b → v2 ∈ a), so 〈Lβ ,∈〉 � ∀v2 ∈

b(v2 ∈ a).
So b ∈ A.
Hence ℘a ∩ L = A. �

It is now easy to check that

Corollary 6.7 Extensionality, empty-set, pairs, unions, power-set, infinity are
all true in L (tho’ PS is less easy).

Lemma 6.8 〈L,∈〉 � separation.

Proof. Suppose u ∈ L, and a0, . . . , an ∈ L. Say u, a0, . . . , an ∈ Lα. Let
φ(v0, . . . , vn+1) be a formula of LST. By Lévy’s Reflection Principle, there is
some β ≥ α such that ∀c, c1, . . . , cn+1 ∈ Lβ

〈Lβ,∈〉 � (c ∈ cn+1∧φ(c0, . . . , cn, c)) ⇔ 〈L,∈〉 � (c ∈ cn+1∧φ(c0, . . . , cn, c)). (∗)

Let ψ(v0, . . . , vn+2) = (vn+2 ∈ vn+1 ∧ φ(v0, . . . , vn, vn+2).
Let s = {〈0, a0〉, . . . , 〈n, an〉, 〈n+ 1, u〉}.
Then Lβ+1 ∋ G(pψ(v0, . . . , vn+2)q, Lβ , s) = {b ∈ Lβ : 〈Lβ,∈〉 � ψ(a0, . . . , an, u, b)} =

{b ∈ Lβ : 〈Lβ ,∈〉 � (b ∈ u ∧ φ(a0, . . . , an, b)} = A, say. (So A ∈ L.)
Sufficient to show 〈L,∈〉 � ∀x(x ∈ A↔ (x ∈ u ∧ φ(a0, . . . , an, x))).
⇒): Suppose x ∈ L and x ∈ A. Then x ∈ Lβ, and 〈Lβ, in〉 � x ∈ u ∧

φ(a0, . . . , an, x).
By (*), 〈L,∈〉 � x ∈ u ∧ φ(a0, . . . , an, x), as required.
⇐): Suppose x ∈ L, and x ∈ u ∧ phi(a0, . . . , an, x). Then x ∈ Lβ , since

x ∈ Lβ and Lβ is transitive. Hence, using (*), (Lβ,∈〉 � x ∈ u∧φ(a0, . . . , an, x),
so x ∈ A, as required. �

Lemma 6.9 〈L,∈〉 � replacement.

Proof. Suppose a0, . . . , an ∈ L, a = 〈a0, . . . , an〉, u ∈ L, φ(x, y, z) a formula of
LST, and 〈L,∈〉 � ∀z, y, y′((φ(a, z, y) ∧ φ(a, z, y′)) → y = y′)

︸ ︷︷ ︸

σ

.

Now choose β so large that a0, a1, . . . , an, u ∈ Lβ, and such that (by LRP) for
all z ∈ Lβ 〈L,∈〉 � σ∧∃y(φ(a, z, y)∧z ∈ u) ⇔ 〈Lβ ,∈〉 � σ∧∃y(φ(a, z, y)∧z ∈ u),
and for all c, d ∈ Lβ , 〈L,∈〉φ(a, c, d) iff 〈Lβ ,∈〉 � φ(a, c, d).

Now let A = {b ∈ Lβ : 〈Lβ ,∈〉 � ∃z ∈ u(φ(a, z, b)}, so A ∈ Lβ+1.
Then, as in the proof of separation, 〈L,∈〉 � ∀z ∈ u(∃yφ(a, z, y) ↔ ∃y ∈

A(φ(a, z, y)), as required. �
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Lemma 6.10 〈L,∈〉 � Foundation.

Proof. Suppose a ∈ L. Choose b ∈ V such that b ∈ a ∧ b ∩ a = ∅. Since L is
transitive, b ∈ L and clearly 〈L,∈〉 � b ∈ a ∧ b ∩ a = ∅. �

Theorem 6.11 〈L,∈〉 � ZF.
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Chapter 7

Absolute classes of formulae

Definition 7.1 The Σ0-formulas of LST are defined as follows:

1. x ∈ y, x = y, ¬x ∈ y, ¬x = y are Σ0-formulas for any variables x and y.

2. If ψ, φ are Σ0-formulas, so are ψ∧φ, ψ∨φ, ∀x ∈ yφ and ∃x ∈ yφ (where
x and y are distinct variables).

3. Nothing else is a Σ0 formula.

Lemma 7.2 If φ is a Σ0 formula, then ¬φ is logically equivalent to a Σ0 for-
mula.

Proof. Easy induction on φ. Note that ¬∀x ∈ yφ is logically equivalent to
∃x ∈ y¬φ. �

Lemma 7.3 If φ(x1, . . . , xn) is a Σ0-formula and U1 and U2 are transitive
classes such that U1 ⊆ U2, then for all a1, . . . , an ∈ U1,

〈U,∈〉 � φ(a1, . . . , an) ⇔ 〈U2,∈〉 � φ(a1, . . . , an).

We say φ is absolute between U1 and U2.

Proof. Exercise—induction on φ. �

Definition 7.4 The Σ1-formulas of LST are defined as follows:

1. x ∈ y, x = y, ¬x ∈ y, ¬x = y are Σ1-formulas for any variables x and y.

2. If ψ, φ are Σ1-formulas, so are ψ∧φ, ψ∨φ, ∀x ∈ yφ and ∃x ∈ yφ (where
x and y are distinct variables), and ∃xφ.

3. Nothing else is a Σ1 formula.

Remark 7.5 Note that every Σ0 formula is Σ1.

31
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Lemma 7.6 If φ(x1, . . . , xn) is a Σ1-formula, and U1 and U2 are transitive
classes with U1 ⊆ U2, then for all a1, . . . , an ∈ U1

〈U1,∈〉 � φ(a1, . . . , an) ⇒ 〈U2,∈〉 � φ(a1, . . . , an).

(ie. φ is preserved up or is upward absolute between U1 and U2.)

