B1.1 Logic

Sheet 1 — MT25

Section A

- 1. Prove carefully that for any formula ϕ , the number of left parentheses occurring in ϕ is equal to the number of right parentheses occurring in ϕ .
- 2. Show that, for any formulas $\phi, \psi \in \text{Form}(\mathcal{L}_{\text{prop}})$, the following formula is logically valid:

$$\alpha := ((\phi \lor \psi) \leftrightarrow ((\phi \to \psi) \to \psi)).$$

 $^{^{1}}$ On this problem sheet, "formula" always means: formula of \mathcal{L}_{prop} .

Section B

- 3. Which of the following are formulas of \mathcal{L}_{prop} ? Give reasons.
 - (i) $\neg (p_3 \rightarrow p_1)$
 - (ii) $p_1 \rightarrow p_2 \rightarrow p_3$
 - (iii) $((\neg p_5 \land \neg p_6) = \neg p_{11})$
 - (iv) $(p \leftrightarrow \neg p)$
 - (v) $((p_1 \vee \neg p_1) \rightarrow (\neg p_2))$
- 4. (a) Show that no proper initial segment² of a formula is a formula.
 - (b) Prove the Unique Readability Theorem.
- 5. By drawing up truth tables, show that the following formulas are logically valid, where $\phi, \psi, \chi \in \text{Form}(\mathcal{L}_{\text{prop}})$ are arbitrary formulas.
 - (a) $\alpha := ((p_0 \vee (p_1 \wedge p_2)) \leftrightarrow ((p_0 \vee p_1) \wedge (p_0 \vee p_2))).$
 - (b) $\beta := ((\phi \to (\psi \to \chi)) \to ((\phi \to \psi) \to (\phi \to \chi))).$
- 6. Let ϕ be a formula, and let ψ_0, \ldots, ψ_n be formulas. Let ϕ' be the result of replacing every instance of p_i in ϕ with ψ_i , for $i = 0, \ldots, n$.
 - (a) Show that if ϕ is logically valid, then so is ϕ' .
 - (b) Show that the converse fails, by giving an example where ϕ' is logically valid but ϕ is not.
 - (c) Show that the converse does hold in the case of a formula in one variable substituted into itself. Namely, suppose p_0 is the only propositional variable occurring in ϕ , let $\psi_0 = \phi$, and suppose that ϕ' is logically valid. Show that ϕ is logically valid.

Martin Bays: bays@maths.ox.ac.uk

²A proper initial segment of a string s is the string consisting of the first k characters of s for some k < len(s).

Section C

7. In this question, we consider an alternative notation for propositional formulas, known as "Polish notation", which achieves unique readability without parentheses. (We will not use this notation in the course.)

We recursively define a Polish formula as follows:

- A propositional variable is a Polish formula.
- If ϕ is a Polish formula then so is $\neg \phi$.
- If ϕ and ψ are Polish formulas then so is $\star \phi \psi$ for any $\star \in \{\to, \land, \lor, \leftrightarrow\}$.
- Nothing else is a Polish formula.

Prove the unique readability theorem for Polish formulas.

- 8. This question is set on Smullyan Island. Each inhabitant of Smullyan Island is either a Knight or a Knave. Every statement made by a Knight is true, while every statement made by a Knave is false. They are all well-trained in formal logic.
 - (a) Lost in a maze, you encounter a pair of inhabitants of the island at a fork in the path.

The first inhabitant exclaims: "The exit lies North, or I'm a knight!".

The second inhabitant then also exclaims: "The exit lies North, or I'm a knight!". Gesturing to the first inhabitant, the second then adds in a whisper: "My colleague here, however, is certainly a knave."

Express in formulas of \mathcal{L}_{prop} the information this gives you, and determine whether you should indeed head North.

(b) Having finally escaped the maze, you come to a bush of delicious-looking red berries. While you ponder whether they might be poisonous, an inhabitant passes by, dressed in the formal regalia of the Balda sect. You studied your guidebook well, and know that this sect, in addition to being split into Knights and Knaves, and having excellent botanical knowledge, has a unique peculiarity. Although they understand English perfectly, they speak only in their own language. You know only two words of the language: "bal" and "da". One of them means "yes" and the other "no" – but you forget which is which! The inhabitant (who remember is either a knight or a knave) looks hurried, but would probably answer a single question if you ask one quickly. Is there a question you could ask to determine whether the berries are safe to eat?

Mathematical Institute, University of Oxford Martin Bays: bays@maths.ox.ac.uk

B1.1 Logic: Sheet 1 - MT25