Definition 7.7 (1) A formula φ(x) is called ΣZF0 (respectively ΣZF1 ) if there is
a Σ0 (or Σ1) formula ψ(x) such that ZF⊢ ∀x(φ(x) ↔ ψ(x)).

(2) A formula φ is called ∆ZF
1 if φ and ¬φ are ΣZF1 .

(3) Suppose n ∈ ω and F : V n → V is a class term. Then F is called ∆ZF
1

if the formula φ(x1, . . . , xn, xn+1) defining F (x1, . . . , xn) = xn+1 is ∆ZF
1 , and

if ZF proves that F is a class term.

Remark 7.8 We need only verify that φ in part (3) is ΣZF1 , since ¬φ is ΣZF1

thus:

ZF ⊢ ∀x1, . . . , xn, xn+1(¬φ(x1 , . . . , xn, xn+1) ↔ ∃y(φ(x1, . . . , xn, y)∧¬y = xn+1))

—and the bit on the right is ΣZF1 if φ is.

Remark 7.9 Every ΣZF0 formula is ∆ZF
1 by 7.2 and 7.5.

Theorem 7.10 Suppose φ(x1, . . . , xn) is ∆ZF
1 and U1 and U2 are transitive

classes such that U1 ⊆ U2 and 〈Ui,∈〉 � ZF (i = 1, 2). Then for all a1, . . . , an ∈
U1,

〈U,∈〉 � φ(a1, . . . , an) ⇔ 〈U2,∈〉 � φ(a1, . . . , an).

(ie. φ is ZF-absolute.)

Proof. Let ψ(x1, . . . , xn) be Σ1 such that ZF⊢ ∀x(φ(x) ↔ ψ(x) (*).
Then

〈U1,∈〉 � φ(a) ⇒ 〈U1,∈〉 � ψ(a) (*) and 〈U1,∈〉 � ZF

⇒ 〈U2,∈〉 � ψ(a) by 7.6

⇒ 〈U2,∈〉 � φ(a) (*) and 〈U1,∈〉 � ZF

(7.1)

Now let χ(x1, . . . , xn) be Σ1 such that ZF⊢ ∀x(¬φ(x) ↔ ψ(x) (*).
Then as above,

〈U1,∈〉 � ¬φ(a) ⇒ 〈U1,∈〉 � χ(a) (*) and 〈U1,∈〉 � ZF

⇒ 〈U2,∈〉 � χ(a) by 7.6

⇒ 〈U2,∈〉 � ¬φ(a) (*) and 〈U1,∈〉 � ZF

(7.2)

�
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Theorem 7.11 The following formulas and class terms are all ΣZF0 (and hence
∆ZF

0 ):

1. x = y

2. x ∈ y

3. x ⊆ y

4. F (x1, . . . , xn) = {x1, . . . , xn} (for each n)

5. F (x1, . . . , xn) = 〈x1, . . . , xn〉 (for each n)

6. (where n ≥ 1 and 0 ≤ i ≤ n−1) F (x) = xi if x is an n-tuple 〈x0, . . . , xn−1〉,
∅ otherwise.

7. F (x, y) = x ∪ y.

8. F (x, y) = x ∩ y.

9. F (x) =
⋃
x.

10. F (x) =
⋂
x if x 6= ∅, F (x) = ∅ otherwise.

11. F (x, y) = x \ y.

12. x is an n-tuple.

13. x is an n-ary relation on y.

14. x is a function.

15. F (x) = domx if x is a function, ∅ otherwise.

16. F (x) = ranx if x is a function, ∅ otherwise.

17. F (x, y) = x[y] (= {x(t) : t ∈ y}) if x is a function, ∅ otherwise.

18. F (x, y) = x↾y if x is a function, ∅ otherwise.

19. F (x) = x−1 if x is a function, ∅ otherwise.

20. F (x) = x ∪ {x}.

21. x is transitive.

22. x is an ordinal.

23. x is a successor ordinal.

24. x is a limit ordinal.

25. x : y → z.

26. x : y ∼ z.
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27. x is a natural number.

28. x = ω.

29. x is a finite sequence of elements of y.

Proof. (Selections) (3) x ⊆ y ⇔ ∀z ∈ x(z ∈ y) which is Σ0.
Note that all the class terms F above are in ZF provably class terms, so we

only have to show that the statement F (x) = y can be put in Σ0 form.
(4) F (x1, . . . , xn) = y ⇔ x1 ∈ y ∧ x2 ∈ y ∧ . . . ∧ xn ∈ y ∧ ∀z ∈ y(z =

x1 ∨ . . . ∨ z = xn).
(5) F (x1, x2) = y ⇔ ∃z1 ∈ y∃z2 ∈ y(z1 = {x1} ∧ z2 = {x1, x2} ∧ ∀t ∈ y(t =

z1 ∨ t = z2)), which is Σ0 by (4).
(12) x is a 2-tuple iff ∃z1 ∈ x∃x1 ∈ z1∃x2 ∈ z1(x = 〈x1, x2〉), which is Σ0 by

(5).
(13) x is a 2-ary relation on y iff ∀z ∈ x∃y1 ∈ y∃y2 ∈ y(z = 〈y1, y2〉), which

is Σ0 by (5).
(29) x is a natural number iff (x is an ordinal)∧(x is not a limit ordinal)∧(∀y ∈

x y is not a limit ordinal), which is Σ0 by (24), (26) and the fact that ΣZF0 for-
mulas are closed under ¬. �

Lemma 7.12 Suppose F and G are ∆ZF
1 class terms. Then “F (x) = G(y)” is

∆ZF
1 .

Proof. Let ψ(x, z) and χ(y, t) be Σ1 formulas defining (in ZF) F (x) = y and
G(y) = t respectively. Then

F (x) = G(y) ⇔
︸︷︷︸

ZF

∃z(ψ(x, z) ∧ χ(y, z)),

which is Σ1, and

F (x) 6= G(y) ⇔
︸︷︷︸

ZF

∃z∃t(ψ(x, z) ∧ χ(y, t) ∧ ¬z = t),

which is Σ1.
Hence “F (x) = G(y)” is ∆ZF

1 . �

Theorem 7.13 Suppose F : V × V → V is a ∆ZF
1 class term. Then the class

term G defined from F by recursion on On, ie:

1. G(0, x) = x

2. G(α + 1, x) = F (G(α, x), x) for all α ∈ On

3. G(δ, x) =
⋃

α<δ G(α, x) for all limit δ ∈ On

4. G(y, x) = ∅ for all y /∈ On



35

is ∆ZF
1 .

Proof. As in the proof of 3.18 define φ(g, α, x) by

On(α) χ1

∧ g is a function χ2

∧ domg = α ∪ {α} χ3

∧ g(0) = x χ4

∧ ∀β ∈ α∃y1∃y2(y1 = β ∪ {β} ∧ y2 = g(β) ∧ g(y1) = F (y2)) χ5

∧ ∀β ∈ α(β is a limit ordinal → g(β) =
⋃
{g(α) : α ∈ β}). χ6

(7.3)

χ1 is ΣZF0 by 7.11 (24); χ2 is ΣZF0 by (14); χ3 is by (15), (22) and 7.12;
χ4 can be rewritten as ∃y((∀z ∈ y(¬z ∈ z) ∧ g(y) = x) so is ΣZF1 by (17);
χ5 is ΣZF1 by (22), (17) and the fact that F is ΣZF1 , and using 7.12; χ6 is
ΣZF1 by (26) and the fact that “g(β) =

⋃
{g(α) : α ∈ β}” is equivalent to

∃y∃z(y = g[β] ∧ z =
⋃
y ∧ g(β) = z), which is ΣZF1 by (18), (9) and (17).

Hence φ(g, α, x) is ΣZF1 .
Now recall from the proof of 3.18 that G can be defined by:

G(α, x) = y ⇔ ∃g(φ(g, α, x) ∧ g(α) = y) ∨ (¬On(α) ∧ y = ∅).

This shows G is ΣZF1 , and hence ∆ZF
1 by 7.8. �
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Corollary 7.14 Assuming the class term G (from the beginning of section 6)
is ∆ZF

1 , then so is the class term L̄ : On → V . (Strictly L̄ : V → V , where
L̄(x) = ∅ if x /∈ On.)

Proof. By 7.13 it is sufficient to show Def is ∆ZF
1 . Recall that Def : V → V is

defined by
Def(a) = {G(m, a, s) : m ∈ ω, s ∈ <ωa}.

Hence Def(a) = y iff ∃w∃x(w = ω∧x = <ωa∧∀m ∈ w∀s ∈ x∃t(t = G(m, a, s)∧
t ∈ y)) ∧ ∀t ∈ y∃m ∈ w∃s ∈ x(t = G(m, a, s))).

Now x = <ωa is ∆ZF
1 , so Def is ΣZF1 by 7.11 (29), (30), (31), and because

G is.
Hence Def is ∆ZF

1 by 7.8. �

Definition 7.15 V=L is the sentence of LST: ∀x∃α(On(α)∧x ∈ L̄(α)) (writing
Lα for L̄(α)).

Theorem 7.16 〈L,∈〉 � V=L.

Proof. Suppose a ∈ L. We must show 〈L,∈〉 � ∃α(On(α) ∧ a ∈ L̄(α)). Now
choose α such that a ∈ Lα, ie. 〈V,∈〉 � ∈ L̄(α).

Let X be the set L̄(α) (ie. Lα). Then X ∈ Lα+1 by 6.4 (2). Hence X ∈ L.
Since 〈V,∈〉 � a ∈ X we have 〈L,∈〉 � a ∈ X . Now 〈V,∈〉 � On(α)∧X = L̄(α).
But the formula “x = L̄(y)” is ∆ZF

1 , and On(α) is ∆ZF
1 , so by 7.10 (since

α,X ∈ L),
〈L,∈〉 � On(α) ∧X = L̄(α) ∧ a ∈ X.

Hence 〈L, in〉 � ∃α∃x(On(α) ∧ x = L̄(α) ∧ a ∈ x), so 〈L,∈〉 � ∃α(On(α) ∧ a ∈
L̄(α)), as required. �

Corollary 7.17 If ZF is consistent, so is ZF+V=L.

(Same argument as for Foundation.)
Later we’ll show ZF+V=L⊢AC, GCH.



Chapter 8

Gödel numbering and the

construction of Def

Notation 8.1 If we say “F : U1 × · · · × Un → V is a ∆ZF
1 term” we mean

that the classes U1, . . . , Un are ∆ZF
1 (ie. defined by ∆ZF

1 formulas) and that
“F (x1, . . . , xn) = y” can be expressed by a Σ1 formula.

This clearly guarantees that the extension F ′ : V n → V of F defined by
F ′(x1, . . . , xn) = F (x1, . . . , xn) if x1 ∈ U1, . . . ,xn ∈ Un and = ∅ otherwise, is
∆ZF

1 in the sense given.)

Definition 8.2 We first define F : ω3 → ω by F (n,m, l) = 2n3n5l. Then F
is injective and easily seen to be ∆ZF

1 . Write [n,m, l] for F (n,m, l). We now
define pφq by induction on φ:

pvi = vjq = [0, i, j];

pvi ∈ vjq = [1, i, j];

pφ ∨ ψq = [2, pφq, pψq];

p¬φq = [3, pφq, pφq];

p∀viφq = [4, i, pφq].

(8.1)

Of course this definition does not take place in ZF and is not actually used
in the following definition of Def. However it should be borne in mind in order
to see what’s going on.

Definition 8.3 Define the class term Sub : V 4 → V by Sub(a, f, i, c) = f(c/i)
if f ∈ <ωa, c ∈ a and i ∈ ω and = ∅ otherwise; where if f ∈ <ωa, c ∈ a and
i ∈ ω, f(c/i) ∈ <ωa is defined by dom(f(c/i)) = domf , and for j ∈ domf ,
f(c/i)(j) = f(j) if j 6= i, and c if j = i.

Lemma 8.4 Sub is ∆ZF
1 .

37
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We now define a class term Sat : ω×V → V . The idea is that if m ∈ ω and
m = pφ(v0, . . . , xn1

)q, for some formula φ of LST, and a ∈ V , then

Sat(m, a) = {f ∈ <ωa : domf ≥ n ∧ 〈a,∈〉 � φ(f(0), . . . , f(n− 1))}. (∗)

We simply mimic the definition of satisfaction from predicate logic. (This def-
inition uses a version of the recursion theorem which is slightly different from
the usual one, and which I give later.)

Definition 8.5 Firstly if a ∈ V , m ∈ ω but m is not of the form [i, j, k], for any
i, j, k ∈ ω with i < 5, then Sat(m, a) = ∅. Otherwise, if a ∈ V and m = [i, j, k]
with i < 5, then

Sat([0, j, k], a) = {f ∈ <ωa : j, k ∈ domf ∧ f(j) = f(k)}.

Sat([1, j, k], a) = {f ∈ <ωa : j, k ∈ domf ∧ f(j) ∈ f(k)}.

Sat([2, j, k], a) = Sat(j, a) ∪ Sat(k, a).

Sat([3, j, k], a) = (<ωa \ Sat(j, a)) ∩ {g ∈ <ωa : ∃f ∈ Sat(j, a) domf ≤ domg}.

Sat([4, j, k], a) = {f ∈ <ωa : j ∈ domf ∧ ∀x ∈ a, Sub(a, f, j, x) ∈ Sat(k, a)}.

(8.2)

The generalized version of the recursion theorem (on ω) required here is:

Lemma 8.6 Suppose that π1, π2, π3 : ω → ω are ∆ZF
1 class terms and H :

V 4 × ω → V is a ∆ZF
1 class term. Suppose further that ∀n ∈ ω \ {0} πi(n) < n

for i = 1, 2, 3. Then there is a ∆ZF
1 class term F : ω × V → V such that

1. F (0, a) = 0

2. and ∀n ∈ ω \ {0}

F (n, a) = H(F (π1(n), (a)), F (π2(n), (a)), F (π3(n), (a)), a, n).

(Thus instead of defining F (n, a) in terms of F (n−1, a), we are defining F (n, a)
in terms of three specified previous values.)

Proof. Similar to the proof of the usual recursion theorem on ω. �

Thus the definition of Sat in 8.5 is an application of 8.6 with π1(n) = i if for
some j, k < n, [i, j, k] = n, = 0 otherwise; and π2 and π3 are defined similarly,
picking out j and k respectively from [i, j, k], and with H : V 4 ×ω → V defined
so that

H(x, y, z, a, n) =







{f ∈ <ωa : π2(n), π3(n) ∈ domf ∧ f(π2(n)) = f(π3(n))} if π1(n) = 0,
{f ∈ <ωa : π2(n), π3(n) ∈ domf ∧ f(π2(n)) ∈ f(π3(n))} if π1(n) = 1,
y ∪ z if π1(n) = 2,
(<ωa \ y) ∩ {g ∈ <ωa : ∃f ∈ ydomf ≤ domg} if π2(n) = 3,
{f ∈ <ωa : π2(n) ∈ domf ∧ ∀x ∈ aSub(a, f, π2(n), x) ∈ z} if π1(n) = 4,
0 otherwise.
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(The F got from this H, π1, π2, π3 (in 8.6) is Sat.)
It is completely routine to show that Sat so defined satisfies the required

statement (*) (just before 8.5)—by induction on φ.
Before defining G we must introduce a term that picks out the largest n ∈ ω

such that “vn occurs free” in the “formula coded by m”.
More formally:

Definition 8.7 We define Fr(m) (“the set of i such that vi occurs free in the
formula coded by m”) as follows (again using 8.6):

Fr([0, i, j]) = {i, j};

Fr([1, i, j]) = {i, j};

Fr([2, i, j]) = Fr(i) ∪ Fr(j);

Fr([3, i, j]) = Fr(i);

Fr([4, i, j]) = Fr(j) \ i;

Fr(x) = ∅, if x not of the above form.

(8.3)

Lemma 8.8 Fr(x) is a finite set of natural numbers for any set x.

Definition 8.9 Define
θ(x) = max(Fr(x)).

θ is ∆ZF
1 .

Lemma 8.10 If φ is any formula of LST and m = pφq, then θ(m) is the largest
n such that vn occurs as a free variable in φ, and that if f ∈ Sat(m, a), for any
a ∈ V , then domf ≥ 1 + θ(m) (ie. 0, 1, . . . , θ(m) ∈ domf).

Proof. This is proved by induction on φ and it is for this reason that we defined
Sat([3, j, k], a) as we did (rather than just as <ωa \ Sat(j, a)). �

Definition 8.11 We can now define G by

G(m, a, s) =

{

{b ∈ a : (s ∪ {〈θ(m), b〉}) ∈ Sat(m, a)} if s ∈ <ωa and doms = θ(m)(= {0, . . . , θ(m)− 1}),
∅ otherwise.

Lemma 8.12 Then G is ∆ZF
1 .

Proof. This follows because θ, Sat are ∆ZF
1 . �

Lemma 8.13 G has the required properties mentioned at the beginning of sec-
tion 6.

Proof. This is because of (*) (just before 8.5). �

Another consequence of this is the following:
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Lemma 8.14 Suppose W is a transitive class such that On ⊆W and W � ZF.
Then L ⊆W .

Proof. Suppose a ∈ L, say a ∈ Lβ .
We have ZF⊢ ∀α ∈ On∃y(y = Lα); hence 〈W,∈〉 � ∀α(On(α) → ∃y(y =

Lα)).
But On ⊆W , so β ∈ W , and “On(β)” is ∆ZF

1 , so 〈W,∈〉 � ∃y = Lβ.
Let b ∈W be such that 〈W,∈〉 � b = Lα.
But “y = Lx” is ∆ZF

1 (and W is transitive), so 〈V,∈〉 � b = Lα, ie. b = Lα.
So a ∈ b ∈W . But W is transitive, so a ∈W . �



Chapter 9

ZF+V=L ⊢ AC

We first construct a class term H : V → V such that if 〈a,R〉 ∈ V and R
is a well-ordering of the set a, then H(〈a,R〉) = 〈ω × <ωa,R′〉, where R′ is a
well-ordering of ω × <ωa.

[We don’t need absoluteness, though it holds]

Definition 9.1 We define H(x) = y iff x is not of the form 〈a,R〉, where R
well-orders a, and y = ∅, or x is of this form, and y is an ordered pair the
first coordinate of which is ω × <ωa and the second coordinate is R′, where
R′ ⊆ (ω × <ωa)2, and satisfies: 〈〈n, s〉, 〈n′, s′〉〉 ∈ R′ iff

1. n < n′, or

2. n = n′, and doms < doms′, or

3. n = n′, and doms = doms′ = k, say, and ∃j < k such that ∀l < j(s(l) =
s(l′) ∧ 〈s(j), s′(j)〉 ∈ R).

(This is basically lexicographic order within chunks based on domain size.)

Theorem 9.2 H has the required property.

Now let G : ω × V × V → V be as at the beginning of section 6.

Definition 9.3 Define J : On → V so that J(0) = 0, and J(α + 1) is the
unique binary relation S on Lα+1 such that for all x, y ∈ Lα+1,

1. If x ∈ Lα and y /∈ Lα, then 〈x, y〉 ∈ S;

2. If x ∈ Lα and y ∈ Lα, then 〈x, y〉 ∈ S iff 〈x, y〉 ∈ J(α);

3. If x, y ∈ Lα+1 \Lα and H(〈Lα, J(α)〉) = 〈ω×<ωLα, R〉, and 〈m, s〉 ∈ ω×
<ωa is R-minimal such that G(m, s, Lα) = x, and 〈m′, s′〉 ∈ ω×<ωa is R-
minimal such that G(m′, s′, Lα) = y, then 〈x, y〉 ∈ S iff 〈〈m, s〉, 〈m′, s′〉〉 ∈
R.
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And J(δ) =
⋃

α<δ J(α) if δ is a limit.

Then, from this definition, we immediately have by induction on α:

Lemma 9.4 (ZF) ∀α ∈ On, J(α) is a well-ordering of Lα, and J(α) ⊆ J(α +
1), and Lα+1 is an initial segment of Lα+1 under the ordering J(α+ 1).

Corollary 9.5 (ZF) The formula Φ(x, y) : = ∃α(α ∈ On ∧ 〈x, y〉 ∈ J(α)) is a
well-ordering of L. (ie. Φ satisfies the axioms for a total ordering of L, and
every a ∈ L has a Φ-least element. In particular ∀a ∈ L, {〈x, y〉 ∈ a2 : Φ(x, y)}
is a well-ordering of a.)

Theorem 9.6 ZF+V=L ⊢ every set can be well-ordered, so ZF+V=L ⊢ AC.

Proof. Immediate from 9.5. �



Chapter 10

Cardinal Arithmetic

Recall A ∼ B means there is a bijection between A and B.

Definition 10.1 An ordinal α is called a cardinal if for no β < α is β ∼ α.

Cardinals are usually denoted κ, λ, µ. Card denotes the class of all cardinals.
Now every well-ordered set is bijective with an ordinal (using an order-preserving
bijection). (Provable in ZF.) Hence if we assume ZFC, as we do throughout this
section, then every set is bijective with an ordinal.

Definition 10.2 (ZFC) The class term | | : V → On is defined so that |x| is
the least ordinal α such that α ∼ x.

Lemma 10.3 (ZFC) (1) The range of | | is precisely the class of cardinals.
(2) For all cardinals κ there is a cardinal µ such that µ > κ. (κ+ is the least

such µ.)
(3) If X is a set of cardinals with no greatest element then supX is a car-

dinal.
(4) |κ| = κ for all cardinals κ.

Proof. (1) Exercise
(2) Consider |℘κ| (though this result is provable in ZFC)
(3) Let β = supX . Suppose ∃γ < β(γ ∼ β). Choose κ ∈ X , κ > γ.

Then idγ is an injection from γ to κ. However κ ∈ X , so κ < β, so by the
Schröder-Bernstein Theorem κ ∼ γ—contradicting the fact that κ is a cardinal.

(4) Exercise. �

(2) and (3) allow us to make the following

Definition 10.4 (ZFC) The class term ℵ : On → Card is defined by (writing
ℵα for ℵα)

1. ℵ0 = ω (ie. |N|)

2. ℵα+1 = ℵα
+
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3. ℵδ =
⋃

α<δ ℵδ for δ a limit.

Lemma 10.5 {ℵα : α ∈ On} is the class of all infinite cardinals (enumerated
in increasing order). Thus ℵ1 is the smallest uncountable cardinal.

Proof. Exercise. �

Definition 10.6 Suppose κ, λ are cardinals.

1. κ+ λ = |(κ× {0}) ∪ (λ× {1})|.

2. κ.λ = |κ× λ|.

3. κλ =
∣
∣λκ

∣
∣.

Theorem 10.7 Suppose κ, λ, µ are non-zero cardinals. Then

1. κλ+µ = κλ.κµ.

2. κλ.µ = (κλ)µ.

3. (κ.λ)µ = κµ.λµ.

4. (ZFC) 2κ > κ.

5. (ZFC) If κ or λ is infinite, κ+ λ = κ.λ = max{κ, λ}.

6. +, . and exp are (weakly) order-preserving.

Proof. See the books. �

Definition 10.8 The Generalized Continuum Hypothesis (GCH) is the state-
ment of LST: for all infinite cardinals κ, 2κ = κ+ (ie. ∀α ∈ On(2ℵα = ℵα+1)).

Definition 10.9 Suppose β > 0 is an ordinal and σ = 〈κα : α < β〉 is a β-
sequence of cardinals (ie. σ is a function with domain β and σ(α) = κα for all
α < β). Then we define

1.
∑

α<β =
∣
∣
∣
⋃

α<β(κα × {α})
∣
∣
∣

2.
∏

α<β =
∣
∣
∣{f : f : β →

⋃

α<β κα, ∀α < β(f(α) ∈ κα)}
∣
∣
∣.

Lemma 10.10 These definitions agree with the previous ones for β = 2. Fur-
ther, if κ, λ are cardinals, then κλ =

∏

α<λ κ.

Proof. Easy exercise. �
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Lemma 10.11 (1) Suppose γ, δ are non-zero ordinals and 〈κα,β : α < γ, β < δ〉
is a sequence of cardinals (indexed by γ × δ). Then

∏

α<γ

∑

β<δ

κα,β =
∑

f∈γδ

∏

α<γ

κα,f(α).

(ie.
∏

distributes over
∑

.)
(2) Suppose β is a non-zero ordinal and 〈κα : α < β〉 is a β-sequence of

cardinals and κ is any cardinal. Then

(a) κ.
∑

α<β

κα =
∑

α<β

(κ.κα).

(b) If κα = κ for all α < β, then
∑

α<β

κα =
∑

α<β

κ = |β| .κ.

(3)
∑

,
∏

are (weakly) order-preserving.

Proof. Exercises. �

Theorem 10.12 (“The König Inequality”) Suppose κα < λα for all α < β.
Then

∑

α<β

κα <
∏

α<β

λα.

Proof. Define f :
⋃

α<β(κα × {α}) →
∏

α<β λα by

(f(〈η, α〉))(v) =

{
1 + η if v = α
0 if v 6= α

Clearly f is injective, so
∑

α<β κα ≤
∏

α<β λα.
Now suppose that h :

⋃

α<β(κα × {α}) →
∏

α<β λα. We show that h is not
onto.

For γ < β, define hγ :
⋃

α<β(κα × {α}) → λγ by

hγ(〈η, α〉) = (h(〈η, α〉)(γ) (*)

Since κγ < λγ , hγ↾κγ × {γ} cannot map onto λγ so there is an aγ ∈ λγ \
hγ [κγ × {γ}] (**).

Define g ∈
∏

α<β λα by g(γ) = aγ (for γ < β).
Then g /∈ ranh, since if h(〈γ, α〉) = g, then h(〈γ, α〉)(γ) = g(γ) for all

γ < β, so h(〈γ, α〉)(α) = g(α) = aα, ie hα(〈γ, α〉) = aα, so aα ∈ hα[κα × {α}],
contradicting (**). �

Definition 10.13 (1) Let α be a limit ordinal and suppose S ⊆ α. Then S is
unbounded in α if ∀β < α ∃γ ∈ S (γ > β).

(2) Let κ be a cardinal. Then cof(κ) is the least ordinal α such that there
exists a function f : α→ κ such that ranf is unbounded in κ.
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Remark 10.14 Suppose cof(κ) = α and γ < α, γ ∼ α. Say p : γ → α is a
bijection. Let f : α → κ be such that ranf is unbounded in κ. Now clearly
ranf = ran(fp), so fp : γ → κ is a function whose range is unbounded in κ.
Since γ < α this contradicts the definition of cof(κ). Hence no such γ exists,
ie. cof(κ) is always a cardinal. Clearly cof(κ) ≤ κ.

Definition 10.15 An infinite cardinal κ is called regular if cof(κ) = κ.

Examples 10.16 (a) cof(ℵ0) = ℵ0 (obvious).
(b) cof(ℵ1) = ℵ1, since if cof(ℵ1) < ℵ1, then cof(ℵ1) = ℵ0. Say f : ℵ0 → ℵ1

is unbounded. Then ℵ1 =
⋃

n<ℵ0
f(n), and is a countable union of countable

sets, and thus (in ZFC) countable, which is impossible.
(c) cof(ℵω) = ℵ0. ≥ is clear. Consider f : ℵ0 → ℵω defined so that f(n) =

ℵn.

Theorem 10.17 For any infinite cardinal κ, cof(κ) is the least ordinal β such
that there is a β-sequence 〈κα : α < β〉 of cardinals such that

1. κα < κ for all α < β,

2.
∑

α<β κα = κ.

Proof. Exercise. �

Theorem 10.18 For any infinite cardinal κ,

1. κ+ is regular,

2. cof(2κ) > κ.

Proof. (1) Let β = cof(κ+) and suppose β < κ+. Then β ≤ κ. By 10.17, there
are κα < κ+ (for α < β) such that

∑

α<β κα = κ+. Then κα ≤ κ for all α. But
∑

α<β κα ≤
∑

α<β κ ≤ κ.κ = κ2 = κ—a contradiction.
(2) Suppose µ = cof(2κ), and µ ≤ κ. Choose 〈κα : α < µ〉 such that κα < 2κ

for all α < µ and such that
∑

α<µ κα = 2κ.
By König,

∑

α<µ κα <
∏

α<µ 2
κ, ie. 2κ <

∏

α<µ 2
κ.

But
∏

α<µ 2
κ = (2µ)µ = 2κ.µ = 2κ (since µ < κ). This is a contradiction. �

Examples 10.19 cof(2ℵ0) > ℵ0; and this is the only provable constraint on the
value of 2ℵ0 . —So, for example, 2ℵ0 6= ℵω.

Theorem 10.20 Suppose α is an infinite ordinal. Then |Lα| = α.

Proof. Induction on α.
For α = ω, Lω =

⋃

n∈ω Ln. Since each Ln is finite, and ω ⊆ Lω (so Lω is
not finite), |Lω| = ℵ0 = |ω|.

Suppose |Lα| = |α|.
Now Lα+1 = {G(m, a, s) : m ∈ ω, s ∈ <ωLα}.
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However, for x infinite, |<ωx| = |x|.
So |Lα+1| ≤ ℵ0. |

<ωLα| = ℵ0. |Lα| = ℵ0. |α| = |α| = |α+ 1|.
Also Lα ⊆ Lα+1, so |Lα+1| ≥ |Lα| = |α| = |α+ 1|.
For δ a limit, |Lδ| =

∣
∣
⋃

α<δ Lα
∣
∣ ≤

∑

α<δ |Lα| ≤ ℵ0 +
∑

ω≤α<δ |Lα| = ℵ0 +
∑

ω≤α<δ |α| (IH) ≤ ℵ0 +
∑

ω≤α<δ |δ| = ℵ0 + |δ|2 = |δ| (since δ is infinite).
—and the other way round too: δ ⊆ Lδ, so that works. �
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Chapter 11

The

Mostowski-Shepherdson

Collapsing Lemma

Lemma 11.1 Suppose X is a set and M1, M2 are transitive sets. Suppose
πi : X →Mi are ∈-isomorphisms (ie. ∀x, y ∈ X(x ∈ y ↔ πi(x) ∈ πi(y))). Then
π1 = π2 (and hence M1 =M2).

Proof. Define φ(x) ⇔ x /∈ X ∨ π1(x) = π2(x).
We prove ∀xφ(x) by ∈-induction (see 3.11).
Suppose x is any set, and φ(y) holds for all y ∈ x. If x /∈ X we are done.

Hence suppose x ∈ X , and π1(x) 6= π2(x). Then there is z such that (say) z ∈
π1(x) and z /∈ π2(x). Since M1 is transitive and pi1(x) ∈M1, we have z ∈M1.
Hence (since π1 is onto), ∃y ∈ X such that π1(y) = z. Since π1(y) ∈ π1(x),
we have y ∈ x, and hence (by IH), z = π1(y) = π2(y) and π2(y) ∈ π2(x). So
z ∈ π2(x)—a contradiction.

Thus φ(x) holds, hence result by 3.11. �

Theorem 11.2 Suppose X is any set such that 〈X,∈〉 � Extensionality. (ie. if
a, b ∈ X and a 6= b, then ∃x ∈ X such that x ∈ a ∧ x /∈ b or vice versa.) Then
there is a unique transitive set M and a unique function π such that π is an
∈-isomorphism from X to M .

Proof.
Uniqueness is by 11.1. For existence, we prove by induction on α ∈ On, that

∃πα : X ∩ Vα ∼ Mα for some transitive set Mα. (Since X ⊆ Vα for some α,
this is sufficient.

Note that ∀α ∈ On, 〈X ∩ Vα,∈〉 � Extensionality (since Vα is transitive).
Now suppose πα, Mα exist for all α < β. It’s easy to show (by 11.1) that they
are unique and ∀α < α′ < β Mα ⊆ Mα′ , and πα = πα′↾Mα. Hence if β is a
limit ordinal, then take Mβ =

⋃

α<βMα and πβ =
⋃

α<β πα.

49
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So suppose β = γ + 1. We have πγ : X ∩ Vγ ∼Mγ . For x ∈ X ∩ Vγ+1, note
that y ∈ x ∩X → y ∈ X ∩ Vγ , so we may define

πγ+1(x) = {πγ(y) : y ∈ x ∩X}.

Let Mγ+1 = πγ+1[X ∩ Vγ+1]. Then πγ+1 : X ∩ Vγ+1 →Mγ+1 is surjective.
Suppose a, b ∈ X ∩ Vγ+1, a 6= b. Since 〈X ∩ Vγ+1,∈〉 � Extensionality,

∃c ∈ X ∩ Vγ+1 such that (say) c ∈ a ∧ c /∈ b.
Then πγ+1(a) = {πγ(y) : y ∈ a ∩X} ∋ πγ(c).
Suppose πγ(c) ∈ πγ+1(b). Then πγ(c) = πγ(t) for some t ∈ b ∩ X . Since

c /∈ b ∩X , we have c 6= t, so πγ is not injective—contradiction.
Thus πγ(c) /∈ πγ+1(b), so piγ+1(a) 6= πγ+1(b) and so πγ+1 is injective.
We now show that if x ∈ X ∩ Vγ (⊆ X ∩ Vγ+1), then πγ(x) = πγ+1(x) (*)
For, y ∈ πγ(x) implies y ∈ πγ(x) ∈ Mγ implies y ∈ Mγ (since Mγ is

transitive), say πγ(t) = y (t ∈ X ∩ Vγ).
Then πγ(t) ∈ πγ(x), so t ∈ x, hence t ∈ x ∩X .
Thus πγ+1(x) = {πγ(z) : z ∈ x ∩X} ∋ πγ(t) = y.
This shows πγ(x) ⊆ πγ+1(x).
Conversely, suppose y ∈ πγ+1(x). Then y = πγ(t) for some t ∈ x ∩ X .

Since t ∈ x ∈ X ∩ Vγ , we have πγ(t) ∈ πγ(x) (since πγ is an ∈-isomorphism).
Ie. y ∈ πγ(x). So πγ+1(x) ⊆ πγ(x), and we have (*).

Now suppose a, b ∈ X ∩ Vγ+1, and a ∈ b (so a ∈ X ∩ Vγ).
Then πγ+1(b) = {πγ(y) : y ∈ b ∩ X}. But a ∈ b ∩ X , so πγ(a) ∈ πγ+1(b).

Hence by (*) πγ+1(a) ∈ πγ+1(b).
Finally, Mγ+1 is transitive, since if a ∈ b ∈Mγ+1, then b = πγ+1(x) for some

x ∈ X ∩ Vγ+1, and hence a = πγ(y) for some y ∈ x ∩X . Since y ∈ X ∩ Vγ , we
have, by (*), πγ(y) = πγ+1(y), so a ∈ ranπγ+1 =Mγ+1, as required. �



Chapter 12

The Condensation Lemma

and GCH

Theorem 12.1 (The Condensation Lemma) Let α be a limit ordinal and sup-
pose X � Lα (ie. ∀a1, . . . , an ∈ X, and formulas φ(v1, . . . , vn) of LST, 〈X,∈
〉 � φ(a1, . . . , an) iff 〈Lα,∈〉 � φ(a1, . . . , an), although we only need this when φ
is a Σ1 formula). Then there is unique π and β such that β ≤ α and π : X ∼ Lβ
is an ∈-isomorphism. Further if Y ⊆ X and Y is transitive, then π(y) = y for
all y ∈ Y .

We prove this in stages.

Lemma 12.2 ∀m ∈ ω, Lm ⊆ X.

Proof. Clear for m = 0. Suppose Lm ⊆ X and let a ∈ Lm+1, so a =
{a1, . . . , an} ⊆ Lm. Then Lα � ∃x((a1 ∈ x∧ . . .∧an ∈ x)∧∀y ∈ x(y = a1∨ . . .∨
y = an)). Hence X � ∃x((a1 ∈ x∧ . . .∧an ∈ x)∧∀y ∈ x(y = a1∨ . . .∨y = an)).
Clearly such an x must be a, so a ∈ X . Hence Lm+1 ⊆ X . Hence the result
follows by induction. �

Lemma 12.3 X � Extensionality.

Proof. For suppose a, b ∈ X and a 6= b. Then ∃c, c ∈ a∧ c /∈ b (say), and c ∈ Lα
since Lα is transitive. Thus Lα � ∃x(x ∈ a ∧ x /∈ b), so X � ∃x(x ∈ a ∧ x /∈ b),
as required. �

By 11.2 there is transitiveM and π : X ∼M . Now sinceM is transitive,M∩
On is a transitive set of ordinals so is an ordinal, β, say. Then β ≤ α (exercise—
suppose β > α, so π−1(α) ∈ X . Show π−1(α) = α to get contradiction). We
show M = Lβ.

An admission! For this proof we need the fact that most of the formulas that
we have proven ∆ZF

1 are in fact absolute between transitive classes satisfying
much weaker axioms than ZF—in fact BS—basic Set Theory (see Devlin). BS is
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such that Lα � BS for any limit ordinal α > ω. In particular, the formulaOn(x),
and Φ(x, y) : = On(x) ∧ y = Lx, is ∆ZF

1 and hence absolute between V and
Lα and between V and M . (Since M is transitive.) As an application, suppose
β = γ ∪ {γ}. Since β /∈ M , and γ ∈ M , and M � On(γ) (since On(γ) really is
Σ0 andM is transitive), we haveM � ∃x(On(x)∧∀yy 6= x∪{x}). Now X ∼M ,
so X � ∃x(On(x) ∧ ∀yy 6= x ∪ {x}), hence Lα � � ∃x(On(x) ∧ ∀yy 6= x ∪ {x}),
which is a contradiction, since α is a limit ordinal. Hence, we have shown:

Lemma 12.4 β is a limit ordinal.

Lemma 12.5 Lβ ⊆M .

Proof. Since β is a limit, Lβ =
⋃

γ<β Lγ , so fix γ < β. Sufficient to show
Lγ ⊆M .

Now for any η < α, Lη ∈ Lα. Since Lα∩On = α, we have Lα � ∀x(On(x) → ∃yΦ(x, y))
︸ ︷︷ ︸

σ

.

Hence X � σ, since X � Lα, so M � σ, since X ∼M .
Since ∀x ∈ M , M � On(u) ⇔ u ∈ On ∧ u < β, we have in particular

M � ∃yΦ(γ, y)—say a ∈ M and M � Φ(γ, a). By absoluteness a = Lγ , so
Lγ ∈M , so Lγ ⊆M since M is transitive. �

Lemma 12.6 M ⊆ Lβ.

Proof. Since Lα =
⋃

γ<αLγ , we have Lα � ∀x∃y∃z(On(y) ∧ Φ(y, z) ∧ x ∈ z)
︸ ︷︷ ︸

τ

.

Hence X � τ (since X � Lα), hence M � τ (since X ∼M .
Let a ∈M . Then for some c, d ∈M ,

M � On(c) ∧ Φ(c, d) ∧ a ∈ d.

By absoluteness, c ∈ On, and hence c < β, and d = Lc and a ∈ Lc. Hence
a ∈

⋃

γ<β Lγ = Lβ, as required. �

Lemma 12.7 Suppose Y ⊆ X, Y transitive. Then ∀y ∈ Y π(y) = y.

Proof. It’s easy to show π[Y ] is transitive and π : Y ∼ π[Y ]. However, id↾Y ∼ Y .
Hence by 11.1, π = id↾Y . �

We have now completed the proof of 12.1.

Lemma 12.8 (ZFC) Let A be any set and Y ⊆ A. Then there is a set X such
that Y ⊆ X ⊆ A and 〈X,∈〉 � 〈A,∈〉, and |X | = max(ℵ0, |X |).

Proof. This is the downward Löwenheim-Skolem Theorem. �

Theorem 12.9 (ZF+V=L) Let κ be a cardinal, and suppose x is a bounded
subset of κ. Then x ∈ Lκ.
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Proof. Clear if κ ≤ ω, so assume κ > ω. Now x ⊆ α for some ω ≤ α < κ, so
x ⊆ Lα. Then Lα ∪ {x} is transitive.

Using V=L, let λ be a limit ordinal such that λ ≥ κ, and Lα ∪ {x} ⊆ Lλ.
By 12.8, with A = Lλ and Y = Lα ∪ {x}, let X be such that Lα ∪ {x} ⊆ X
and X � Lλ, with |X | ≤ |Lα ∪ {x}| = |α|. Let π : X ∼ Lβ be as in 12.1.
Then |β| = |Lβ| = |X | ≤ |α| < κ, so β < κ. But Lα ∪ {x} is transitive so, in
particular, π(x) = x, so x ∈ Lβ ⊆ Lκ, as required. �

Corollary 12.10 ZF+V=L⊢GCH. Hence if ZF is consistent, so is ZFC+GCH.

Proof. By 12.9. ZF+V=L⊢ for all infinite κ, ℘κ ⊆ Lκ+ . But ZF⊢ for all infinite
κ, |Lκ+ | = κ+, hence ZF+V=L⊢ for all infinite κ, |℘κ| ≤ κ+. So 2κ ≤ κ+, and
≥ is obvious. �


