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0 Introduction

This is a work in progress for lectures notes to go alongside my lectures on B4.1: Functional Analysis I. I am
updating and modifying previous versions by Melanie Rupflin, Luc Nguyen, which in turn are based on Hilary
Priestley’s notes for the course. I am greatful to them all for making these notes available to me. Naturally I am
responsible for any errors.

Not having the strict time-limit imposed on a lecture course, the notes tend to go into various (interesting!)
digressions and cover additional material which is meant to provide the reader with a “larger and clearer picture”.
Some parts of the material which are additional and are not covered in the lectures are clearly labeled (as deep
dives). However, this is not always possible so to know the examinable material you should attend the lectures.
I should stress the examinable material is summarised in the syllabus and covered in the lectures – nothing less
or more is examinable.

Thanks too to Jan, for the style file for the deep dives, and to Austin for the ducks!
These notes are work in progress and are being constantly improved. I am very grateful to all who have

helped, or will help me to improve them.
At the moment there is a discussion forum on the course page for comments / corrections to the notes. Once

the term is over, I’d appreciate further comments and corrections by email to stuart.white@maths.ox.ac.uk.

0.1 Overview / Background

Will follow - it’s always best to write these last!

0.2 Notation

We will write F for either R or C when it does not matter which of these is the underlying field of our vector
space. This course it will rarely matter, but when we focus on operators, particularly from B4.2 onwards it
will often be advantageous to work over C, as this is algebraically closed. You’ll be familiar with the fact that
complex square matrices always have eigenvalues, as the characteristic equation must have a solution over C, but
real square matrices need not have any real eigenvalues. This phenomena persists into the infinite dimensional
setting: the spectrum of a bounded linear operator on a complex Banach space is always non-empty, and for this
reason I prefer to work over the complex field when studying operators. When one is studying Banach spaces
in their own right, typically one takes F=R (to avoid sometimes needing to do arguments involving taking real
parts, see for example the Hahn–Banach theorem), but this is far less important than the advantages we get from
taking F= C when we study operators between Banach spaces.

Anything marked as a Deep Dive covers material outside of the syllabus. It is only intended for those who are
interested and eager to understand things in more depth. It is non-examinable and not necessary for the course.
It goes above and beyond the material, often indicating links with other courses and parts of mathematics.

Deep Dive
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Even the eager readers should skip those parts on the first reading. More deep dives may appear as I revise
the notes. The depth of deep dives may vary considerably from one dive to another.

0.3 Course Synopsis

• Brief recall of material from Part A Metric Spaces and Part A Linear Algebra on real and complex normed
vector spaces, their geometry and topology and simple examples of completeness.

• The norm associated with an inner product and its properties.

• Banach spaces, exemplified by `p, Lp and C(K), and spaces of differentiable functions.

• Finite-dimensional normed spaces, including equivalence of norms and completeness.

• Hilbert spaces as a class of Banach spaces having special properties (illustrations, but no proofs); examples
(Euclidean spaces, `2 and L2), projection theorem, Riesz Representation Theorem.

• Density. Approximation of functions, Stone-Weierstrass Theorem. Separable spaces; separability of sub-
spaces.

• Bounded linear operators, examples (including integral operators).

• Continuous linear functionals. Dual spaces.

• Statement of the Hahn-Banach Theorem; applications, including density of subspaces and embedding of
a normed space into its second dual.

• Adjoint operators.

2



Stuart White MT 2025, B4.1: Functional Analysis I

Contents

0 Introduction 1
0.1 Overview / Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.3 Course Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Normed spaces and Banach spaces 4
1.1 Definitions and review from metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Inner product spaces and Hilbert spaces 19
2.1 Definitions and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Orthonormal bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Bounded linear operators between normed vector spaces 27
3.1 Boundedness and continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Properties of bounded linear operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Invertibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Finite dimensional normed spaces 38
4.1 Equivalence of norms and its consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 The Banach–Mazur compactum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Density 43
5.1 Density and extensions by density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Theorem of Stone-Weierstrass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Complex Stone–Weierstrass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Separability 51
6.1 Definition and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Examples and non-examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 A small outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 The Hahn-Banach Theorem 56
7.1 Statement of the Hahn-Banach extension theorem . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2 Extending functionals controlled by sublinear functionals . . . . . . . . . . . . . . . . . . . . . 58
7.3 Further applications of the Hahn-Banach Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 61

3



Stuart White MT 2025, B4.1: Functional Analysis I

1 Normed spaces and Banach spaces

In this section we introduce Banach spaces as complete normed spaces. Our main objective is to give a range of
examples. The important special case of Hilbert spaces when the norm is induced from an inner product is the
subject of Section 2.

1.1 Definitions and review from metric spaces

The key tool linking used to perform analysis on vector spaces is a norm, a suitable notion of distance compatible
with the linear algebra structure.

Definition 1.1. Let X be a vector space (over either F = R or F = C). A norm ‖ · ‖ : X → R is a function with
the following properties:

(N1) for all x ∈ X , we have ‖x‖ ≥ 0 with ‖x‖= 0⇔ x = 0;

(N2) for all x ∈ X and λ ∈ F, we have ‖λx‖= |λ |‖x‖;

(N3) for all x,y ∈ X , the triangle inequality ‖x+ y‖ ≤ ‖x‖+‖y‖ holds.

We call a pair (X ,‖ · ‖) a normed space. We will often suppress explicit mention of the norm and say ‘Let X be
a normed space.’

Every norm ‖ · ‖ induces a metric
d : X×X → R

via d(x,y) := ‖x− y‖ and so all standard notions and properties of a metric space encountered in part A are
applicable. Recall:

• Definition of convergence of a sequence (xn) in X to x ∈ X :

xn→ x ⇐⇒ d(xn,x)→ 0 ⇐⇒ ‖xn− x‖→ 0.

• A sequence (xn) in X is called Cauchy if:

∀ε > 0, ∃N such that ∀n,m≥ N, ‖xn− xm‖< ε.

This is written as ‖xn− xm‖ → 0 as m,n→ ∞. Recall that a metric space X is called complete if and only
if every Cauchy sequence in X converges to a point in X . For proving completeness it’s worth reminding
yourself of the following lemma. The proof, left as an exercise, is essentially the same as the last part of
the proof of the that Cauchy sequences in R converge (using the Bolzano–Weierstrass theorem).

Lemma 1.2. Let (xn) be a Cauchy sequence in a normed space X. Then the following are equivalent:

(i) (xn) converges,

(ii) (xn) has a convergent subsequence.

• A function f : X → Y is continuous at x ∈ X if

∀ε > 0, ∃δ > 0 such that ∀x0 ∈ X ,‖x− x0‖< δ =⇒ ‖ f (x)− f (x0)‖< ε.
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The function f is continuous if it is continuous at x for all x∈X . These definitions, and in fact all properties
of metric spaces,1 have sequential characterisations: continuous functions are those that preserve limits of
sequences. Precisely f is continuous at x ∈ X if and only if for all sequences (xn) in X with xn→ x, we
have f (xn)→ f (x). for every x ∈ X and every sequence (xn) in X

xn→ x =⇒ f (xn)→ f (x).

Setting this out in the context of normed spaces, f : X → Y is continuous if and only if whenever (xn) is a
sequence in X with ‖xn− x‖X → 0, we have ‖ f (xn)− f (x)‖Y → 0.

• A set U ⊂ X is open if for every x0 ∈U there exists r > 0 such that

Br(x0) := {x ∈ X : ‖x− x0‖< r} ⊂U.

Here Br(x0) is the open ball centred at x0 with radius r.

• By definition, a set F ⊂ X is closed if its complement X \F is open. This can be characterised in terms
of sequences: F is closed if and only if whenever (xn) is a sequence of elements in F which converges to
x ∈ X , then x ∈ F , i.e. F contains the limits of all convergent sequences.

The definition of the norm ensures that all the algebraic operations are automatically continuous:

• The scalar multiplication F×X→ X , (λ ,x) 7→ λx is continuous, where F×X is given the product metric.

• The addition X×X→ X , (x,y) 7→ x+y is continuous, where X×X is given the product metric (below we
will give X×X a norm, but here we only need a metric).

• The norm ‖ · ‖ : X → R is continuous.

We also recall the appropriate notions of equivalence. First, the equivalence of different norms on the same
space:

Definition 1.3. Let X be a vector space. Two norms ‖ ·‖1 and ‖ ·‖2 on X are equivalent if and only if there exist
a constant C > 0 so that for all x ∈ X

C−1‖x‖1 ≤ ‖x‖2 ≤C‖x‖1.

1The topology on a metric space is fully determined by knowledge of which sequences converge to which points. It is for this reason
that any property which can be described using the metric can in some way be characterised by sequences. Therefore when I work with
normed spaces, or more generally metric spaces, I have a tendancy towards giving sequence based arguments.

Altthough this course, and Functional Analysis II do not rely on the Part A topology course, I can’t resist pointing out that while one
can’t ‘do everything with sequences’ in a general topological space, there is a suitable generalisation of a sequence – known as a net
– and one can do everything with nets. For example a function f : X → Y between topological spaces is continuous if and only if
whenever xi→ x is a convergent net in X , then f (xi)→ f (x) is a convergent net in Y . I’ve found that the sort of functional analysis
arguments I need to do in general topological spaces, work well with nets — sometimes all one needs to do is replace all the n’s
indexing the sequence with an i indexing a net! Of course you need to know about nets for this; the classic place which I learnt this
from is Kelley’s ‘General topology’, and another source is Willard’s ‘General Topology’ (the section on nets is nice and short, but
you’ll need to dig around elsewher to learn that, for example, a subset is compact if and only if every net has a convergent subnet).

Deep Dive
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The normed spaces (X ,‖·‖1) and (X ,‖·‖2) are equivalent precisely when the metrics are strongly equivalent
in the sense of the metric spaces course.2 This ensures that all metric notions (open sets, convergent sequences,
Cauchy sequences etc) are all the same in both norms.

Secondly, the notion of isomorphism between normed spaces. While there is only one possible notion of an
isomorphism between vector spaces –

Definition 1.4. Let (X ,‖ · ‖X) and (Y,‖ · ‖Y ) be normed spaces. Say X and Y are isometrically isomorphic if
there exists a surjective linear map T : X → Y with ‖T (x)‖Y = ‖x‖X for all x ∈ X .3 We call T an isometric
isomorphism. Say X and Y are isomorphic if there exists an isomorphism T : X → Y of vector spaces which is
also a homeomorphism of the underlying metric spaces, i.e T and T−1 are continuous.

We will have much more to say about the linear operators T appearing here in Section ?? and beyond. For
now it is useful to know that (X ,‖·‖1) and (X ,‖·‖2) can be (isometrically) isomorphic, without being equivalent
(Problem sheet 1 asks you to produce an example).

You’ve met a number of theorems in your analysis courses so far that give conditions under which a continuous
bijection is a homeomorphism, i.e. has continuous inverse. For example in prelims, a continuous bijection
between two intervals has continuous inverse, or a continuous bijection from a compact metric (or topological)
space into a metric space (or Hausdorff topological space) has continuous inverse. In functional analysis we
have the following consequence of Banach’s open mapping theorem, proved in B4.2 using the baire category
theorem: if T : X → Y is a bijective continuous linear map between Banach spaces, then T−1 is continuous,
and hence X and Y are isomorphic Banach spaces. This is sometimes called the Banach isomorphism theorem,
and decreases the work needed to obtain an isomorphism between Banach spaces.

Deep Dive

One of the key objects we study in this course are Banach spaces and linear maps between such spaces.

Definition 1.5. A normed space (X ,‖ ·‖) is a Banach space if it is complete, i.e. if every Cauchy sequence in X
converges.

A normed space is complete if and only if absolute convergence of series implies convergence of series:

Proposition 1.6. Let X be a normed space. Then the following are equivalent

(i) X is a Banach space,

(ii) Absolute convergence of series implies convergence, i.e. for sequences (xn) in X and the corresponding
partial sums sn := ∑

n
k=1 xk we have

∞

∑
i=1
‖xn‖< ∞ ⇒ sn converges to some s ∈ X .

Proof. (i) =⇒ (ii): Suppose X is complete and ∑
∞
n=1 ‖xn‖ < ∞. Then, for sn = ∑

n
k=1 xn, the sequence (sn) is

Cauchy as for m > n≥ N

‖sn− sm‖= ‖
m

∑
k=n+1

xk‖ ≤
m

∑
k=n+1

‖xk‖ ≤
∞

∑
k=N+1

‖xk‖→ 0 as N→ ∞.

2You might be suspicious of the terminolgy: normed spaces are called equivalent when their underlying metric structures are
strongly equivalent. But while in the generality of metric spaces, equivalence of two metrics d1 and d2 on X – defined in Part A metric
spaces to mean that the identity map IdX is a homeomorphism – is not the same notion as strong equivalence, for normed spaces it is.
This will all follow from equivalence between continuity and boundedness of linear maps in Section ??.

3Such a map T is necessarily injective, so T is an isomorphism of vector spaces which is also an isometry.
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As X is complete we thus obtain that sn converges to some element s ∈ X .
(ii) =⇒ (i): Suppose (ii) holds and let (xn) be a Cauchy sequence. Select a subsequence xn j so that

‖xn j − xn j+1‖ ≤ 2− j,

where the existence of such a subsequence is ensured by the fact that (xn) is Cauchy. Then ∑
∞
j=1 ‖xn j+1− xn j‖ ≤

1 < ∞ so (ii) ensures that ∑
∞
j=1(xn j+1 − xn j) converges. Hence xnk = xn1 +∑

k−1
j=1(xn j+1 − xn j) converges, so (xn)

has a convergent subsequence and must thus, by Lemma 1.2, itself converge.

1.2 Examples

(Rn,‖ · ‖p) and (Cn,‖ · ‖p), 1≤ p≤ ∞. Consider Rn, or Cn, equipped with

‖x‖p :=
(
∑

i
|xi|p

)1/p
for 1≤ p < ∞

respectively
‖x‖∞ := sup

i∈{1,...,n}
|xi|.

One can show that these are all norms, with the challenging bit being the proof of the triangle inequality

‖x+ y‖p =
(
∑

i
|xi + yi|p

)1/p
≤ ‖x‖p +‖y‖p,

which is is the finite dimensional version of Minkowski’s inequality.

Warning. This inequality does not hold if we were to extend the definition of ‖ ·‖p to 0 < p < 1, and hence the
above expression does not give a norm on Rn if p < 1.

We will write `p
n for the normed space (Rn,‖ · ‖p). A useful property to deal with the p norms 1 ≤ p ≤ ∞

(and their generalisations to sequence and functions spaces) is Hölder’s inequality (which we proved in much
more generality in the Integration course – see Proposition 1.12).

Lemma 1.7 (Hölder’s inequality in Rn). For 1≤ p,q≤ ∞ with

1
p
+

1
q
= 1 (1)

we have that for any x,y ∈ Cn ∣∣ n

∑
i=1

xiyi
∣∣≤ ‖x‖p‖y‖q.

In (1) we use the convention that 1
p = 0 for p = ∞, and one often calls numbers p,q∈ [1,∞] satisfying (1) Hölder

conjugate exponents.

Remark. As you will show on Problem sheet 1, we have that for all 1≤ p < ∞

‖x‖∞ ≤ ‖x‖p ≤ n1/p‖x‖∞.

Hence the ∞-norm is equivalent to every p-norm and thus, by transitivity, we have that ‖ · ‖p is equivalent to
‖ · ‖q for every 1 ≤ p,q ≤ ∞. In fact as we will show in Section ??, all norms on finite dimensional spaces are
equivalent.
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With some small exceptions (which I neglected to mention in lectures), the spaces `p
n are not isometrically

isomorphic as p varies. The first exception is if n = 1: then all the norms are the same! The only other
exception is if n = 2, when `1

2 is isometrically isomorphic to `∞
2 , via the map (x,y)→ (x+ y,x− y). In a deep

dive below we discuss to how see this sort of thing for the sequence spaces `p, and come back to `1
n and `∞

n
for n≥ 3.

Deep Dive

Sequence spaces `p and c0. An infinite dimensional analogue of (Rn,‖ · ‖p), respectively (Cn,‖ · ‖p) are the
spaces of sequences `p, 1≤ p≤ ∞, where for 1≤ p < ∞

`p :=
{
(x j) j∈N :

∞

∑
j=1
|x j|p < ∞

}
equipped with ‖ · ‖p where for 1≤ p < ∞

‖x‖`p =
( ∞

∑
j=1
|x j|p

)1/p
,

while `∞ denotes the space of bounded sequences, equipped with

‖(x j)‖∞ := sup
j
|x j|.

For any 1 ≤ j ≤ ∞ we have that `p is a normed space (where we define addition and scalar-multiplication
component-wise). Again the main difficulty is to obtain Minkowski’s inequality, which is precisely the triangle
inequality.

Example 1.8. `p is complete for 1≤ p≤ ∞.

This follows the standard procedure for showing completeness. Given a Cauchy sequence (xn) in a normed
space X :

1. identify a candidate x for limxn;

2. show that x ∈ X ;

3. show ‖x− xn‖X → 0 as n→ ∞.

Often, as in the proof below, which we recall from metric spaces, steps 2 and 3 can be performed simultaneously.
The p = ∞ case is easier (and a special case of the Banach space Fb(Ω) below, by taking Ω = N.)

Proof for 1≤ p < ∞. Let (x(n)), be a Cauchy-sequence in `p and write x(n) = (x(n)j ) j=1∞ . As for every j ∈ N

|x(n)j − x(m)
j | ≤ ‖x

(n)− x(m)‖2→ 0

as m,n→ ∞, the sequence (x(n)j ) is Cauchy in F so converges, say x(n)j → x j.
Fix ε > 0. Then there exists N so that for all n,m≥ N

‖x(n)− x(m)‖p ≤ ε.
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Thus for every K ∈ N and for all n≥ N we have that

K

∑
j=1
|x(n)j − x j|

p
= lim

m→∞

K

∑
j=1
|x(n)j − x(m)

j |
p
≤ ε

p.

Letting K→ ∞, it follows that for all n ≥ N, we have x(n)− x ∈ `p, and so x ∈ `p (step 2), and ‖x(n)− x‖p ≤ ε

for n≥ N,4, though for sums we were able to d so that x(n)→ x in `p.

Again Hölder’s inequality is valid. That is for every 1 ≤ p,q ≤ ∞ with 1
p +

1
q = 1 and any (x j) ∈ `p and

(y j) ∈ `q we have that ∑x jy j converges, i.e. the pointwise product xy ∈ `1 and

|∑
j

x jy j| ≤ ‖(x j)‖p‖(y j)‖q.

Again this is a special case of Proposition 1.12 from Integration, taking the measure space to be N equipped
with counting measure.

We will sometimes also consider the subspace

c0 := {(xn) ∈ `∞ : xn→ 0}

of `∞, which is closed5 and hence, when equipped with the `∞- norm a Banach space (see Proposition 1.16
below)

Note that all of these sequence spaces contain a common subspace c00 – the collection of sequences which
are eventually zero. You should check that c00 is dense in c0, and in `p for 1≤ p < ∞. Accordingly it can not be
a Banach space in any of the p-norms (by Proposition 1.16 below).

In fact there is no norm on c00 under which it is a Banach space.

Theorem. No infinite dimensional Banach space X can have a countable Hamel basis.

A Hamel basis is what up to now we’ve just called a basis, i.e. a linearly independent spanning set. This
is a purely algebraic notion so S is a Hamel basis for X when no non-trivial finite linear combination of
elements of S can be zero, and every element of X can be written as a finite linear combination of elements
of S . While in a normed space we are allowed to consider infinite sums, these are not used to define Hamel
bases. Certainly the polynomials have a countably infinite Hamel basis and so can not be a Banach space
under any norm.

For background, by a Zorn’s lemma argument every vector space has a Hamel basis. Zorn’s lemma is
a tool equivalent to the axiom of choice, which will appear in some other deep dives, but is definitely non-
examinable. Zorn’s lemma will be described in B1.2 (Set Theory) which will show that every vector space
having a Hamel basis is another reformulation of the axiom of choice (that course will use the language of
basis, rather than Hamel basis, as the vector spaces there do not come equipped with norms).

The normal, and in my view best way, to prove that no Banach space can have a countably infinite Hamel
basis is through the Baire category theorem, which will be proved in B4.2 Functional Analysis 2. This states
that a complete metric space is never a countable union of nowhere dense subsets.a We will see in Section 4
that finite dimensional subspaces of normed spaces are always closed, and it is an easy exercise to check that
a proper closed subspace of a normed space is nowhere dense. Then the result follows. On problem sheet 2

Deep Dive

4We have done a by-hand version of Fatou’s lemma for infinite sums here. I make this remark only so you can compare it with the
use of Fatou’s lemma in one of the proofs that Lp is complete.

5This is very similar to Problem sheet 1, B.1(a).
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we will see an alternative, slightly messier proof in Section C, using Riesz’s lemma from Section ??.
This result shows that Hamel bases, while they generally exist, are unlikely to be all that useful for

working with Banach spaces. Even for spaces such as `1 or c0, where we clearly only need countably many
bits of data to specify elements, do not have countable bases. Instead, one needs the appropriate analytic
notion of a basis – Schauder bases – to develop a satisfactory theory for Banach spaces. These appear in
more detail at the end of the C4.1 course, but they are perfectly accessible to you now. A good book taking
a basis first approach, and so developing interesting properties of the sequence spaces is Carothers ‘A short
course in Banach space theory’. Definitely the first 6 chapters of this book are very readable along side this
course - but from chapter 3 onwards go in different direction.

aA nowhere dense set is a set whose closure has empty interior.

When I’m trying to build counter examples, my first thought is to check the finite dimensional case, and
assuming that doesn’t work then I tend to look for an example using sequences.

While for n ∈N fixed, all the n-dimensional normed spaces `p
n are equivalent, this fails in infinite dimensions.

Also, just as in the finite dimensional case, by looking at the geometry of the unit balls one can see that no
pair of these spaces is isometrically isomorphic. One thing you can look at here is the modulus of convexity,
which quantifies the convexity of the unit ball. For a Banach space X , define the modulus of convexity
δX : [0,2]→ [0,1] by

δX(ε) = inf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥ : x,y ∈ X , ‖x‖= ‖y‖= 1, ‖x− y‖ ≥ ε

}
.

This measures how far the average of two points x and y of distance at least ε on the sphere must get pushed
inside the unit ball. (There’s some nice pictures to be drawn here; if someone draws them I’ll be happy to
include). You should be able to see that for `∞ and `1 we have δ = 0. The modulus of convexity of `2, and
indeed any Hilbert space, is δ (ε) = 1−

√
1− ε2/4 = ε2/8+O(ε4) as ε → 0.f́ootnoteIt’s small ε we care

about, otherwise we wouldn’t have used the notation ε . A two-dimensional geometric argument shows that
this is the upper bound of the modulus of convexity for any normed space X ; in this sense Hilbert space’s
have the ”convexest” unit ball. For other p, we have

δ`p(ε) =

{
(p−1) ε2

8 +o(ε2), 1 < p≤ 2;
ε p

p2p , 2≤ p < ∞.

While the modulus of convexity doesn’t distinguish `∞
n and `∞

n , for n ≥ 3, you can see that nevertheless they
are not isometrically isomorphic from the geometry of the unit balls: the ball of `1

n has 2n extreme points, and
the ball of `∞

n has 2n extreme points.a

Showing that in infinite dimensions none of the sequence spaces `p or c0 are isomorphic is more chal-
lenging. By section ?? we will know that `∞ is not isomorphic to any of the other spaces — it is too big
(not separable to be precise). By the end of the course, we will know that c0, `

1 are not isomorphic and also
not isomorphic to any other `p space. In fact all these spaces are pairwise non-isomorphic. This is much
harder, and we won’t prove it in any of the functional analysis courses here. (The way this is normally done is
through Pitt’s theorem, that says that for 1≤ p < q < ∞, any bounded linear map (see Section 3) T : `q→ `p

is compact (a concept that will be defined in B4.2). Taking this fact for granted (a proof can be found in

Deep Dive
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Chapter 2 of Albaic and Kalton’s ”Topics in Banach Space Theory”) you should be able to deduce that all
these sequence spaces are pairwise non-isomorphic by the end of B4.2.

aI’ll let you formalise or look up the definition of an extreme point. A picture ought to work in finite dimensions, but in infinite
dimensions some unit balls need not have extreme points, for example c0. I will make further deep dive remarks on this later in the
notes.

Function spaces with supremum-norm

The supremum norm is often used to make spaces of bounded functions complete.

Example 1.9. Let Ω be any set. Then

F b(Ω) := { f : Ω→ F bounded}

is a Banach space under the norm ‖ f‖sup = supx∈Ω | f (x)|. (We will often drop the subscript sup on these norms).

Proof of completeness of F b(Ω). This is another example of the three step process. If ( fn) is Cauchy in F b(Ω)
then for each x ∈ Ω, ( fn(x)) is Cauchy so converges to f (x) ∈ F, say. Fixing ε > 0, there is N ∈ N with
| f (n)(x)− f (m)(x)| ≤ ε for m,n≥ N and all x ∈Ω. Taking limits as m→ ∞, | fn(x)− f (x)| ≤ ε for all x ∈Ω and
n≥ N. Therefore f is bounded, and ‖ fn− f‖ ≤ ε . Accordingly F b(Ω) is complete.

For a metric6 space K, the vector space Cb(K) := { f : K→ F continuous and bounded} is closed in F b(K),7

and hence Cb(K) is a Banach space with the sup norm (see Proposition 1.16). If K is compact, then all continuous
functions are bounded, and we write C(Ω) := { f : Ω→ F continuous}=Cb(Ω).

Example 1.10. Let K be a compact metric space. Then C(K) is a Banach space with the sup-norm.

Similarly, on spaces of differentiable functions (with bounded derivatives) such as C1([0,1]) – the space of
functions on [0,1] which have continuous derivatives (including at the end points), to get completeness we will
need norms that are built using the sup norm of both the function and its derivative. Indeed, since C1([0,1]) is
dense in C[0,1] (in fact the smaller set of polynomials is dense in C[0,1] – see Section ??), it is not closed in
the sup-norm and so is not a Banach space with respect to ‖ · ‖sup. Instead we use a standard trick for creating a
norm on spaces like this; take the sum of two norms that we want to be able to control. Then a sequence which
is Cauchy in the sum of the norms, will necessarily be Cauchy in each norm.

Example 1.11. C1([0,1]) is a Banach space with ‖ f‖C1 := ‖ f‖sup +‖ f ′‖sup

Proof. Suppose ( fn) is a Cauchy sequence in C([0,1]). Then ( fn) is ‖ · ‖sup-Cauchy so converges to some
f ∈ C([0,1]) and ( f ′n) is also ‖ · ‖sup-Cauchy so converges to some g ∈ C([0,1]). Now prelims comes to the
rescue: since ( fn) converges uniformly to f and each f ′n is differentiable and f ′n converges uniformly to g, it
follows that f is differentiable and f ′ = g. Hence f ∈C([0,1]), and then ‖ fn− f‖C1 → 0.

The map f 7→ ( f ′, f (0)) gives an isomorphisma from C1([0,1]) to C([0,1])×R (we will discuss norms
on the Cartesian product below. In fact, using a Schauder basis for C([0,1]) it is possible to show that
C([0,1]) ∼= C([0,1])×R though the isomorphism can not be isometric,b so that as Banach spaces C1([0,1])
and C([0,1]) are isomorphic. But in applications we would most likely care about how our elements are

Deep Dive

6this works fine for a topological space
7this is a consequence of the fact that a uniform limit of continuous functions is continuous — a 3ε or ε/3 argument depending on

your taste.
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realised as functions: so while these Banach spaces are abstractly isomorphic, it makes sense to understand
them separately.

aThis map is bounded and bijective between Banach spaces, so an isomorphism from Banach’s isomorphism theorem; though
you could show directly that the inverse map is bounded.

bWe’re implicitly working with reals here, so you can use the geometry of the unit ball: C([0,1]) has two extreme points, the
constant functions ±1, while the unit ball of C([0,1]×R with the `2-norm has more.

Function spaces Lp, 1≤ p≤ ∞

Let (Ω,F ,µ) be a measure space (considering examples like Ω an interval in R or a measurable subset of
Rn with Lebesgue measure will be more than sufficient for the course). Consider for 1 ≤ p < ∞ the space of
functions

L p(Ω) :=
{

f : Ω→ R (or C) measurable so that
∫

Ω

| f |pdx < ∞

}
respectively

L ∞ :=
{

f : Ω→ R (or C) measurable so that ∃M with | f | ≤M a.e.
}
.

This is not a course on Lebesgue integration, so typically in examples we will only work with measurable
functions; you may assume that all functions you encounter are measurable when needed (though don’t let that
stop you briefly reminding yourself why). But of course not all measurable functions are integrable and that
indeed for a general measurable function the integral might not even be defined, so justification is needed to
consider integrals in general. However we also recall that the integral of a non-negative functions f is always
defined though might be infinite.

We equip these spaces with

‖ f‖p :=
(∫

Ω

| f |pdx
)1/p

for 1≤ p < ∞

respectively
‖ f‖∞ := ess sup| f | := inf{M > 0 : | f | ≤M a.e. }.

We note that ‖ · ‖p is only a seminorm on L p with ‖ f − g‖p = 0 if and only if f = g a.e. We can hence turn
(L p,‖ · ‖) into a normed space by taking the quotient with respect to the equivalence relation

f ∼ g⇐⇒ f = g a.e..

The resulting quotient space
Lp(Ω) := L p/∼ equipped with ‖ · ‖p

is one of the most important spaces of functions in the modern theory of PDE, and will be further developed in
the course C4.3 Functional analytic methods for PDEs. Recall the following two key inequalities for Lp spaces;
the first giving the triangle inequality, and the second will be crucial later in the course when we examine the
dual spaces of Lp(Ω).

Proposition 1.12 (Minkowski and Hölder). • The Minkowski-inequality, which is the triangle inequality
for Lp holds: for f ,g ∈ Lp(Ω), we have

‖ f +g‖p ≤ ‖ f‖p +‖g‖p.

• Hölder’s inequality holds: If f ∈ Lp(Ω) and g∈ Lq(Ω) where 1
p +

1
q = 1 then their product f g is integrable

with ∣∣∫
Ω

f gdx
∣∣≤ ‖ f‖p‖g‖q.

12
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None of the Lp norms are equivalent, though when Ω has positive and finite measure, we can estimate the
Lp norm of functions by their Lq norm if p < q and we have

L∞(Ω)$ Lq(Ω)$ Lp(Ω)$ L1(Ω) for any 1 < p < q < ∞. (2)

As an example consider Ω = (0,2) ⊂ R and p = 2, q = 4. Adding in a multiplication by the constant function
g = 1 we can estimate, using Hölder’s inequality,

‖ f‖2
L2 =

∫
| f |2 ·1dx≤ ‖| f |2‖L2‖1‖L2 =

(∫ 2

0
f 4 dx

)1/2
·
(∫ 2

0
1dx

)1/2
=
√

2‖ f‖2
L4 ,

so we get ‖ f‖L2 ≤
√

2‖ f‖L4 and in particular that every f ∈ L4([0,2]) is also an element of L2([0,2]). The
general case is discussed on the first problem sheet.

Warning. • Note that the inclusions of the function spaces Lp(Ω) for sets Ω with bounded measure are the
“other way around” compared with the inclusions of the sequence spaces `p.

• The inclusion (2) is wrong for unbounded domains, e.g. the constant function f = 1 is an element of
L∞(R) but isn’t contained in any Lp(R), 1≤ p < ∞.

Remark. In practice it is can be useful to extend ‖·‖Lp to a function from the space of all (measurable) functions
to [0,∞)∪{∞} by simply setting ‖ f‖Lp = ∞ if

∫
| f |p = ∞ (respectively for p = ∞ if f /∈ L∞), and we note that

also with this ‘abuse of notation’ the triangle and Hölder-inequality still hold (with the convention that 0 ·∞ = 0
for Hölder’s inequality). Similarly we can extend ‖ · ‖p to a function that maps all sequences to [0,∞)∪{∞}
but we stress that while this notation/convention can be useful and used in the literature, these functions into
[0,∞)∪{∞} are not norms as a norm is by definition a function into [0,∞).

Example 1.13. (L∞(Ω),‖ · ‖L∞) is a Banach space.

The proof is more or less similar to the proof of completeness for Fb(Ω), or a direct proof of completeness
for C(K) in the supremum norm, except that we have to take care of the almost everywhere nature of things.

Proof. Let ( fn) be a Cauchy sequence in L∞(Ω,R). For each k ∈ N, there exists Nk such that

‖ fn− fm‖L∞ ≤ 1
k

for all n,m≥ Nk.

This means that, for each k and m,n≥ Nk there is a null subset Zk,m,n of Ω such that

| fn(x)− fm(x)| ≤
1
k

for x ∈Ω\Zk,m,n.

Let Z = ∪k∪n,m≥Nk Zk,n,m, which, as a countable union of null set, is null. Then,

| fn(x)− fm(x)| ≤
1
k

for all n,m≥ N,x ∈Ω\Z. (3)

So for almost all x ∈Ω, ( fn(x)) is Cauchy, and hence converges to some f (x).
Being an almost everywhere limit of measurable functions, f is measurable. Sending m→ ∞ while keeping

n fixed in (3) we get

| fn(x)− f (x)| ≤ 1
k

for all n≥ Nk,x ∈Ω\Z.

This shows that ‖ fn− f‖L∞ ≤ 1
k for all n ≥ Nk. This implies on one hand that fn− f and hence f belong to

L∞(Ω) and on the other hand that fn→ f in L∞(Ω).

13
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Example 1.14. Lp is complete for 1≤ p < ∞.

We give two proofs. Firstly we consider the proof lectured in part A integration,8 and show how this really
fits into the abstract framework of proving completeness by showing that absolutely convergence series converge.

Proof. Let ( fn)
∞
n=1 be a sequence in Lp(Ω) with ∑n ‖ fn‖p < ∞. Define gn = ∑

n
r=1 | fr|. This gives an increasing

sequence of non-negative measurable functions which converges to g = ∑
∞
n=1 | fn| (g can of course take the value

∞ whenever this sum diverges). By Minkowski∫
gp

n = ‖gn‖p
p ≤

(
n

∑
r=1
‖ fn‖p

)p

≤

(
∞

∑
n=1
‖ fn‖p

)p

< ∞.

Therefore by the monotone convergence theorem gp is integrable, i.e. g ∈ Lp, and hence g is finite almost
everywhere. That is the sum ∑

∞
n=1 fn is absolutely convergent almost everywhere, and so converges almost ev-

erywhere, say to f .9 Moreover, applying the triangle inequality pointwise | f |p ≤ gp, so f ∈ Lp by comparison.10

Finally, another application of the triangle inequality gives

| f −
n

∑
r=1

fr|p ≤

(
∞

∑
r=n+1

| fr|

)p

≤ gp,

so the dominated convergence theorem gives ‖ f −∑
n
r=1 fr‖p

p→ 0, and ∑
∞
n=1 fn = f in Lp.11

In the integration course proved the following facts (the first of which essentially came from in the middle
of the proof given there that Lp was complete which essentially used the series argument above):

• If ( fn) is a Cauchy sequence in Lp (or a sequence converging in Lp to f ∈ Lp), then there exists a subse-
quence fnk which converges almost everywhere (to f ). But we can not guarentee that fn converges almost
everwhere, only that a subsequence does.

• Given a sequence ( fn) in Lp with fn→ f almost everywhere, the convergence theorems (monotone con-
vergence theorem, Fatou’s lemma and the dominated convergence theorem) give tools you can try and use
to prove that f ∈ Lp and fn→ f in Lp.

While we only really used Fatou’s lemma in the integration course as a tool for obtaining the dominated
converge theorem, it can be very useful for obtaining convergence of fn to f in the Lp norms. Let’s see this in
action in our second proof of completeness of Lp assuming the first fact above.

Second proof of completeness of Lp. Let ( fn)
∞
n=1 be Cauchy in Lp, and let ( fnk) be a subsequence which con-

verges almost everywhere to a (necessarily measurable) f . Fix ε > 0. We know that

‖ fn− fn j‖
p
Lp =

∫
Ω

| fn− fn j |p dx≤ ε
p for all n,n j ≥ N.

As j → ∞, the a.e. limit of the integrand is | fn− f |p. Moreover, the integrand is non-negative. By Fatou’s
lemma,12 we have ∫

Ω

| fn− f |p dx≤ liminf
j→∞

∫
Ω

| fn− fn j |p dx≤ ε
p for all n≥ N.

In other words, ‖ fn− f‖Lp ≤ ε for all n≥ N. This implies on one hand that fn− f and hence f belong to Lp(Ω)
and on the other hand that fn→ f in Lp(Ω).

8The case of Lp was lectured, but only the case of L1 is in the lecture notes.
9This is Step 1 of the process for completeness (in this absolute convergence framework) by providing a candidate limit.

10Step 2: the limit is in the space it should be in.
11The expression in Lp relating to this sum means that we have justified convergence of the sum in the norm on Lp, as required for

Step 3.
12Compare this with footnote 4.
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Since the first fact above is fair game for the course – we proved it in integration – this is an approach I
encourage you to keep in mind.

Let’s give another proof that every Lp Cauchy-sequence has a subsequence which is almost everywhere con-
vergent by means of convergence in measure, and Borel-Cantelli arguments (see B8.1, or many past integra-
tion exams). I don’t think we’ll really need these tools in the course, but you are welcome to use them in Lp

type examples if they help.
Say that a sequence fn of measurable functions on (Ω,F ,µ) converges in measure to a measurable

function f when for all δ > 0,

µ({x ∈Ω : | fn(x)− f (x)|> δ})→ 0 as n→ ∞.

Likewise, ( fn) is Cauchy in measure if for all δ > 0,

µ({x ∈Ω : | fn(x)− fm(x)|> δ})→ 0 as n,m→ ∞.

Convergence in measure, implies being Cauchy in measure. For the converse we find an almost everywhere
convergent subsequence to obtain the proposed limit.

Lemma. Suppose ( fn) is Cauchy in measure. Then there exists a subsequence ( fnk) which is convergent
almost everywhere to f , and fn converges to f in measure.

Proof. To follow.

Combining the above with the following lemma, every Lp Cauchy sequence has a subsequence which is
convergent almost everywhere.

Lemma. Let ( fn) be Cauchy in Lp(Ω,F ,µ). Then ( fn) is Cauchy in measure.

Proof. Fix ε > 0 and δ > 0 and find N such that for m,n ≥ N, we have ‖ fn− fm‖p < ε . Therefore, for
n,m≥ N,

µ({x : | fn(x)− fm(x)|≥δ
p})≤ ε p

δ p .

Therefore ( fn) is Cauchy in measure.

Deep Dive

We should also discuss potential isomorphisms between all the Lp-spaces and all the `p spaces. Firstly none
of the Lp spaces are isometrically isomorphic; the same modulus of convexity formula in one of the deep
dives above works for Lp.

L2(Ω,F ,µ) is a Hilbert space, and as we will learn these are determined up to isometric isomorphism by
the size of an orthonormal basis. In most examples of interest to us, (Ω,F ,µ) has just the right ‘size’ to be
separable (have a countable dense subset; see Section 6), and in this case it will be isometrically isomorphic
to `2. This will always be the case when Ω ⊂ Rn is a Lebesgue measurable subset (with non zero measure)
equipped with Lebesgue measure.a As an example you might well be able to guess an isometric isomorphism
between L2(T) and `2(Z).

Deep Dive
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A surprising theorem of Pełczyński shows that L∞([0,1]) and `∞ are isomorphic Banach spaces (though
they are not isometrically isomorphic). This theorem proceeds through a back and forward principle known
as Pełczyński’s decomposition technique (see Albiac and Kalton, Theorem 2.3.3): if X and Y are Banach
spaces such that X is isomorphic to a complemented subspace of Y b, Y is isomorphic to a complemented
subspace of X , X is isomorphic to X ⊕X , and Y is isomorphic to Y ⊕Y , then X and Y are isomorphic. Let
X = L∞([0,1]) and Y = `∞. In fact both these spaces are what’s known as injective (something we will find
easier to define once we have bounded linear maps) which means that whenever either X or Y is isomorphic
to a closed subspace of another Banach space, then this subspace is automatically complemented. We will
be able to prove injectivity of `∞ as a consequence of Hahn–Banach by the end of the course. Injectivity
of L∞([0,1]) is a bit harder; this can be found in Section 4.3 of Albiac and Kalton. Given these results to
prove Pełczyński’s theorem you need to see how to find `∞ as a closed subspace of L∞ (have a go – it’s not
so bad), and L∞ as a closed subspace of `∞ (this can be found as an extension exercise to Sheet 3). All of this
is collected as Theorem 4.3.10 of Albiac and Kalton. To the best of my knowledge, Pełczyński’s theorem is
non-constructive and no explicit isomorphism is known.

Finally, `p and Lp([0,1]) are not isomorphic for other values of p. When p = 1 you’ll be able to use
something called Schur’s property to distinguish `1 and L1([0,1]) as an exercise in B4.2 and C4.1 (though
I think the name ‘Schur’s property’ will only be introduced in C4.1). To distinguish `p and Lp([0,1]) for
1 < p < 2 and 2 < p < ∞ one can show that `2 is a complemented subspace of Lp([0,1]) for any 1 < p < ∞

(see Proposition 6.4.2 of Albiac and Kalton) but (by means of another Pełczyński decompositon technique)
any complemented infinite dimensional subspace of `p is isomorphic to `p (see Theorem 2.2.4 of Albiac and
Kalton).

aIn general you need that Ω is σ -finite and F is the completion of a countably generated σ -algebra.
bwe will discuss complemented subspaces in Section ??

Some incomplete spaces

Example 1.15. We can construct many examples of non-complete spaces by equipping a well known space such
as Cb, C1, `p, Lp with the ‘wrong’ norm, or by choosing a subspace of a Banach space that is not closed. As an
example we show that C([0,1]) equipped with ‖ f‖L1 =

∫ 1
0 | f |dx is not complete (which is actually an exercise

from the metric spaces course and so I won’t lecture it).

Proof. We give three proofs: one by direct argument, one via Corollary 1.6, and finally through density.

1. Let

gn(x) =

{
(2x)n for x ∈ [0,1/2),
1 for x ∈ [1/2,1].

For n < m, we have

‖gn−gm‖L1 =
∫ 1/2

0
[(2x)n− (2x)m]dx =

1
2(n+1)

− 1
2(m+1)

,

so (gn) is Cauchy. On the other hand, (gn) is a decreasing sequence of non-negative functions which is
bounded from above by 1. Its pointwise limit is the characteristic function of the interval [1/2,1]. By
Lebesgue’s dominated convergence theorem, gn converges to χ[1/2,1] in L1 and there is no continuous
function which is equal to χ[1/2,1] almost everywhere,13, and hence not in C([0,1]). In other words (gn)

13χ[1/2,1] is almost everywhere continuous, but not almost everywhere equal to a continuous function
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has no limit in C([0,1]).14

2. For

fn(x) :=

{
1−n2x for x ∈ [0, 1

n2 ]

0 else

we have that ‖ fn‖1 =
1

2n2 so ∑‖ fn‖L1 converges. However ∑ fn cannot converge to an element of C([0,1]).
Indeed suppose, seeking a contradiction, that ∑ fn→ f converges in L1 to a function f ∈C([0,1]). Then,
as continuous functions on compact sets are bounded, there exists some M ∈ R so that f ≤ M on [0,1].
Hence choosing N ∈ N so that N ≥ 2(M+1) we obtain that for any n≥ N and any x ∈ [0, 1

2N2 ]

n

∑
j=1

f j(x)− f (x)≥
N

∑
j=1

1
2
− f (x)≥ N/2−M ≥ 1

and thus in particular ‖∑
n
j=1 f j− f‖1 ≥ 1

2N2 6→ 0.

3. We know from part A integration that C([0,1]) is a proper dense subspace of L1([0,1]), so can not be
complete (by Proposition 1.16).

1.3 Constructions

We end this section with a brief collection of ways to construct new normed spaces from existing examples, and
when this preserves completeness.

Subspaces We first note that for any given subspace Y of a normed space (X ,‖ · ‖) we obtain a norm on Y
simply by restricting the given norm to Y . For the resulting normed space (Y,‖ · ‖) we have

Proposition 1.16. Let X be a Banach space, Y ⊂ X a subspace. Then

(Y,‖ · ‖) is complete ⇔ Y ⊂ X is closed .

Proof. Suppose Y is complete, and (yn) is a sequence in Y with yn→ x∈ X . As (yn) converges in X , it is Cauchy.
Therefore by completeness it converges to some y ∈Y . Hence x = y ∈Y by uniqueness of limits and Y is closed.

Conversely, suppose Y is closed in X and let (yn) be a Cauchy sequence in Y . By completeness of X , it
follows that there exists x ∈ X with yn→ x ∈ X . But as Y is closed we must have that x ∈ Y and hence that (yn)
converges in Y . Therefore Y is complete.

Direct sums Given two normed spaces X and Y we can define a norm on X×Y e.g. by

‖(x,y)‖2 = (‖x‖2 +‖y‖2)1/2 (4)

or more generally using any of the p-norms on R2 to define

‖(x,y)‖p := ‖(‖x‖,‖y‖)‖p = (‖x‖p +‖y‖p)1/p respectively ‖(x,y)‖∞ := max(‖x‖,‖y‖)
14Here we are using the fact that we know C([0,1]) is a subspace of L1([0,1]) so limits are unique. When you did this exercise in the

metric spaces course, this answer would not have been sufficient as we didn’t have the space L1([0,1]) to work with. In part A metric
spaces you where supposed to deal with this by showing barehands that there is no continuous function which can arise as the L1 limit.
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where here and in the following we simply write ‖ · ‖ instead of ‖ · ‖X and ‖ · ‖Y if it is clear from the context
what norm we are using. As all (the `p)-norms on R2 are equivalent, it follows that all the norms ‖(x,y)‖p are
equivalent on X×Y . We tend to write X⊕p Y for these spaces.

We note that for all of these norms on X ×Y we obtain that X ×Y is again a Banach space if both X and
Y are Banach spaces. If X and Y are inner product spaces then one uses in general the norm (4) as for this
choice of norm also the product X ×Y will again be a inner product space with inner product ((x,y),(x′,y′)) =
(x,x′)X +(y,y′)Y , while none of the norms with p 6= 2 preserve the structure of an inner product space.

We can also consider countable direct sums. Given normed spaces (Xn)
∞
n=1, and 1≤ p≤ ∞, one can form the

`p-direct sums. For p = ∞, let
X∞ = {(xn) : xn ∈ Xn, sup‖xn‖< ∞}

with the norm ‖(xn)‖∞ = sup‖xn‖. For 1≤ p < ∞ let

Xp = {(xn) : xn ∈ Xn :
∞

∑
n=1
‖xn‖p < ∞}

with the norm ‖(xn)‖p = (∑∞
n=1 ‖xn‖p)1/p.

These spaces might be written as (⊕∞
n=1Xn)p. We could also consider a c0-sum.

It’s a good exercise in seeing if you understand the proofs that `p forms a Banach space to check these
are norms, and that if each Xn is complete so too our the spaces Xp. This time of course all these norms will
in general give rise to pairwise non-isomorphic spaces (as can be seen by taking each Xn = F when you get
back the classical sequence spaces `p). Now you can start asking what sort of spaces you get if you take an
infinite `p product say of a sequence of Lqn spaces!

Deep Dive

Sums of subspaces If X1,X2 ⊂ X are subspaces of a normed space X then also

X1 +X2 := {x1 + x2 : x1 ∈ X1,x2 ∈ X2}

is again a subspace of X , but beware. Just because X1 and X2 are closed in X , it does not necessarily follow that
X1 +X2 is closed; see example sheet 1 (question C1) for an example.

Quotients We saw the process of taking quotients to pass from the semi-norm on L p to the normed space Lp

above. This works generally. Given a vector space X and a semi-norm |·| on X , i.e. a function |·| : X → [0,∞)
satisfying (N2) and (N3), we can consider the quotient space X/X0 where X0 := {x ∈ X : |x|= 0}. Then one can
define a norm on X/X0 by defining ‖x+X0‖ := |x|, see problem sheet 1 for details.

There are many reasons to be interested in quotient spaces more generally. Suppose X is a normed space, and
Y is a subspace of X , when can we put a norm on X/Y ? The solution is to define

‖x+Y‖= inf{‖x+ y‖ : y ∈ Y}= inf{‖x− y‖ : y ∈ Y}= d(x,Y ),

In general this is only a seminorm as if ‖x+Y‖= 0, then there is a sequence yn ∈Y with ‖x+yn‖→ 0. Noting
that −yn ∈ Y , it follows that ‖x+Y‖ = 0 if and only if x is in the closure Y of Y . In this way we get a norm

Deep Dive
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on X/Y precisely when Y is closed.a.
This will be explored further in C4.1, but it is nice to know that the quotient of a Banach space by a

closed subspace is again a Banach space (this is normally proved by showing absolute convergence implies
convergence). Since the kernel of a continuous linear map is always closed, one can go on to work out what
the right first isomorphism theorem should be in the setting of normed spaces (spoiler alert, there is a subtlety:
it will not always be the case that the range space is isomorphic to the domain modulo the kernel, but it works
for continuous linear maps between Banach spaces with closed range).

aWhen Y is not closed, you could follow the construction of taking a further quotient of X/Y by the null space of the seminorm.
You can check that this gives the same thing as considering the quotient X/Y , so in practise we only consider quotients by closed
subspaces.

2 Inner product spaces and Hilbert spaces

In this section we turn to the important special case when the norm arises from an inner product, leading to the
class of Hilbert spaces – one of the most central objects in mathematics. Just as with finite dimensional inner
product spaces (and unlike Banach spaces), Hilbert spaces are completely classified upto isometric isomorphism
by their dimension: the cardinality of an orthonormal basis (the appropriate notion of basis in the setting of
Hilbert spaces).

2.1 Definitions and basic properties

Definition 2.1. An inner (scalar) product in a linear vector space X over R is a real-valued function on X ×X ,
denoted as 〈x,y〉, having the following properties:

(i) Bilinearity. For fixed y, 〈x,y〉 is a linear function of x, and for fixed x, 〈x,y〉 is a linear function of y.

(ii) Symmetry. 〈x,y〉= 〈y,x〉 for all x,y ∈ X .

(iii) Positivity. 〈x,x〉> 0 for x 6= 0.

When X is a vector space over C, 〈x,y〉 is complex-valued and properties (i) and (ii) are replaced by

(i’) Sesquilinearity. For fixed y, 〈x,y〉 is a linear function of x, and for fixed x, 〈x,y〉 is a skewlinear function
of y, i.e.

〈ax,y〉= a〈x,y〉 and 〈x,ay〉= ā〈x,y〉 for all a ∈ C,x,y ∈ X .

(ii’) Skew symmetry. 〈x,y〉= 〈y,x〉 for all x,y ∈ X .

Warning. In some textbooks and courses, the sesquilinearity property is reversed: 〈x,y〉 is required instead to be
skewlinear in x and linear in y. This particularly the case when one is coming from a quantum theory viewpoint,
when the braket notion 〈x|y〉 is often used for the inner product.

An inner product 〈·, ·〉 generates a norm, denoted by ‖ · ‖, as follows:

‖x‖= 〈x,x〉1/2.

Then the positivity of the norm ‖·‖ follows from the positivity property (iii), and the homogeneity of ‖·‖ follows
from the bi/sequi-linearity property (i)/(i’). The triangle inequality is a consequence of the Cauchy-Schwartz
inequality below. The proof below is the same as in prelims.
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Theorem 2.2 (Cauchy-Schwarz inequality). For x,y ∈ X,

|〈x,y〉| ≤ ‖x‖‖y‖.

Equality holds if and only if x and y are linearly dependent.

Proof. If y = 0, the conclusion is clear. Assume henceforth that y 6= 0. Replacing x by ax with |a| = 1 so that
a〈x,y〉 is real, we may assume without loss of generality that 〈x,y〉 is real.

For t ∈ R, we compute using sesquilinearity and skew symmetry:

‖x+ ty‖2 = 〈x+ ty,x+ ty〉= ‖x‖2 +2t Re〈x,y〉+ t2‖y‖2. (5)

By positivity, this quadratic polynomial in t is non-negative for all t. This implies that

(Re〈x,y〉)2−‖x‖2‖y‖2 ≤ 0,

which gives the desired inequality. If equality holds, then there is some t0 such that x+ t0y = 0. The conclusion
follows.

Note that the Cauchy-Schwartz identity ensures that the inner product 〈·, ·〉 gives a continuous map X×X→
F.

Proposition 2.3. Let X be an inner product space. Then the parallelogram law

‖x+ y‖2 +‖x− y‖2 = 2‖x‖2 +2‖y‖2 for all x,y ∈ X , (6)

holds.

Proof. Set t =±1 in (5) and add the resulting identities.

This is illustrated15 in R2 by

x

y

x+ y
x− y

O

In fact the parallelogram law determines whether a norm comes from an inner product. See Sheet 2.A.3 for a
proof.16

15Notice that the identity only involves the vectors x,y and so is verified in the 2-dimensional subspace Span(x,y) which we know
is isometrically isomorphic to R2 with the usual inner product by means of the Gramm-Schmidt process. So if you’ve known the
parallelogram law as a fact about parallelograms, then you’ve actually known the real case of the parallelogram law for inner product
spaces!

16It’s not hard to check that the expressions for the inner product in terms of the polarisation identities are the only things that can
work: if you know the norm comes from an inner product simply multiply out the right hand sides . The difficulty is seeing that these
identities do define an inner product. Note that the polarisation identity can be used in various other situations. For example, it shows
that any isometric bijection between inner product spaces necessarily preserves the inner product.
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Proposition 2.4. Let (X ,‖·‖) be a normed space satisfying the parallelogram law (6). Then the norm is induced
from an inner product, which is given in terms of the norm by means of the polarisation identity:

〈x,y〉= 1
4
(‖x+ y‖2−‖x− y‖2) when F= R,

and
〈x,y〉= 1

4
(‖x+ y‖2−‖x− y‖2)+

1
4

i(‖x+ iy‖2−‖x− iy‖2) when F= C.

Definition 2.5. A linear vector space with an inner product is called an inner product space. If it is complete
with the induced norm, it is called a Hilbert space.

Given an inner product space, one can complete it with respect to the induced norm.17 Since the inner
product is a continuous function on its factors, it can be extended to the completed space. The completed space
is therefore a Hilbert space.

2.2 Examples

Example 2.6. 1. The space Cn or Rn is a Hilbert space with the standard inner product

〈x,y〉=
n

∑
k=1

xk ȳk.

2. The space `2 = {(x1,x2, . . .) = (xn) : ∑
∞
n=1 |xn|2 < ∞} is a Hilbert space with the inner product

〈x,y〉=
∞

∑
n=1

xk ȳk.

3. The space C[0,1] of continuous functions on the interval [0,1] is an incomplete inner product space with
the inner product

〈 f ,g〉=
∫ 1

0
f ḡdx.

You can see this as C[0,1] is dense in L2([0,1]), so can not be complete.

4. Let (Ω,µ) be a measure space, e.g. Ω is a subset of Rn and µ is the Lebesgue measure. The space
L2(Ω,µ) of all complex-valued square integrable functions is a Hilbert space with the inner product

〈 f ,g〉=
∫

E
f ḡdµ.

The completeness of L2(E,µ) is a special case of the Riesz-Fischer theorem on the completeness of the
Lebesgue space Lp(E,µ).

5. A closed subspace of a Hilbert space is a Hilbert space.

6. Let D be the open unit disk in C. The space A2(D) consists of all functions which are square integrable and
holomorphic in D is a closed subspace of L2(D) and is thus a Hilbert space (known as Bergman space).
You are asked to prove this on example sheet 2.18

17Right now the way we would complete a normed space is as per metric spaces: form the completion of the metric space and
then extend both the addition, scalar multiplication and the norm by continuity to give the completion the structure of a Banach space.
Fortunately there is a better way, which we might discuss at the end of the course.

18The Bergman space is an example of a reproducing kernel Hilbert space. Unlike the L2 spaces, whose elements are equivalence
classes of functions on a space, the elements of A2(D) are functions on D – elements are equal if and only if they agree exactly. Moreover
you can recover the value of f (z) from taking a suitable inner product; see Sheet 2.
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7. The space H2(T) of all functions f ∈ L2(−π,π) whose Fourier series are of the form ∑n≥0 an einx is a
closed subspace of L2(−π,π) and is thus a Hilbert space. You will be able to see this by noting that the
n-th Fourier coefficient of f is given by 〈 f ,en〉, where en(x) = 1

2πi e
inx. In this way H2(T) is a countable

intersection of closed sets, so closed. This space is known as Hardy space, and appears in applications to
harmonic analysis.

Examples 2, 6 and 7, and 4 (provided (Ω,F ,µ) is small enough for L2(Ω) to be separable – see a footnote to
a deep dive in the previous section – and big enough so that L2(Ω) is not finite dimensional) are all isometrically
isomorphic. Indeed, as we will see in the next subsection there is a unique infinite dimensional separable Hilbert
space. But nevertheless, the different presentations of these Hilbert spaces

2.3 Orthogonality

Definition 2.7. Two vectors x and y in an inner product space X are said to be orthogonal if 〈x,y〉 = 0. For
Y ⊂ X , define Y⊥ as the space of all vectors v ∈ X which are orthogonal to Y , i.e. 〈v,y〉= 0 for all y ∈ Y . When
Y is a subspace of X , Y⊥ is called the orthogonal complement of Y in X .

We shall see that a Hilbert space always decomposes as the direct sum of a closed subspace and its orthogonal
complement, just as you are familiar with in finite dimensions. First we collect the properties of orthogonal
complements that don’t require completeness.

Proposition 2.8. Let Y be a subset of an inner product space X. Then

(i) Y⊥ is a closed subspace of X.

(ii) Y ⊂ Y⊥⊥.

(iii) If Y ⊂ Z ⊂ X, then Z⊥ ⊂ Y⊥.

(iv) (spanY )⊥ = Y⊥.

(v) If Y and Z are subspaces of X such that X = Y +Z and Z ⊂ Y⊥, then Y⊥ = Z.

Proof. Most of this is left as an exercise / to be recalled from linear algebra. In (i), to see Y is closed suppose
xn ∈ Y⊥ has xn→ x ∈ X . Then for y ∈ Y , we have

0 = 〈xn,y〉 → 〈x,y〉,

so 〈x,y〉 = 0, and hence x ∈ Y⊥. For (v), take x ∈ Y⊥ and by hypothesis write x = y+ z with y ∈ Y and z ∈ Z.
Then, as x ∈ Y⊥,

0 = 〈x,y〉= 〈y,y〉+ 〈z,y〉= ‖y‖2,

since z ∈ Y⊥. Therefore y = 0 and x = z ∈ Z, i.e. Y⊥ ⊆ Z.

Our main goal in this section is the following theorem, which we will prove at a bit later:

Theorem 2.9 (Projection theorem). If Y is a closed subspace of a Hilbert space H , then Y and Y⊥ are comple-
mentary subspaces: H = Y ⊕Y⊥, i.e. every x ∈H can be decomposed uniquely as a sum of a vector in Y and
in Y⊥.

In an inner product space context, we will reserve the ⊕ symbol for this orthogonal complementation, i.e.
write X = Y ⊕Z when Y,Z are subspaces with Z = Y⊥ and X +Y = X .19.

19This is compatible with our use of ⊕ for products in the previous section. If we take inner product spaces X ,Y and equip X ×Y
with the inner product 〈(x1,y1),(x2,y2)〉= 〈x1,x2〉+〈x2,y2〉 and identify X with the subspace {(x,0) : x ∈ X} and Y with {(0,y) : y∈Y}
of X×Y , then X×Y can be written as X⊕Y .
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More generally, as per linear algebra, we subspaces Y,Z of a vector space are complemented if Y ∩Z = {0}
and Y +Z = X . Using the axiom of choice, every subspace of a vector space has a complementary subspace:
Take a basis AY for Y ,a and extend it to a basis AX or X .b Then take Z = Span(AX \AY ). Note how this proof
is the same as the finite dimensional proof of taking a basis for Y and extending it to a basis for X . However,
in a normed space context, we don’t learn anything about Z. For example, if X is Banach, and Y is closed,
when can one take a complementary subspace Z to be closed (so also a Banach space)?

For this reason in Banach space we say subspaces Y,Z are complemented when they are closed subspaces
with Y +Z = X and Y ∩Z = {0}. (In C4.1 this is called topologically complemented, to compare with the
notion of algebraic complementation of the previous paragraph).

In a Hilbert space, the projection theorem shows that all closed subspaces are complemented. Strikingly
this characterises Hilbert space.

Theorem (Lindenstrass and Tzafriri, 1971). Let X be a Banach space such that every closed subspace has a
closed complement. Then there exists an equivalent norm on X under which it is a Hilbert space.

ausing Zorn’s lemma to obtain a maximal linearly independent set, which is a basis; see B1.2
busing Zorn’s lemma again to obtain a maximal linearly independent set containing BY .

Deep Dive

Before proving the projection theorem, let us collect some consequences.

Corollary 2.10. If Y is a closed subspace of a Hilbert space H , then Y =Y⊥⊥ (which is short hand for (Y⊥)⊥).

Proof. We have H = Y ⊕Y⊥ = Y⊥⊕Y⊥⊥ from the projection theorem. So Y ⊆ Y⊥⊥ with H = Y⊥+Y . The
result follows from Proposition 2.8(v).

Definition 2.11. The closed linear span of a set S in a normed space X is the smallest closed linear subspace
of X containing S, i.e. the intersection of all such subspaces. We write Span(S) for this subspace, which is the
closure of the span of S.20

Proposition 2.12. Let S be a set in a Hilbert space H . Then Span(S) = S⊥⊥.

Proof. Exercise.

To prove the projection theorem, we use the following geometrical result.

Theorem 2.13 (Closest point in a closed convex subset). Let K be a non-empty closed convex21 subset of a
Hilbert space H . Then, for every x ∈ X, there is a unique point k ∈ K which is closer to x than any other points
of K, i.e. a unique k ∈ K with

‖x− k‖= inf
y∈K
‖x− y‖.

By translating (replace x by 0 and K by {k− x : k ∈ K}, the closest point theorem is equivalent to the
statement that every non-empty closed convex subset of a Hilbert space has a unique element of minimal norm.

Proof. Let
d = inf

z∈K
‖x− z‖ ≥ 0

20Check that the closure of a subspace is a subspace, so that the closure of the span of S is a closed subspace containing S. Since any
subspace containing S contains the span of S, any closed subspace containing S must contain the closure of the span of S.

21i.e. if x,y ∈ K and 0 < λ < 1, then λx+(1−λy) ∈ K
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and yn ∈ K be a minimizing sequence, i.e.

lim
n→∞

dn = d, dn = ‖x− yn‖.

Applying the parallelogram law (6) to 1
2(x− yn) and 1

2(x− ym) yields∥∥∥x− 1
2
(yn + ym)

∥∥∥2
+

1
4
‖yn− ym‖2 =

1
2
(d2

n +d2
m).

Since K is convex, 1
2(yn+ym)∈K and so

∥∥∥x− 1
2(yn+ym)

∥∥∥≥ d. This and the above implies that (yn) is a Cauchy
sequence. Let y be the limit of this sequence, which belongs to K as K is closed. We then have by the continuity
of the norm that ‖x− y‖= lim‖x− yn‖= d, i.e. y minimises the distance from x.

That y is the unique minimiser follows from the same reasoning above. If y′ is also a minimiser, we apply
the parallelogram law to 1

2(x− y) and 1
2(x− y′) to obtain

d2 +
1
4
‖y− y′‖2 ≤

∥∥∥x− 1
2
(y+ y′)

∥∥∥2
+

1
4
‖y− y′‖2 =

1
2
(‖x− y‖2 +‖x− y′‖2) = d2.

This implies that y = y′.

The closest point theorem also holds for some, but not all, other Banach spaces. As you can have a go at on
Sheet 2 (C.2), if the unit ball of a Banach space is uniformly convex (think of as ‘round enough’) then the
closest point theorem holds. In particular it is valid for `p and Lp for 1 < p < ∞. But the uniqueness portion
of the closest point theorem fails for `1 and `∞ even in two dimensions.a We will see an example of a closed
convex subset of a Banach (in fact an affine subspace, i.e. a translation of a subspace) which does not have an
element of minimal norm on a problem sheet.

aExistence of a closest point in to a closed convex set in finite dimensions is a consequence of compactness; see Section 4.

Deep Dive

Proof of the Projection Theorem. Certainly Y ∩Y⊥ = {0}. It remains to show that X = Y +Y⊥.
Take any x ∈ X and, since Y is a non-empty closed convex subset of X , there is a point y0 ∈Y which is closer

to x than any other points of Y by Theorem 2.13. To conclude, we show that x−y0 ∈Y⊥.22 Indeed, for all y ∈Y
and t ∈ R, we have

‖x− y0‖2 ≤ ‖x− (y0− ty)︸ ︷︷ ︸
∈Y

‖2 = ‖x− y0‖2 +2t Re〈x− y0,y〉+ t2 ‖y‖2.

It follows that 2t Re〈x− y0,y〉+ t2 ‖y‖2 ≥ 0 for all t ∈ R. This implies Re〈x− y0,y〉 = 0. This concludes the
proof if the scalar field is real.

If the scalar field is complex, we proceed as before with t replaced by it to show that Im〈x− y0,y〉= 0.
22We can see this geometrically for F= R. Fix some y ∈ Y , and consider the plane Span(y,y0). The closest point of x to Span(y0,y)

is still y0; but we know from 3-dimensional geometry that the closest point of x to this plane is giving by dropping the perpendicular of
x to the plane: hence x− y0 is orthogonal to y.
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2.4 Orthonormal bases

Definition 2.14. A subset S of a Hilbert space X is called an orthonormal set if ‖x‖= 1 for all x∈ S and 〈x,y〉= 0
for all x 6= y ∈ S.

S is called an orthonormal basis (or a complete orthonormal set) for X if S is an orthonormal set and its
closed linear span is X .

Theorem 2.15. Every Hilbert space contains an orthonormal basis.

Proof. The proof is only examinable when the Hilbert space H is separable, i.e. contains a countable dense
subset S. In this case label the elements of S as y1,y2, . . .. Applying the Gram-Schmidt process23 we obtain an
orthonormal set B = {e1,e2, . . .} (which might terminate after some finite stage) such that, for every n, the span
of {e1, . . . ,en} contains y1, . . . ,yn. As S̄ = X , this implies that X = spanB, and so X is the closed linear span of
B.

In general we need the axiom of choice – in fact the statement that every Hilbert space has an orthonormal
basis is equivalent to the axiom of choice – in the equivalent form of Zorn’s Lemma. Zorn’s Lemma will
be described in B1.2 (Set Theory), and shown to be equivalent to the axiom of choice there. It allows us
to produce sets which are maximal with respect to certain properties.a Let S be a maximal orthonormal
setb in H . If Span(S) 6= H , then this is a proper closed subset of H , so by the projection theorem, there
exists x ∈H orthogonal to Span(S), which we can normalise to have ‖x‖= 1. Then S∪{x} is orthonormal,
contradicting maximality of S. Hence Span(S) = H and S is an orthonormal basis for H .

aPrecisely: Given a non-empty partially ordered set P with the property that every chain C (i.e. a collection C ⊂P with the
property that for all x,y ∈ C either x≤ y or y≤ x) has an upper bound (i.e. there exists z ∈P with x≤ z for all x ∈ C . Then Zorn’s
Lemma ensures that P has a maximal element, i.e. some z ∈P with z≥ x for all x ∈P . (In B1.2 this will be set out when P is a
collection of sets ordered by inclusion satisfying this property, rather than using the language or partially ordered sets.)

bIf you do B1.2 it’s a good exercise in using Zorn to show this exists

Deep Dive

Given a finite orthonoromal set e1, . . . ,en in an inner product space X , we can always decompose x ∈ X as

x =
n

∑
r=1
〈x,er〉er +(x−

n

∑
r=1
〈x,er〉er),

where the first term lies in Span(e1, . . . ,en) and the second lies in Span(e1, . . . ,en)
⊥. In this way X =Span(e1, . . . ,en)⊕

Span(e1, . . . ,en)
⊥.24 The element ∑

n
r=1〈x,er〉er is the unique closest point in Span(e1, . . . ,en) to x (we don’t need

completeness of X for this as Span(e1, . . . ,en) is finite dimensional. The following is a consequence of Pythago-
ras:

Proposition 2.16 (Pythagorean theorem). Let X be an inner product space and S = {x1,x2, . . . ,xm} be a finite
orthonormal set in X. For every x ∈ X, there holds

‖x‖2 =
m

∑
n=1
|〈x,xn〉|2 +

∥∥∥x−
m

∑
n=1
〈x,xn〉xn

∥∥∥2
.

23The Gram-Schmidt process is usually applied to a set of finitely many linearly independent vectors yielding an orthogonal basis of
the same cardinality. In our setting, we will lose the latter property as the vectors yi’s are not necessarily linearly independent.

24We will later see that more generally, all finite dimensional subspaces of normed spaces have closed complements as a consequence
of the Hahn–Banach theorem
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Corollary 2.17 (Bessel’s inequality). Let X be a Hilbert space and S = {x1,x2, . . .} be an orthonormal sequence
in X. Then, for every x ∈ X, there holds

∞

∑
n=1
|〈x,xn〉|2 ≤ ‖x‖2.

We can characterise when an orthonormal sequence forms a basis in terms of always having equality in
Bessel’s inequality (this is known as Parseval’s identity). The proof is strictly speaking only examinable in B4.2,
but we’ve done all the work, so let’s give it here.

Theorem 2.18 (Characterising bases). Let H be a Hilbert space and S = {e1,e2, . . .} be an orthonormal se-
quence in H . Then the following are equivalent:

1. S is an orthonormal basis for H ;

2. ‖x‖2 = ∑
∞
n=1 |〈x,en〉|2 for all x ∈H (i.e. Parseval’s identity holds)

3. x = ∑
∞
n=1〈x,en〉en for all x ∈H ;

4. 〈x,y〉= ∑
∞
n=1〈x,en〉〈y,en〉, for all x,y ∈H .

In this case the map H → `2 given by x 7→ (〈x,en〉)∞
n=1 is an isometric isomorphism.

Proof. 1⇒3: Note that ∑
n
r=1〈x,er〉er is the closest point in Span(e1, . . . ,en) to x (as x−∑

n
r=1〈x,er〉 is orthogonal

to e1, . . . ,en). Since x ∈ Span(e1,e2, . . .), it follows that

‖x−
n

∑
r=1
〈x,er〉er = d(x,Span(e1, . . . ,en))→ 0,

proving 3. 3 =⇒ 4 is obtained from computing the inner product
〈

∑
n
r=1〈x,er〉er,∑

n
s=1〈y,es〉es

〉
and using conti-

nuity of the inner product. 4 =⇒ 2 folows from the definition of the norm in terms of the inner product. Finally
for 2 =⇒ 1, if 2 holds, then ‖x−∑

n
r=1〈x,er〉er‖→ 0 as n→ ∞ (by Proposition 2.16, giving 1.

For the last part, condition 2 ensures we have defined an isometric linear map. For surjectivity, given
(αn) ∈ `2, the series ∑

∞
n=1 αnen is absolutely convergent so converges to x in H , which is then mapped onto

(αn).

More generally you can check that if S is an orthonormal basis for a Hilbert space H , then H is isometrically
isomorphic to

`2(S) := { f : S→ F : ∑
s∈S
| f (s)|2 < ∞},

(which is given the inner product you would expect). Here the sum of positive elements over this (potentially
uncountable) set is given by

∑
s∈S
| f (s)|2 = sup{∑

s∈F
| f (s)|2 : F ⊂ S is finite}

(which is exactly the definition you would get from taking the Lebesgue integral on S with counting measure).

Deep Dive
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While in a Hilbert space the characterisation above allows us to define a basis as an orthonormal set which
has dense linear span, and we learn that every x can be written (uniquely) as ∑

n
r=1 αnen (with convergence in

H ) this is a feature of Hilbert space. We have to be more careful with the definition of a basis in a Banach
space. For X = C([0,1]), the sequence 1,x,x2, . . . is linearly independent, and has dense linear span (as we
will see in Section 5). But it is not true that every f ∈C([0,1]) can be written as a convergent series ∑

∞
n=1 αnxn

(with convergence in C([0,1]), with it’s canonical sup-norm). Functions which can be written in this way are
infinitely differentiable. Therefore 1,x,x2, . . . does not form a Schauder basis for C([0,1]). This space does
have a Schauder basis: a sequence f1, . . . such that every f ∈C([0,1]) can be written uniquely as ∑

∞
n=1 αn fn

for some unique scalars αn, and further this basis can be taken to consist of polynomial functions. But the
firs thing that might come to mind doesn’t work. This will be explored further in C4.1; see also the books by
Corothers and by Albiac and Kalton.

Deep Dive

3 Bounded linear operators between normed vector spaces

Whenever we introduce a class of mathematical objects it is always important to understand the appropriate
maps between these objects. In the setting of vector spaces, we study linear maps. In the setting of metric spaces
we look at continuous maps, or perhaps contractive, or even isometric maps. For our normed spaces the right
maps to consider are the continuous linear maps (as well as contractive and isometric linear maps).

3.1 Boundedness and continuity

Recall that a map T : V →W between vector spaces is linear if T (λx+ µy) = λT (x)+ µT (y) for all x,y ∈ X
and scalars λ ,µ ∈ F. Continuity of a map T : X → Y is a local property: T is continuous if and only if it is
continuous at x for all x ∈ X . But for a linear map, we can use linearity to translate continuity at one point to
continuity at all other points, so we only need to check continuity at 0. This leads to the following important
proposition.

Proposition 3.1. Let T : X → Y be a linear map betwen normed spaces. The following are continuous:

(i) T is Lipschitz continuous,

(ii) T is continuous,

(iii) T is continuous at 0,

(iv) there exists K > 0 such that ‖T (x)‖ ≤ K‖x‖ for all x ∈ X.

Proof. (i)⇒ (ii)⇒ (iii) are immediate. Suppose that T is continuous at 0. Then there is some δ > 0 such that

‖T x‖= ‖T x−T 0‖ ≤ 1 for ‖x‖= δ .

It follows that, for any x 6= 0,

‖T x‖= ‖x‖
δ

T
(

δx
‖x‖

)
≤ ‖x‖

δ
.

Clearly, this continues to holds for x = 0 and we can take K = 1
δ

in condition (iv).
Finally assume (iv) holds, so let K > 0 have ‖T (x)‖ ≤ K‖x‖ for all x ∈ X¿ Now we use linearity, to get

‖T (x)−T (y)‖= ‖T (x− y)‖ ≤ K‖x− y‖,

for all x,y ∈ X . That is T is Lipschitz continuous (with Lipschitz constant at most K).
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The last condition is often the most useful, both for establishing continuity

Definition 3.2. Let X and Y be normed spaces (aways assumed to be over the same field F). Then we say that
T : X → Y is a bounded linear operator if T is linear and there exists K > 0 so that

‖T (x)‖Y ≤ K‖x‖X for all x ∈ X . (7)

Define the operator norm of a bounded linear operator T : X → Y by

‖T‖= inf{K > 0 : ‖T (x)‖ ≤ K‖x‖ for all x ∈ X}.

Write B(X ,Y ) for the collection of all bounded linear operators from X to Y .

Warning. T being a bounded linear operator does not mean that T (X)⊂ Y is bounded. Indeed, the only linear
operator with a bounded image is the trivial operator that maps each x ∈ X to T (x) = 0.

We will often abbreviate the space B(X ,X) of bounded linear operators from a normed space X to itself
by B(X).25 An important special case is the ‘bounded linear functionals’, i.e. bounded linear functions from a
normed vector space to the corresponding field F = R (respectively F = C for complex vector spaces) and this
so called dual space X∗ := B(X ,F) will be discussed in far more detail in chapters 7 and ??.

Note that the infiumum in the definition of the operator norm is attained, i.e. for a bounded linear operator
T : X → Y , we have26

‖T (x)‖ ≤ ‖T‖‖x‖ for all x ∈ X .

The set of continuous linear maps between normed spaces is a vector space (by AOL). We check that the
operator norm gives B(X ,Y ) the structure of a normed space. Needless to say, we shall later be interested in
when this is complete. Spoiler alert: B(X ,Y ) is complete if and only if Y is complete.

Proposition 3.3. Let X and Y be normed spaces. Then ‖ · ‖ is a norm on B(X ,Y ). Also, for T ∈B(X ,Y ), we
have (except in the case when X = {0})

‖T‖B(X ,Y ) = sup
x∈X ,x 6=0

‖T x‖
‖x‖

= sup
x∈X ,‖x‖=1

‖T x‖= sup
x∈X ,‖x‖≤1

‖T x‖.

Proof. Note that ‖T‖ ≥ 0, and if ‖T‖ = 0, then we have T (x) = 0 for all x (by positivity of the norm on Y ).
Hence T = 0.

Let K = sup{‖T (x)‖ : ‖x‖ ≤ 1, x ∈ X}. Then for x 6= 0,

‖T (x)‖=
∥∥∥∥T
(

x
‖x‖

)∥∥∥∥‖x‖ ≤ K‖x‖,

and so ‖T‖ ≤ K. But for x ∈ X with ‖x‖ ≤ 1, we have ‖T (x)‖ ≤ ‖T‖. Taking the supremum over all such x we
get K ≤ ‖T‖.

Using this characterisation of the norm, we get

‖(λT )‖= sup{‖(λT )(x)‖ : ‖x‖ ≤ 1}= |λ |sup{‖T (x)‖ : ‖x‖ ≤ 1}= |λ |‖T‖,
25In some texts, B(X ,Y ) is also denoted as L (X ,Y ).
26Take a sequence (Kn) satisfying (7) with Kn→‖T‖ and use limits preserve weak inequalities.
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for T ∈B(X ,Y ) and λ ∈ F.
Finally for S,T ∈B(X ,Y ), and x ∈ X , the triangle inequality (in Y ) gives

‖(S+T )(x)‖ ≤ ‖S(x)‖+‖T (x)‖ ≤ (‖S‖+‖T‖)‖x‖,

so that ‖S+T‖ ≤ ‖S‖+‖T‖.

Remark. Note that if Y is an inner product space, then we have

‖T‖B(X ,Y ) = sup{|〈T x,y〉| : x ∈ X ,y ∈ Y,‖x‖X = ‖y‖Y = 1}.

This is a consequence of (i) and the fact that ‖T x‖Y = supy∈Y,‖y‖Y=1 |〈T x,y〉|.

Warning. For general bounded linear operators, one cannot expect that there exists x ∈ X so that ‖T x‖= M‖x‖,
i.e. the supremum supx 6=0

‖T x‖
‖x‖ is in general not achieved. Some examples can be found on the problem sheets.

In the case of bounded linear functionals f : X → F, whether the supreumum ‖ f‖ = sup{| f (x)| : ‖x‖ ≤ 1}
is attained is related to the geometry of the unit ball – a theme you may be getting used to. You’ll quickly
be able to see using the Riesz representation theorem in Section ?? that this supremum is attained whenever
X is a Hilbert space, but actually it works for any uniformly convex Banach space. If you solved Exercise
2.C.2 then you should also be able to prove that if X is a uniformly convex Banach space and f ∈ X∗, then
there exists a unique x ∈ X with ‖x‖ = 1 satisfying f (x) = ‖x‖. In particular bounded linear functionals on
Lp attain their norms for 1 < p < ∞. (This is a result that we’ll also be able to see directly later in the course
when we determine the general form of a bounded linear functional on Lp).

The question of which Banach spaces X have the property that all bounded linear functionals attain their
norms has a very interesting answer: a theorem of James shows that this characterises reflexivity of X . More
on reflexivity in Section ??, and James’ theorem will return in further deep dives.

Deep Dive

We note that for any T ∈B(X ,Y ) both the kernel ker(T ) := {x ∈ X : T (x) = 0} of T and its image T X =:
{T x : x ∈ X} are subspaces (of X respectively Y ), but that while ker(T ) is always closed, as it can be viewed as
the preimage of the closed set {0} under a continuous operator, the image T X is in general not closed.

3.2 Examples

In order to prove that a map T : X → Y is a bounded linear operator we need to:

(1) Potentially check that T does map into Y , i.e. T x ∈ Y for all x ∈ X ;27

(2) Verify that T is linear;

(3) Find some M so that for all x ∈ X
‖T x‖Y ≤M‖x‖X .

27A well posed question should be clear whether or not you can assume that the map specified does take values in Y , or whether you
are expected to prove this. But in your own work if you write down a map, do make sure you check that it does take values where you
say it does!
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Whether (1) is needed will depend on context - is there is a discussion to be had about whether T (x) ∈ Y . In
cases where the codomain Y is a space like `p or Lp, it may be necessary to bound some sum or integral to do
this. In that case, most likely the bound you get will directly feed into the proof of (3), and it is worth doing
these at the same time. See for example the multiplication by functions on L2([0,1]) example below. In most
examples we encounter, linearity will be routine; it will typically be enough just to note briefly why the map is
linear28 but a proof in the spirit of Prelims Linear Algebra does not need to be given unless there is good reason
to.

Now let us give some examples.

Shift operators For 1≤ p≤ ∞, define the shift operators L,R : `p→ `p by

R((x1,x2,x3, . . .)) := (0,x1,x2,x3, . . .) and L((x1,x2,x3, . . .)) := (x2,x3,x4, . . .)

Here L and R are certainly linear and map `p into `p. The map R is isometric, i.e. ‖R(x)‖= ‖x‖ for all x ∈ X ,
and so certainly bounded with ‖R‖= 1. The map L is not isometric, as it has kernel {(xn) ∈ `p : x1 = 0}. But L
is bounded as

‖L(x)‖=
∞

∑
n=2
|xn| ≤

∞

∑
n=1
|xn|= ‖x‖, x = (xn) ∈ `p

which shows ‖L‖= 1. Taking x = (0,1,0,0, . . .), we have ‖x‖= 1 and ‖L(x)‖= 1 so ‖L‖= 1.
As we will see when we look at dual operators in the last section of the course, for 1 ≤ p < ∞ the left shift

on `p is related to the right shift on `q, where q is the Hölder conjugate of p. You’ll be able to exploit this in
B4.2, when you compute specta of operators.

You can equally look at shift operators on c0 with analogous results. Expect a nice relationship between the
left and right shift operators on c0 and the right and left shift operators on `1.

Co-ordinate projections On `p, define the co-ordinate projection evn : `p → F by evn(x) = xn, i.e. the map
which evaluates the sequence in the n-th position. Then evn is linear and bounded with ‖evn‖= 1.29

Multiplication by functions on C[0,1] Let X = C([0,1]), as always equipped with the supremum norm and
let g ∈ C0([0,1]). Then define Mg : C([0,1])→ C([0,1]) by Mg( f ) = f g. This does map into C([0,1]) as the
pointwise product of continuous functions is continuous. Certainly Mg is linear, and for f ∈C([0,1]), we have

‖Mg( f )‖∞ = sup
t∈[0,1]

| f (t)g(t)| ≤ ‖ f‖∞‖g‖∞,

so that Mg is bounded and ‖Mg‖≤ 1. Taking f ∈C([0,1]) to be f (t) = 1 for all t, we have ‖ f‖= 1 and Mg( f ) = g
so ‖Mg‖ ≥ ‖g‖∞ and hence ‖Mg‖= ‖g‖∞.30

Note that there was nothing special about [0,1] here. The same works for C(K) where K is any compact
metric space (or compact Hausdorff topological space).

28For example a sentence like ‘T is linear as integration is linear’
29As |xn| ≤ ‖x‖p, while for the standard element en ∈ `p we have ‖en‖= 1 and |evn(en)|= 1.
30This f is the constant function 1, so I would normally write it as 1 ∈ C([0,1]), the function with 1(t) = 1 for all t (where the 1

on the right hand side lies in F). This notation is useful as C([0,1]) is not just a Banach space; it is also an algebra with the additional
multiplication given by the pointwise multiplication. The constant function 1 is the identity for this multiplication: 1g = g for all
g ∈C([0,1]). This is what we used in the calculation above. More on Banach algebras in some deep dives.
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Multiplication by functions on L2([0,1])) Consider instead g ∈ L∞([0,1]) and let X = L2([0,1]) (equipped of
course with the L2 norm). Then we can define a map Mg : X → X by Mg( f ) = f g. This time we should note that
it is the case that f g ∈ L2([0,1]) when f ∈ L2([0,1]). Recalling that for g ∈ L∞([0,1]), we have |g(t)| ≤ ‖g‖∞

almost everywhere, we get the estimate∫ 1

0
|(Mg f )(t)|2dt =

∫ 1

0
| f (t)|2|g(t)|2dt ≤ ‖g‖2

∞

∫
| f (t)|2dt

which both shows f g ∈ L2([0,1]) and gives the estimate

‖Mg f‖L2 ≤ ‖g‖L∞‖ f‖L2 for all f ∈ X .

By linearity of the integral31, Mg is linear. Putting all this together, Mg is a bounded linear map from L2([0,1])
to L2([0,1]) and ‖Mg‖ ≤ ‖g‖L∞ .

Again we have ‖Mg‖= ‖g‖∞. To see this, fix C < ‖g‖∞ (if ‖g‖∞ = 0, then g = 0 a.e. and hence Mg( f ) = 0
a.e., and Mg = 0). By definition of ‖g‖∞ the set ΩC = {t ∈ [0,1] : |g(t)|>C} (which is measurable) has positive
measure. Let χΩC denote its indicator function, which lies in L2([0,1]). Then

‖MgχΩC‖
2 =

∫
ΩC

|g(x)|2 ≥C2
∫

ΩC

=C2‖χΩC‖
2

Accordingly ‖Mg‖ ≥C. Since C < ‖g‖∞ was arbitrary ‖Mg‖ ≥ ‖g‖∞.
At the same time one can show that for g(t) = t, and any f ∈ L2([0,1])

‖T f‖L2 < ‖ f‖L2

(this proof is a nice exercise related to the part A course in integration) so this gives an example of an operator for
which the supremum sup f 6=0

‖T f‖
‖ f‖ is not attained for any element of the Banach space X = L2([0,1]).

Planting seeds for the spectrum of an operator in B4.2, this multiplication operator Mg (for g(t) = t) is a, or
perhaps the, classic example of a bounded operator on L2([0,1]) with no eigenvalues; yet the spectrum of Mg

— those λ ∈ F for which Mg−λ I is not invertible is non-empty. In fact the spectrum in this case is [0,1].
There is a converse to the previous result: If a measurable g is such that f g ∈ L2([0,1]) for all f ∈

L2([0,1]), then g is an element of L∞([0,1]). This is a consequence of the Closed graph theorem, which will
be treated in B4.2 Functional Analysis 2. As a consequence of this fact you can show that if T ∈B(L2([0,1])
has T Mg = MgT for all g ∈ L∞([0,1]), then there exists h ∈ L∞([0,1]) such that T = Mh.

Deep Dive

Linear maps between Euclidean Spaces We know that any linear map T : Cn→ Cm can be written as

T x = Ax for some A ∈Mm×n(C).

For the purpose of discussing the operator norm of T , we will equip Cn with the Euclidean `2-norm in this
section. Certainly from the formula giving matrix multiplication, T is continuous, so bounded.

There are several different norms on the space of matrices, including the analogues of the p-norms on Rn.
One that can be useful is the analogue of the Euclidean norm (i.e. of the case p = 2) given by

‖A‖2 :=
(
∑
i, j
|ai j|2

)1/2

31Which takes work in the integration course, but we now just quote
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which is also called the Frobenius norm or the Hilbert-Schmidt norm and is widely used in Numerical Analysis.
A useful property of this norm is that it gives a simple way of obtaining an upper bound on the operator norm of
the corresponding map T : Cn→ Cm as follows: for x ∈ Cn the Cauchy-Schwartz inequality gives

‖T x‖2 =
m

∑
i=1

(Ax)2
i =

m

∑
i=1

( n

∑
j=1

ai jx j

)2
≤

m

∑
i=1

( n

∑
j=1

a2
i j

)
·
( n

∑
j=1

x2
j

)
= ‖A‖2

2‖x‖2.

Therefore ‖T‖ ≤ ‖A‖2. However, for most matrices we have ‖T‖ < ‖A‖. For example the identity operator
on C2 certainly has ‖I‖ = 1, but the Hilbert-Schmidt norm of the associated matrix is 2. In the case when
m = n, we can make some progress by diagonalisation. If A = A∗, i.e. A is hermitian (equal to its own conjugate
transpose),32 then you can diagonalise A, by finding an orthonormal basis of eigenvectors for A (and hence T ).
It is then straightforward to see that

‖T‖= max{|λ1|, . . . .|λn|}, λi the eigenvalues of A.

In general A need not be hermitian, but A∗A always will be. We have that

‖T‖= max{|λ1|1/2, . . . .|λn|1/2}, λi the eigenvalues of A∗A.

We could do this now – have a go – but we will see it right at the end of the course as a consequence of the
C∗-identity for bounded operators on a Hilbert space.

Integral operator on C([0,1]): Let X = C([0,1]) as always be equipped with the sup-norm. Given any k ∈
C([0,1]× [0,1]) we map each x ∈ X to the function T x : [0,1]→ F that is given by

T x(s) :=
∫ 1

0
k(s, t)x(t)dt

where the integral is well defined as the integrand is bounded (by ‖k‖∞‖x‖∞), and T x ∈C[0,1] by, for example,
the continuous parameter DCT.33 The function k is often called an integral kernel or a kernel (which is unfortu-
nate as it has nothing to do with the meaning of the word kernel in the context of the kernel of a linear map or
homomorphism). Think of T x as being given by a continuous version of matrix multiplication over the interval.

Then T is linear (as integration is linear) and for any s ∈ [0,1] we can bound

|T x(s)| ≤
∫ 1

0
|k(s, t)x(s)|ds≤ ‖k‖∞‖x‖∞.

Therefore T is a bounded linear operator on C([0,1]) with ‖T‖ ≤ ‖k‖∞.

32we will have much more to say about the adjoint operation in the last section of the course, both for operators on Hilbert spaces
and the dual of an operator between Banach spaces.

33Here’s the proof. Given s0 ∈ [0,1] and any sequence sn → s0, we need to show T x(sn)→ T x(s0). To this end we set fn(t) :=
k(sn, t)x(t) and f (t) := k(s0, t)x(t) and observe that

• fn(t)→ f (t) for every t ∈ [0,1], so in particular fn→ f a.e.

• | fn| ≤ g on [0,1] for the constant function g := ‖k‖∞‖x‖∞ which is of course integrable over the interval [0,3].

Hence, by the dominated convergence theorem of Lebesgue, we have that

lim
n→∞

(T x)(sn) = lim
n→∞

∫ 1

0
fn(t)dt =

∫ 1

0
lim
n→∞

fn(t)dt =
∫ 1

0
f (t)dt = (T x)(s0)

as claimed. In this case we could get away with a Riemann integral argument as everything in sight is continuous on closed and bounded
sets, so you can deduce continuity of T x usnig uniform continuity of the continuous function k on the compact space [0,1]× [0,1].
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An unbounded operator To show that a proposed linear operator T : X → Y is unbounded, you’ll want to
find a bounded sequence (xn) (typically all of norm 1) such that (T (xn)) is unbounded. Here is an example of
an unbounded linear functional. Let X be the set of polynomial functions on [0,1] equipped with the sup norm,
and let T : X → C be given by T (p) = p′(1). Then T is unbounded. Indeed, the polynomial pn(t) = tn has
‖pn‖∞ = 1 for all n (as we work over [0,1]) but (T pn) = n→ ∞.

Perhaps some of you are complaining that the space of polynomials X above is not a Banach space? What
is an example of an unbounded linear functional X → F when X is Banach? Or indeed an unbounded linear
map X → Y where X is Banach and Y is a normed space?

Firstly, it follows from the axiom of choice that every infinite dimensional normed space X admits an
unbounded linear functional. The idea, which will be given in C4.1, is to take an infinite linearly independent
set of vectors (xn) each of norm 1, and extend this arbitrarily to a Hamel basis (using Zorn’s lemma). Then
you can define a functional T : X → F by sending each xn to n and sending other basis elements to 0. This is
a linear map, as linear maps are uniquely determined by their behaviour on a Hamel basis, in just the same
way as in prelims linear algebra, and by construction ‖T (xn)‖ ≥ n→ ∞ with ‖xn‖= 1 so T is unbounded.

It is possible to find models of ZF without AC for which every linear map from a Banach space to a
normed space is bounded.a However my take is that the axiom of choice is a true statement when we’re
studying functional analysis! So what this means is that you won’t be writting down any everywhere defined
unbounded linear maps on a Banach space any time soon: every linear map T : X→Y you explicitly construct
on a Banach space X is going to be bounded. But beware, that means that you have to define your operator
on all elements of the domain, and it must map into a normed space Y , i.e. T (x) ∈ Y for all x ∈ X . There are
many interesting examples of ‘densely defined’ unbounded operators (and a very interesting theory crucial
to formalising quantum mechanics, which we can start to build once we have the closed graph theorem for
bounded operators).

Finally, be in no doubt that you still need to prove your operators are bounded directly. While it’s useful to
know that without the axiom of choice, it’s possible for all everwhere defined linear operators to be bounded,
appealing to this deep dive isn’t a valid way to proceed in an exam!

aGarnir’s paper ‘Solovay’s axiom and Functional Analysis, Springer Lecture Notes in Mathematics, 399, 189-204, 1974’ shows
that this holds for a model with dependent choice and the hypothesis that every set of reals is Lebesgue measurable.

Deep Dive

Projections onto complemented subspaces

Given a Banach space X , recall that a closed subspace Y ⊂ X is called complemented when there exists a
closed subspace Z such that Y +Z = X and Y ∩Z = {0} (so that, using the Banach isomorphism theorem from
B4.2, X is isomorphic as a Banach space to the product Y ×Z). This can be characterised using operators:
a closed subspace Y is complemented in X if and only if there exists P ∈B(X) with P2 = P and P(X) = Y ,
i.e. Y is the range of a bounded idempotent (also called a projection). Given such a Z the map P is given by
P(y+ z) = y (which is well defined). The point is that this is bounded (which we get as a consequence of the
Banach isomorphism theorem). In the reverse direction, given such a P, one can take Z = (I−P)(X) (and
check this is a closed subspace which complements Y ). More on this in C4.1.

In the Hilbert space setting when we use the term projection we typically mean the orthogonal projection
onto a closed subspace: given a closed subspace Y ⊂H , the orthogonal projection onto Y is the projection

Deep Dive
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P ∈B(H ) onto Y corresponding to the decomposition H = Y ⊕Y⊥, i.e. P(x) is the unique closest point
to Y for all x ∈H (by the proof of the projection theorem). Once we have the notion of the Hilbert space
adjoint (defined in Section ??) you can check that in addition to P = P2, we also have P = P∗. In fact the
properties P = P2 = P∗ for a bounded operatorP ∈B(H ) characterise being the orthogonal projection onto
P(H ) (which is necessarily closed). This can be deduced from the exercises in B4.2.

3.3 Properties of (the space of) bounded linear operators

The space of bounded linear operators is a normed space, so we want to know when it is complete. This happens
when the target space is complete.34 Note how the proof follows the standard ‘completeness strategy’ discussed
in section 1.

Theorem 3.4. Let X be any normed space and let Y be a Banach space. Then B(X ,Y ) (equipped with the
operator norm) is complete and therefore is a Banach space.

Proof. Let (Tn) be a Cauchy-sequence in B(X ,Y ). Then for every x ∈ X we have that

‖Tnx−Tmx‖ ≤ ‖Tn−Tm‖‖x‖→ 0

as m,n→ ∞, so (Tnx) is a Cauchy sequence in Y and, as Y is complete, thus converges to some element in Y
which we call T x.

We now show that the resulting map x 7→ T x is an element of B(X ,Y ) and Tn→ T in B(X ,Y ), i.e. ‖T −
Tn‖→ 0.

We first note that the linearity of Tn (and (AOL)) implies that also T is linear. Given any ε > 0 we now let N
be so that for m,n≥ N we have ‖Tn−Tm‖ ≤ ε . Given any x ∈ X , continuity of the norm gives

‖T x−Tnx‖= ‖ lim
m→∞

Tmx−Tnx‖= lim
m→∞
‖Tmx−Tnx‖ ≤ ε‖x‖.

Hence T is bounded (as ‖T x‖ ≤ (‖Tn‖+ ε)‖x‖ for all x) and so an element of B(X ,Y ) with ‖T −Tn‖ ≤ ε for
all n≥ N, so as ε > 0 was arbitrary we obtain that Tn→ T in the sense of B(X ,Y ).

We note in particular that if X is a Banach-space then the space B(X) := B(X ,X) of bounded linear op-
erators from X to itself is a Banach space and that for any normed space X the dual space X∗ = B(X ,R)
(respectively X∗ = B(X ,C) if X is a complex vector space) is complete as both R and C are complete.

Given any normed spaces X , Y and Z and any linear operators T ∈B(X ,Y ) and S∈B(Y,Z) we can consider
the composition ST = S◦T : X → Z and observe that:

Proposition 3.5. The composition ST of two bounded linear operators S ∈B(Y,Z) and T ∈B(X ,Y ) between
normed spaces X ,Y,Z is again a bounded linear operator and we have

‖ST‖B(X ,Z) ≤ ‖S‖B(Y,Z) ‖T‖B(X ,Y ).

Proof. The only thing we should prove is the estimate,35 which follows as for x ∈ X , we have

‖ST x‖= ‖S(T x)‖ ≤ ‖S‖‖T x‖ ≤ ‖S‖‖T‖‖x‖.

34In fact B(X ,Y ) is complete if and only if Y is complete; the converse direction will follow from the Hahn-Banach theorem; see
sheet 4.

35we are already very familar with the fact that the composition of linear operators is linear, and the composition of continuous maps
is continuous

34



Stuart White MT 2025, B4.1: Functional Analysis I

Remark. The proposition implies in particular that for sequences Tn → T in B(X ,Y ) and Sn → S in B(Y,Z)
also

SnTn→ ST in B(X ,Z)

since
‖SnTn−ST‖ ≤ ‖(Sn−S)Tn‖+‖S(Tn−T )‖ ≤ ‖Sn−S‖‖Tn‖+‖S‖‖Tn−T‖→ 0

where we use in the last step that ‖Tn‖ is bounded since Tn converges. That is multiplication (i.e. composition)
of operators

Let X be a Banach space. Then the space of bounded linear operators B(X) is an example of a unital Banach
algebra. A unital Banach algebra is a Banach space A together with an associative multiplication A×A→ A
which has an identity element 1 with 1x = x1 = x for all x ∈ A (for B(X), the identity is IX ) such that the
multiplication interacts with the Banach space addition and scalar mutliplication in the way you would expect,
a and satisfying

‖ab‖ ≤ ‖a‖‖b‖, for all a,b ∈ A.

The last condition, which is Proposition 3.5 for B(X), shows that the multiplication is jointly continuous.
Note that the multiplication need not be commutative the example of composition of operators in B(X) is not
generally commutative.

We have seen some other Banach algebras already: C(K) with pointwise multiplication, and L∞([0,1])
with pointwise multiplication (defined almost everywhere), are both Banach algebras with the supremum
and essential supremum norms. In fact the map M• sending g ∈ C([0,1]) to the mutliplication operator
Mg ∈ B(C([0,1])) discussed in the previous section is a Banach algebra homomorphism: M• is linear in
g, and preserves the multiplication Mgh = MgMh (which in this case is MhMg). In our example we found
that ‖Mg‖ = ‖g‖∞ so M• is isometric, so certainly bounded. In general just as linear maps need not be
automaically bounded, so too Banach algebras homomorphisms are not always bounded (though there are
many nice situations where they are)! Here’s another unital Banach algebra:

`1(Z) = {(xn)n∈Z : ∑
n∈Z
|xn|< ∞}

with the `1 norm and convolution multiplication

(xy)n = ∑
r

xryn−r.

What is the identity?
When X is a Banach space, any closed subalgebrab A ⊂B(X) containing the identity is a unital Banach

algebra. Conversely, if A is a unital Banach algebra with identity 1, consider the homomorphism M• : A→
B(A) given by Ma(b) = ab. [This generalises the multiplication map on C([0,1]).] This is a homomorphism
as (MaMb)(c) = Ma(Mb(c)) = a(bc) = (ab)(c) = Mab(c) and ‖Ma(b)‖ ≤ ‖a‖‖b‖ so Ma ∈B(A) with ‖Ma‖ ≤
‖a‖ and from taking b = 1, we get ‖Ma‖ ≥ ‖a‖/‖1‖, so Ma is bounded below, and hence the image {Ma : a ∈
B(A)} is closed in B(A).

Unital Banach algebras provide the right abstract framework for spectral theory, which we will develop
in B4.2 for operators in B(X). As you do that it’s worth going through and seeing that it all works fine in a

Deep Dive
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unital Banach algebra with no real changes to the arguments.
aHave a go at axiomising this motivated by the relations you find in B(X)
bi.e. a closed subspace also closed under the multiplication

We also note that for operators T ∈B(X) from a normed space X to itself we can consider the composition
of T with itself, and more generally powers T n = T ◦T ◦ . . .◦T ∈B(X) which, by the above proposition have
norm

‖T n‖ ≤ ‖T‖n.

We can use this to define suitable power series of operators.36

Example 3.6. Let X be a Banach space and let A ∈B(X). Then37

exp(A) :=
∞

∑
k=0

1
k!

Ak

converges in B(X) and hence exp(A) is a well defined element of B(X).

Proof. We know that
∞

∑
k=0
‖ 1

k!
Ak‖ ≤

∞

∑
k=0

‖A‖k

k!
= exp(‖A‖)< ∞,

i.e. that the series converges absolutely. As X is complete and thus, by Theorem 3.4, also B(X) is complete we
hence obtain from Corollary 1.6 that the series converges.

This is the starting point of a fundamental tool in studying operators: functional calculi. A functional calculus
gives a consistent way of defining f (T ) for a suitable bounded operators T , and suitable classes of functions
f : D→C, for suitable D⊂C. At the moment you can use Taylor’s theorem to extend the example above and
define f (T ) whenever f is a holomorphic function C→ C, and also define f (T ) when f is given by a power
series with radius of convergence exceeding ‖T‖. The sort of thing you might like is given two functions f
and g, to have that ( f ◦g)(T ) = f (g(T )). You’ll get a chance to do something like this with power series on
exercise sheet 3. This gives you a first functional calculus, but once we’ve defined the spectrum it’s possible
to build more sophisticated functional calculus, such as the holomorphic functional calculus which allows
you to define f (T ) whenever f is a holomorphic function on the spectrum of a bounded operator T (or more
generally an element in a Banach algebra), or later the continuous and Borel functional calculi, which work
for self-adjoint (and more generally normal) operators on a Hilbert space.

Deep Dive

3.4 Invertibility

Just as in finite dimensions we shall be interested in when bounded operators are invertible in B(X), i.e. when
a bounded linear operator is bijective and the inverse map is bounded.

Definition 3.7. An element T ∈B(X) is called invertible (short for invertible in B(X)) if there exists S ∈B(X)
so that ST = T S = IX .38 When it exists, S is called the inverse of T written T−1.

36The following works equally well for an element of a Banach algebra
37Here A0 = I, the identity operator on X .
38It is necessary that S is a two sided inverse. Going back to our left and right shift operators we have LR = I on `p but RL 6= I.
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If we only talk about T : X → X being ‘invertible as a function between sets’, we sometimes say that T
is algebraically invertible and that a function S : X → X is an algebraic inverse of T if ST = T S = I (but not
necessarily S ∈B(X)).

The Banach isomorphism theorem (a consequence of the Banach open mapping theorem) will tell you that
if T ∈B(X) is algebraically invertible and X is a Banach space, then T is invertible. This will be proved in
B4.2.

Deep Dive

In many applications, including spectral theory which will be discussed in B4.2 Functional Analysis II, the
following lemma turns out to be useful to prove that an operator is invertible. The statement should be reminisant
of the convergent geometric series from prelims. In fact the proof (when set out in the right way) is also the
same telescoping sum argument as prelims.

Lemma 3.8 (Convergence of Neumann-series). Let X be a Banach space and let T ∈B(X) be so that ‖T‖< 1.
Then the operator I−T is invertible with

(I−T )−1 =
∞

∑
j=0

T j ∈B(X).

Proof of Lemma 3.8. As ‖T‖< 1 we know that ∑‖T k‖ ≤∑‖T‖k < ∞ so, by Corollary 1.6, the series converges

Sn :=
n

∑
k=0

T k→ S =
∞

∑
k=0

T k in B(X).

As
(I−T )Sn = I−T +T −T 2 +T 2− . . .−T n +T n−T n+1 = I−T n+1

and ‖T n+1‖ ≤ ‖T‖n+1→ 0, we can pass to the limit n→ ∞ in the above expression to obtain that (I−T )S = I
and similarly S(I−T ) = I so S = (I−T )−1.

Corollary 3.9. Let X be a Banach space. Then the invertible operators on X are open. Precisely, if T ∈B(X)
be invertible, then for any S ∈B(X) with ‖S‖< ‖T−1‖−1 we have that T −S is invertible.

Proof. Fix invertible T ∈B(X), and let S ∈B(X) have ‖S‖ < ‖T−1‖−1. As T is invertible (which by defini-
tion means that also T−1 ∈B(X)) we obtain can write T −S = T (I−T−1S) and note that T−1S ∈B(X) with
‖T−1S‖B(X) ≤ ‖T−1‖‖S‖ < 1. By Lemma 3.8 we thus find that (I−T−1S) is invertible with (I−T−1S)−1 =

∑
∞
j=0(T

−1S) j ∈B(X) and hence T −S is the composition of two invertible operators and thus invertible, com-
pare also A.1 on Problem Sheet 2.

Since T−1 6= 0, ‖T−1‖ 6= 0, and it follows that the invertible operators are open.

Notice that if T ∈B(X) is invertible then for x ∈ X ,

‖x‖= ‖T−1T (x)‖ ≤ ‖T−1‖‖T (x)‖.

This suggests:

Definition 3.10. Let X ,Y be normed spaces and T ∈B(X ,Y ). Say that T is bounded below if there exists C > 0
such that

‖T (x)‖ ≥C‖x‖ for all x ∈ X .
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We have seen that invertible operators are bounded below (by the norm of the inverse). Hence being bounded
below is necessary for invertibility, and for an algebraically invertible T ∈B(X), we have that T is invertible if
and only if it is bounded below. An operator which is bounded below is certainly injective. When the domain is
complete, operators which are bounded below also have closed range.

Proposition 3.11. Let X be a Banach space, Y be a normed space and T ∈B(X ,Y ) be bounded below. Then
T (X) is closed in Y .

Proof. Suppose that (xn) is a sequence with T (xn)→ y ∈ Y . Let C > 0 be such that ‖T x‖ ≥ C‖x‖ for all x,
so that ‖xn− xm‖ ≤C−1‖T xn−T xm‖ → 0, as (T xn) is Cauchy. By completeness of X , there exists x ∈ X with
xn→ x. By continuity of T , T xn→ T x, so y = T x ∈ T (X).

4 Finite dimensional normed spaces

In this section we will explain why for finite dimensional spaces most of the questions raised in the previous
chapters do not arise, and hence why you never had to discuss issues of continuity, and completeness in your
early courses on finite dimensional normed spaces. We shall see in particular that

• all norms on a finite dimensional space are equivalent,

• all linear maps defined on a finite dimensional space are bounded,

• all finite dimensional spaces are complete.

We shall furthermore see that the Heine-Borel Theorem from part A and Prelims for R and Rn, that assures
that bounded and closed sets in Rn are compact, remains valid in general finite dimensional normed spaces.
Moreover, the Heine-Borel property characterises finite dimensional normed spaces: if the unit ball of a normed
space is compact, then the space must be finite dimensional.

For this reason we shall need to work with ‘weaker forms’ of compactness in infinite dimensions, such as the
’weak sequential compactness’ of the unit ball of a reflexive space (such as Lp for 1 < p < ∞) which you will
see in B4.2, and is a crucial tool in PDE, or the Banach-Alaglou theorem that the unit ball of a dual space X∗

is compact in the weak∗-topology from C4.1 (which underpins the weak sequential compactness of unit balls
in reflexive spaces).

Deep Dive

4.1 Equivalence of norms and its consequences

We start out by proving that all finite dimensional normed spaces are equivalent by comparing them to the
Eucidlian spaces `2

n. The proof works identically for real and complex scalars.

Proposition 4.1. Let V be a normed space with basis e1, . . . ,en. Then the linear map T : `2
n → V given by

T (λ1, . . . ,λn) = ∑
n
i=1 λiei gives an isomorphism of normed spaces.

Proof. From Cauchy Schwartz we have

‖T (λ )‖= ‖
n

∑
i=1

λiei‖ ≤
n

∑
i=1
|λi|‖ei‖ ≤ (

n

∑
i=1
|λi|2)1/2(

n

∑
i=1
‖ei‖2)1/2.
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That is ‖T (λ )‖ ≤C‖λ‖2, for C = (∑n
i=1 ‖ei‖2)1/2. Therefore T is bounded.

The unit sphere S`2
n
= {λ ∈ `2

n : ‖λ‖2 = 1} is closed and bounded so compact, and the map λ → ‖T λ‖ is
continuous, so attains its minimum value m on S`2

n
at λ ∈ S`2

n
. Since ‖λ‖2 = 1, we have T (λ ) 6= 0, and hence

m 6= 0. Therefore, for λ ∈ S`2
n
, we have ‖T (λ )‖ ≥ m, and so by homogenity, ‖T (λ )‖ ≥ m‖λ‖2 for all λ ∈ `2

n.
That is T is bounded below, so an isomorphism.

Note that we could obtain control on ‖T‖, for example ‖T‖ ≤ n1/2 by taking each ‖ei‖ = 1, the proof
above does not give a way of controlling ‖T−1‖ explciitly; it only produces the constant m showing that T−1 is
bounded. We will have more to say about this on the exercise sheet and in a deep dive.

It follows that two normed spaces of the same dimension (over the same field) are isomorphic and all norms
on a finite dimensional space are equivalent.

Corollary 4.2. Any two finite dimensional normed spaces with the same dimension (over the same field R or C)
are isomorphic. Any two norms on a finite dimensional space are equivalent.

Proof. The first statement follows as given n-dimensional normed spaces V and W with bases e1, . . . ,en for V
and f1, . . . , fn for W respectively, the unique linear bijection T : V →W which has T (ei) = fi is an isomorphism
(by applying Propositon 4.1 twice). For the second statement given two different norms ‖ · ‖1 and ‖ · ‖2 on V ,
applying the argument of the previous sentence, the identity map (V,‖ · ‖1)→ (V,‖ · ‖2) is an isomorphism, i.e
the two norms are equivalent.

Also all linear maps whose domain is a finite dimensional normed space are automatically continuous.

Corollary 4.3. Let X be a finite dimensional normed space and let Y be any normed space (not necessarily finite
dimensional). Then any linear map T : X → Y is an element of B(X ,Y ), i.e. a bounded linear operator.

Proof. Given any such T we set for every x ∈ X

‖x‖T := ‖x‖X +‖T x‖Y .

We can easily check that this defines a norm on the finite dimensional space X which, by the previous corollary,
must hence be equivalent to ‖ · ‖X . In particular, there exists a constant C ∈ R so that

‖T x‖Y ≤ ‖x‖T ≤C‖x‖X

which ensures that T is bounded and hence an element of B(X ,Y ).

Since `2
n is complete, and completeness is a property preserved by (strong) equivalence of metric spaces (and

hence isomorphism of normed spaces), it follows that all finite dimensional normed spaces are complete. This
gives the following important corollary

Corollary 4.4. Every finite dimensional subspace of a normed vector space X is complete and hence closed.

Proof. Let Y be a finite dimensional subspace of X . Then Y ∼= `2
n, where n = dimY , so Y is complete. Then

suppose yn ∈ Y has yn→ x ∈ X . Then (yn) is convergent in X , so Cauchy in X , and hence Cauchy in Y . Since
Y is complete, there exists y ∈ Y with yn→ y. By uniqueness of limits in a metric space, y = x and hence Y is
closed in X .

Warning. Not every subspace of a normed vector space X is closed.
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Example 4.5. Consider C([0,2]) as a subspace of (L1([0,2]),‖ · ‖L1). Then the sequence ( fn)n∈N ⊂ C([0,2])
defined by

fn(t) =

{
tn, 0≤ t ≤ 1
1, t > 1

is a Cauchy sequence in L1([0,2]) with limit f (t) =

{
0 0≤ t ≤ 1
1 t > 1

however f /∈C([0,2]).

At a more abstract level we could also argue as follows: C([0,2]) is a proper subspace of L1([0,1]) however,

as we shall see later, C([0,2]) is dense in L1([0,1]), so the closure of C([0,2]) in L1([0,1]) is C([0,2])
L1

=
L1([0,1]) 6=C([0,2]).

4.2 Compactness

We now turn to the Heine-Borel property, and show that norm-compactness of unit balls characterises finite di-
mensional normed spaces. Recall that a subset K of a metric (or a topological space, though formally this course
only considers metric spaces) is compact if ever open cover of K has a finite subcover. For metric spaces (and
so in particular for normed spaces), compactness is equivalent to sequential compactness, i.e. every sequence
in K has a subsequence which converges to an element of K. A further useful equivalent characterisation of
compactness in metric spaces is that K is compact if and only K is complete and totally bounded (which means
that for every ε > 0 there exists a finite ε-net, i.e. a finite set of points x1, . . . ,xm ∈ K so that K ⊂

⋃m
i=1 Bε(xi)).

Theorem 4.6. Let X a normed space. Then the following are equivalent

(1) dim(X)< ∞.

(2) Every subset Y ⊂ X that is bounded and closed is compact.

(3) The unit sphere S := {x ∈ X : ‖x‖= 1} is compact.

The implication (1)⇒(2) follows from the Heine–Borel theorem, as if X is finite dimensional, then it is
isomorphic to a Euclidean space `2

n (where n = dimX) and for this space the Heine–Borel theorem shows that
all closed and bounded subsets are compact.39 (2) =⇒ (3) follows as the unit sphere is closed (by continuity of
the norm) and bounded (by definition).

For the remaining implication (3)⇒(1) it is useful to first understand how this works in the setting of an inner
product space.40 Suppose that X is an infinite dimensional inner product space, and using Gramm-Schmidt
produce an orthonormal sequence (en)

∞
n=1 in X . By Pythagoras, we have ‖en− em‖ =

√
2 for n 6= m, so the

bounded sequence (en) has no Cauchy subsequence, and hence the sphere of X can not be sequentially compact.
This proves (3)⇒(1) for inner product spaces.

In general, we can not rely on Pythagoras, so we use the following useful lemma of Reisz to be able to
inductively construct a sequence of points which

Proposition 4.7 (Riesz’s Lemma). Let X be a normed vector space and Y $ X a closed subspace. Then to any
ε > 0 there exists an element x ∈ S⊂ X in the unit sphere so that

dist(x,Y ) := inf{‖x− y‖ : y ∈ Y} ≥ 1− ε.

39Note that the properties of a subset being closed, bounded, or compact are all preserved by homeomorphisms, so preserved by
isomorphisms of normed spaces: if T : X → Y is an isomorphism and K is closed (or bounded, or compacT), then T (K) is closed (or
bounded or compact).

40It is often useful to understand how to prove general Banach space results in the Hilbert space case first.
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Proof. We can assume without loss of generality that ε ∈ (0,1).
As Y 6= X is closed we know that the set X \Y is open and non-empty, so we can choose some x∗ ∈ X \Y

and use that d := dist(x∗,Y )> 0, as X \Y must contain some ball Bδ (x) which ensures that d ≥ δ > 0.
By the definition of the infimum, we can now select y∗ ∈ Y so that d ≤ ‖x∗− y∗‖ < d

1−ε
and claim that

x := x∗−y∗
‖x∗−y∗‖ has the desired properties. Clearly ‖x‖= 1, i.e. x ∈ S as desired, and we furthermore have that

dist(x,Y ) = inf
y∈Y
‖x− y‖= inf

y∈Y
‖ x∗

‖x∗− y∗‖
− y∗

‖x∗− y∗‖
− y‖= inf

ỹ∈Y
‖ x∗

‖x∗− y∗‖
− ỹ‖

= inf
ŷ∈Y
‖ x∗− ŷ
‖x∗− y∗‖

‖= dist(x∗,Y )
‖x∗− y∗‖

≥ 1− ε

where we used twice that Y is a subspace, to replace the infimum over y ∈ Y first by an infimum over ỹ =
y∗

‖x∗−y∗‖ + y and then an infimum over ŷ which is related to ỹ by ỹ = ŷ
‖x∗−y∗‖ .

It is natural to ask whether you can take ε = 0 in Reisz’s lemma. For example if X is a Hilbert space and
Y is a proper subspace then you can take any x in the unit sphere of Y⊥ and for y ∈ Y , we have ‖x− y‖2 =
‖x‖2 +‖y‖2 ≥ 1, so dist(x,Y ) = 1.

In fact for a given Banach space X , being able to take ε = 0 in Reisz’s lemma for all proper closed
subspaces Y is equivalent to the question of whether every bounded linear functional on X attains its norm
(which we noted in an earlier deep dive is equivalent to reflexivity of X by James’ Theorem). One direction
proceeds by considering kernels of functionals. Given f ∈ X∗ with ‖ f‖ = 1, let Y = ker f a proper closed
subspace of X . If we can take ε = 0 in Reisz’s lemma then we get some x ∈ X with ‖x‖= 1 and d(x,Y ) = 1.
But, for y ∈ Y , | f (x)| = | f (x− y)| ≤ ‖x− y‖, so d(x,Y ) ≥ | f (x)|. On the other hand we can find a sequence
(zn) with f (zn) = 1 and ‖zn‖ → 1. Then yn = x− f (x)zn ∈ Y and ‖x− yn‖ = ‖ f (x)zn‖ → | f (x)|, and hence
d(x,Y ) = | f (x)|.

For the reverse direction we really need quotient spaces. Suppose that bounded linear functionals on X
attain their norms, and let Y be a proper closed subspace of X . Fix a norm 1 functional f on the quotient space
X/Y (which we didn’t define), and consider the norm 1 bounded linear functional g = f ◦ q : X → F where
q : X → X/Y is the quotient map. Let x ∈ X have ‖x‖ = 1 and |g(x)| = 1 (by hypothesis). For y ∈ Y , as by
construction g(y) = 0, we have ‖x−y‖ ≥ |g(x)|= 1, hence d(x,Y )≥ 1. But as ‖x‖= 1, we have d(x,Y ) = 1.

For a non-reflexive space X , one can also take ε = 0 in Reisz’s lemma when Y is finite dimensional.

Deep Dive

Proof of Theorem 4.6 (3)⇒(1). Suppose dim(X) = ∞ and there We may thus choose a sequence of linearly
independent elements yk ∈ X , k ∈ N. Then the subspace Yk := span{y1, . . . ,yk} $ Yk+1 is finite dimensional,
so by Corollary 4.4, a closed proper subspace of Yk+1. Applying Proposition 4.7 with ε = 1

2 (viewing Yk as
a subspace of Yk+1 instead of X) thus gives us a sequence of elements yk ∈ Yk+1 ∩ S with dist(yk,Yk) ≥ 1

2 . In
particular for every k > l we have ‖yk− yl‖ ≥ dist(yk,Yl+1)≥ dist(yk,Yk)≥ 1

2 so no subsequence of (yk) can be
a Cauchy-sequence. Therefore S is not sequentially compact (and as a metric space) S is not compact.

4.3 The Banach–Mazur compactum

It is tempting to think with the results of the previous two subsections that there is not much left to say about
finite dimensional normed spaces; and this is true if we only care about their normed space structure up to
isomorphism. But if we are interested in the metric properties of finite dimensional Banach spaces, there are
many interesting directions.
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Definition. Let X ,Y be n-dimensional normed spaces. The Banach–Mazur distance between X and Y is

ρ(X ,Y ) = inf : {‖T‖‖T−1‖ : T is an isomorphism between X and Y}.

Note that this is not a metric in the usual sense on a collection of isomorphic normed spaces: ρ(X ,Y )≥ 1,
with equality if and only if X and Y are isometrically isomorphic.a Also, we have a multiplicative triangle
inequality: ρ(X ,Z)≤ ρ(X ,Y )ρ(Y,Z) when X ,Y and Z are all isomorphic. From this it’s not hard to see that
logρ(·, ·) gives a metric on the collection of isometric isomorphism classes of n-dimensional normed spaces.

Theorem. Let n ∈N. The collection Q(n) of isometric isomorphism classes of n-dimensional normed spaces
is compact in with the Mazur distance.

Once we know that Q(n) is compact, it follows that it is bounded; there is a constant C(n) such that for
all n-dimensional spaces X ,Y we have ρ(X ,Y ) ≤ C(n). In the exercises we shall give some methods for
estimating C(n) directly:

• firstly by comparing with `1
n we can show ρ(X , `1

n) ≤ n for all n-dimensional spaces X , and hence
C(n)≤ n2.

• secondly we get a better (but more tricky) estimate C(n) ≤ n by comparing with `2
n and obtaining

ρ(X , `2
n)≤ n1/2 for all n dimensional spaces.

Given there is some constant C(n) showing that Q(n) is bounded, here is an outline of a proof of com-
pactness of Q(n); this is likely to become an extensional exercise in a future year!

Proof. Let X = Fn be a fixed n-dimensional space, which we equip with the Euclidian norm denoted in this
proof by ‖ · ‖euc . A sequence in Q(n) can be realised by a sequence of norms ‖ · ‖m on X satisfying

C(n)−1/2‖x‖euc ≤ ‖x‖m ≤C(n)1/2‖x‖euc, x ∈ X .b

Then performing a diagonal argument we can find a subsequence of these norms, say (‖ · ‖km) such that
(‖x‖km) converges for all x in the countable dense set Q(i)n of X . From the bounds above, it follows that
(‖x‖km) converges for all x ∈ X , and the resulting function ‖x‖ inherits the properties ‖x+y‖ ≤ ‖x‖+‖y‖ and
‖λx‖ ≤ |λ |‖x‖ from the norm properties of each ‖ · ‖km . Also

C(n)−1/2‖x‖euc ≤ ‖x‖ ≤C(n)1/2‖x‖euc, x ∈ X ,

so that ‖x‖= 0 only if x = 0, and accordingly ‖ · ‖ is a norm.
Finally, note that the subsequence (X ,‖ · ‖km) converges to (X ,‖ · ‖) in the Banach–Mazur sense. The

point is that we have to upgrade from a pointwise convergence result to obtain a uniform estimate using
compactness. Indeed if Sm : (X ,‖ · ‖km)→ (X ,‖ · ‖) is the identity map, then we have ‖Smx‖ → ‖x‖ for all
x ∈ X and we need to show ‖Sm‖ and ‖S−1

m ‖→ 1. Fix ε > 0 and by compactness fix a finite εC(n)−1/2 net N
for the ball of radius C(n)1/2 in ‖ · ‖euc,c Fix ε > 0 and find m0 large enough so that for m ≥ m0, and x ∈ N,
we have |‖x‖km −‖x‖| ≤ ε . Then for y with ‖y‖km = 1, there exists x ∈ N with ‖x− y‖euc ≤ εC(n)−1/2 so
‖x− y‖km ≤ ε and ‖x− y‖ ≤ ε . Therefore

‖y‖ ≤ ε +‖x‖ ≤ ‖x‖km +2ε ≤ ‖y‖km +3ε = (1+3ε)‖y‖km ,

Deep Dive
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and hence ‖Sm‖ ≤ (1+3ε). Similarly ‖S−1
m ‖ ≤ (1+3ε). This shows that (X ,‖ ·‖km) converges to (X ,‖ ·‖) in

the Banach–Mazur sense.
aFor this, if (Tn) : X→Y is a sequence of isomorphisms with ‖Tn‖‖T−1

n ‖→ 1, we can scale so that both ‖Tn‖,‖T−1
n ‖→ 1. Then

for large enough n, both Tn and T−1
n lie in the ball of radius 2 in B(X ,Y ) which is a finite dimensional normed space so compact.

Therefore, we can pass to convergent subsequences to that Tkn → S : X →Y and T−1
kn
→ R : Y → X . We then check that S is invertible

with inverse R and that each ‖S‖ = ‖R‖ = 1, so S is an isometric isomorphism between X and Y . In general this shows that the
infiumum in the definition of the Banach–Mazur distance is attained (since we work with finite dimensional normed spaces).

bGiven any finite dimensional normed space Y we can find an isomorphism T : Y → X with ‖T‖,‖T−1‖ ≤C(n)12/ (arguing in
the same way as the previous footnote). Then X equipped with the norm x 7→ ‖T−1x‖ is an isometric copy of Y and this norm has
C(n)−1/2‖x‖euc ≤ ‖T−1x‖ ≤C(n)1/2‖x‖euc as needed.

ci.e. a finite set N in the unit ball of (X ,‖ · ‖) such that for all y ∈ X with ‖y‖euc ≤C(n)1/2, there exists x ∈ N with ‖x− y‖ ≤
εC(n)−1/2. The point of these constants C(n)1/2 is that N gives an ε net for all the balls (X ,‖ · ‖km) and (X ,‖ · ‖).

A major direction of study, known as the Ribe programme, originates in Ribe’s rigidity theorem which (loosely
speaking) says that two Banach spaces X and Y are uniformly equivalent as metric spaces (i.e. there is a bijec-
tion f : X→Y which is uniformly continuous and f−1 is uniformly continuous, but note no assumption about
how f interacts with the vector space structure is made) if and only if they have the same finite dimensional
subspaces (precisely there is K > 0 such that for every finite dimensional subspace F of X , there exists a
bounded linear map T : F → Y with ‖x‖X ≤ ‖T x‖Y ≤ K‖x‖X for all x ∈ X and vice versa exchanging X and
Y ). Therefore isomorphism invariant properties of Banach spaces that depend only on finite dimensional sub-
spaces can be described entirely in terms of the metric geometry (and do not need the linear structure). The
Ribe programme studies this phenomena explicitly aiming to uncover the hidden properties of metric spaces
that correspond to finite dimensional Banach space properties. This has led to insights from Banach spaces
giving rise to completely unexpected applications in other fields. A nice thing to read is the introduction to
Assaf Naor’s survey: ”An Introduction to the Ribe programme”.

Deep Dive

5 Density of subspaces and the Stone–Weierstrass Theorem

Just as in prelims analysis we sometimes approximated real numbers by sequences of rational numbers, or in
integration we approximated integrable functions by simple functions, we often want to be able to approximate
elements of our normed space by elements with some nicer property. The relevant definitions really belong to
the land of metric spaces (and apply to normed spaces with the metric space coming from the norm).41

Definition. Let X be a metric space. Recall that a subset A ⊂ X is dense if the closure A of A is all of X , i.e.
A = X . The metric space X is separable if it has a countable dense subset.

It follows that A is dense in X if and only if for all x ∈ X and ε > 0 there exists a ∈ A with d(x,a)< ε which
happens if and only if for all x ∈ X , there is a sequence (an) in A with an→ x.

We will come back to separability in Section 6. Here we discuss how to extend operators from dense sub-
spaces and give the Stone–Weierstrass theorem, which gives a fundamental tool for obtaining dense subspaces
of C(K). We will look at more examples in Section 6.2.

41The same definitions apply equally to topological spaces.
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5.1 Density of subspaces and extensions of bounded linear operators by density

An important feature of dense subsets D of normed spaces is that a bounded linear operator on X is fully
determined by its values on D. This is particularly useful if we are working on a space that contains a subspace
of “well-understood” objects, e.g. the space of polynomials in the space of real valued continuous functions or
the space of real valued smooth functions on [0,1] in (L2([0,1]),‖ · ‖L2). The fact that the behaviour on a dense
subspace fully describes a bounded linear operator is encapsulated in the next lemma.42

Lemma 5.1. Let X be a normed space, D⊂ X a dense subset and let Z be a normed space. Then for operators
T,S ∈B(X ,Z) we have

T |D = S|D ⇐⇒ T = S.

In particular, the only element T ∈B(X ,Z) with T |D = 0 is T = 0.

Proof of Lemma 5.1. Suppose S|D = T |D. For any x ∈ X we can choose a sequence dn → x with dn ∈ D to
conclude that since both T and S are continuous

T x = lim
n→∞

T dn = lim
n→∞

Sdn = Sx.

The reverse direction is immediate.

Theorem 5.2. Let X be a normed space, let Y be a dense subspace of X (which we equip with the norm of X)
and let Z be a Banach space. Then any T ∈B(Y,Z) has a unique extension T̃ ∈B(X ,Z), i.e. there exists a
unique bounded linear operator T̃ : X → Z so that T̃ y = Ty for every y ∈ Y and we furthermore have that

‖T̃‖B(X ,Z) = ‖T‖B(Y,Z).

Proof. The uniqueness is covered by Lemma 5.1.
Let x ∈ X be any element. Then as Y is dense there exists a sequence yn of elements of Y so that yn→ x. The

key observation is that the sequence (T0(yn))
∞
n=1 converges. Indeed, (yn)

∞
n=1 is Cauchy in Y , so ‖T0(yn− ym)‖ ≤

‖T0‖‖yn− ym‖→ 0 as n,m→ ∞. Therefore (T0(yn))
∞
n=1 is Cauchy so converges in Z, proving the observation.

We can now define T x = limT0(yn). To see this is well defined suppose that both (yn) and (zn) are se-
quences in Y with yn→ x and zn→ x. Then form the alternating sequence y1,z1,y2,z2, . . . , which converges to
x. Therefore

T0(y1),T0(z1),T0(y2),T0(z2),T0(y3), . . .

converges by the observation in the previous parapgraph. Passing to subsequences it follows that limT0(yn) =
limT0(zn) and T is well defined.

Then T : X → Z is linear (using continuity of addition and scalar multiplication),43 and extends T0 (as for
y∈Y we can use the constant sequence y,y, . . . to see T (y) = T0(y)). Finally for x∈ X , and (yn) in Y with yn→ x,
we have

‖T x‖= lim‖T0(yn)‖ ≤ lim‖T0‖‖yn‖= ‖T0‖‖x‖,
so ‖T‖ ≤ ‖T0‖. For the other direction

‖T‖= sup
x∈X , ‖x‖≤1

‖T (x)‖ ≥ sup
y∈Y, ‖y‖≤1

‖T0(y)‖= ‖T0‖.

42Note that this lemma has nothing to do with normed spaces and linear operators. It is equally valid for continuous maps on a metric
space.

43Given sequences yn→ x1 and zn→ x2 from Y and λ ∈ F, the point is that λyn + zn→ λx1 + x2. Then

T (λx1 + x2) = limT0(λyn + zn) = λ limT0(yn)+ limT0(zn) = λT (x1)+T (x2).
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It’s worth comparing this result with the traditional prelims analysis exercise that asks you to take a continuous
function f : [0,1)→ R and show that f has a (necessarily unique) continuous extension to [0,1] if and only
if f is uniformly continuous. (The only if is a consequence of compactness of [0,1] so that every continuous
function on [0,1] is uniformly continuous). The extension part of this works more generally: Let A⊂ X be a
dense subset of a metric space and let Z be a complete metric space. If f : A→ Z is uniformly continuous then
it has a (necessarily unique) continuous extension to X . I think of this as ‘extension by uniform continuity’
(though you will often see it described as extending by continuity). Of course when X ,Y,Z are normed spaces
and T0 : Y → Z are all as in Theorem 5.2, the map T0 is certainly not uniformly continuous (unless it is the
zero map). But boundedness of T0 ensures that it is uniformly continuous on any bounded subset of Y , and
hence extends (uniquely) on any bounded subset of Y to its closure in X .

Deep Dive

5.2 The Theorem of Stone-Weierstrass and Density of Polynomials in the space of continuous
functions

The goal of this section is to identify suitable dense subspaces of the space CR(K) of real-valued continuous
functions on a compact metric space K.44 As always we equip CR(K) with the sup-norm and recall that since
continuous functions on compact sets are bounded this is well defined.

The first result in this direction is Weierstrass’ approximation theorem from 1885: the polynomial functions
are uniformly dense in CR([a,b]) for any a < b. Taking [a,b] = [0,1], for any f ∈ CR([0,1]) and ε > 0 we
can find a polynomial p(x) = ∑

n
r=1 arxr for some a0, . . . ,an ∈ C, so that ‖ f − p‖∞ < ε . But note that while

the polynomials have dense linear span in CR([0,1]), it is not true that every continuous function [0,1] can be
written as an infinite combination ∑

∞
n=0 anxn with convergence in CR([0,1]): power series are always infinitely

differentiable. An explicit proof of Weierstrass’ approximation theorem using Bernstein polynomials is given as
a bonus question on the example sheets.

We aim for Marshall Stone’s vast generalisation of Weierstrass’s approximation theorem in 1937. First
note that if K is a metric space and x 6= y in K, then there exists g ∈ CR(K) with g(x) 6= g(y): we can take
g(z) = d(z,x).45

Definition 5.3. Let K be a compact metric (or compact Hausdorff) space. We say that a subset D ⊂ CR(K)
separates points if for all p,q ∈ K with p 6= q there exists a function g ∈ D so that g(p) 6= g(q).

44The theorem we’re aiming for works for compact Hausdorff topological spaces, and we shall prove it in that generality, but since
Part A topology is not a prerequisite for this course I will state the results both for compact metric spaces and compact Hausdorff
topological spaces! You can ignore all references to compact Hausdorff spaces if you prefer and, and there is absolutely no harm in
imagining that the compact space K is contained in Rn if you prefer. But for some of the abstract applications of Stone–Weierstrass that
I use regularly it’s necessary to have compact Hausdorff spaces. And, when we give the proof, the only thing that will matter is that a
closed subset of a compact metric space or compact Hausdorff topological space is again compact.

That said one fundamental difference between working with metric spaces and general topological spaces is that for a metric space
K it is always easy to produce continuous functions f : K→ R: for each x ∈ K, the function d(·,x) is a continuous function on K. For
a general topological space X there might be no non-constant continuous functions: a crude example is give by taking X to be any set
equipped with the indiscrete topology, so that all points are dense. In a compact Hausdorff topological space K one has Urysohn’s lemma
which shows that for any two disjoint closed subsets A,B in K there exists a continuous function f : K→ [0,1] with f (a) = 0 for a ∈ A
and f (b) = 1 for b ∈ B. More generally Urysohn’s lemma works for a normal space, one for which any two disjoint closed subsets are
contained in disjoint open sets: showing that compact Hausdorff spaces are normal is a standard exercise in using compactness. I’ll say
a bit more about Urysohn’s lemma in some footnotes / deep dives below, but we do not use it in the proof of Stone–Weierstrass: the
Stone–Weierstrass theorem assumes that the subspace contains enough continuous functions to separate points (and the proof contains
an argument which upgrades this to separate disjoint closed subsets as in Urysohn’s lemma).

45The same is true for a compact Hausdorff space K, using Urysohn’s lemma.
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Let K be a compact metric (or compact Hausdorff) space. We are interested in dense subspaces D⊂CR(K).
By Lemma 5.1 any dense subspace D ⊂CR(K) must separate points. We will be interested in those subspaces
D ⊂ CR(K) which contain constant functions i.e. for each λ ∈ R, the function f (k) = λ for all k ∈ K lies in
D. In this case we can use the vector space operations to rescale separation of points as in the following lemma
(which is left as an exercise).

Lemma 5.4. Let K be a compact metric (or compact Hausdorff) space and let D ⊂ CR(K) be a subspace
containing constant functions. The following are equivalent:

1. D separates points,

2. for any p 6= q ∈ K, ∃g ∈ D with g(p) = 0 and g(q) = 1,

3. for any p 6= q ∈ K, a,b ∈ R, ∃g ∈ D with g(p) = a and g(q) = b.

Definition 5.5. Let K be a compact metric or (compact Hausdorff) space. Say that A ⊂CR(K) is a subalgebra
of CR(K) if it is a subspace with the property that A is closed under pointwise multiplication, i.e. if f ,g ∈ A,
then f g ∈ A.

We now reach the Stone–Weierstrass theorem for real coefficients. We come back to the case of complex
coefficients in the next subsection.

Theorem 5.6 (Stone–Weierstrass theorem: real version). Let K be a compact metric (or compact Hausdorff)
space, and let A ⊂CR(K) be a subalgebra which contains constant functions and separates points. Then A is
dense in CR(K).

Warning. Traditionally the Stone–Weierstrass theorem above is proved by means of first proving a Stone–
Weierstrass theorem for lattices, and then deducing Theorem 5.6 from the lattice theorem. In this way Theorem
5.6 is known as the ‘subalgebra version’ of Stone–Weierstrass in the 2023-24 lecture notes. There’s no formal
syllabus change here: the syllabus speaks of ‘the Stone–Weierstrass theorem’, but you will certainly find the
lattice (and subalgebra) version on previous exams. We did not lecture the lattice version this year, and you
can be confident that if relevant the exam will be clear that we are using a subalgebra version of the theorem.
Similarly the previous years courses did not consider the complex scalar version of Stone–Weierstrass we give
in Subsection 5.3 (and so that is unlikely to be found on many past papers). I will describe the lattice version in
a deep dive at the end of the subsection.

We will follow a proof from the 1980’s, the key step of which is contained in the next lemma which uses
compactness to upgrade the separation of points to separation of disjoint closed sets. Recall that a closed subset
of a compact metric (or a compact Hausdorff) space is compact.

Lemma 5.7. Let K be a compact metric (or compact Hausforff space), and let A ⊂ CR(K) be a subalgebra
which contains constant functions and separates points. Then for E,F disjoint closed subsets of K there exists
f ∈ A with −1≤ f (x)≤ 1 for all f ∈ K, and f (x)≤−1/2 for x ∈ E and f (x)≥ 1/2 for x ∈ F.

Proof. Fix x ∈ E. We claim that there exists gx ∈ A with gx(x) = 0, 0 ≤ gx ≥ 1, and gx(y) > 0 for all y ∈ F .
To prove this, for each y ∈ F , there exists hy ∈ A with hy(x) = 0 and hy(y) > 0 and hy ≥ 0 (using Lemma 5.4
to get the first and second condtiion; then replace hy by h2

y to ensure that hy ≥ 0 everywhere, using that A is a
subalgebra). Then Uy = {z ∈ K : hy(z) > 0} is an open set containing y, so by compactness of F , there exists
y1, . . . ,yr ∈ F such that Uy1 ∪·· ·∪Uyr ⊇ F . Then

gx =
∑

r
j=1 hy j

‖∑
r
j=1 hy j‖∞

∈ A
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and has gx(x) = 0, 0≤ gx ≤ 1, and gx(y)> 0 for y ∈ F as claimed.
Note that gx is a continuous function so attains its minimum on the compact set F , so we can fix mx ∈ N

such that gx(z)≥ 2/mx for all z ∈ F .
We now run a second compactness argument. Let Vx = {x ∈ K : gx(z) < 1/(2mx)} which is an open subset

of K containing x. By compactness of E, there exists x1, . . . ,xs ∈ E such that Vx1 ∪·· ·∪Vxs ⊇ E. For i = 1, . . . ,s
and n ∈ N, Bernouli’s inequality46 gives

(1−gn
xi
)mn

xi ≥ 1− (mxigxi)
n.

Therefore on the set Vxi (where mxigxi < 1/2) we have

(1−gxi(z)
n)mn

xi ≥ 1− (mxigxi(z))
n ≥ 1− 1

2n → 1, z ∈Vxi

as n→ ∞. Now we consider the same function restricted to F , where mxigxi ≥ 2. Using the difference between
squares at the first inequality (as 0 ≤ gxi ≤ 1), and estimating crudely at the second (again using gxi > 0), we
have

(1−gxi(z)
n)mn

xi ≤ 1
(1+gxi(z)n)mn

xi
≤ 1

(mxigxi(z))n ≤
1
2n → 0, z ∈ F.

Then

1− (1−gxi(z)
n)mn

xi ≤ 1
2n → 0, z ∈Vxi and 1− (1−gxi(z)

n)mn
xi ≥ 1− 1

2n → 1, z ∈ F.

For each i = 1, . . . ,s we can find ni ∈ N such that

hi = 1− (1−gxi(z)
ni)mni

xi

has 0≤ hi ≤ 1 and hi(z)≤ 1/4 for z ∈Vi, while hi(z)≥ (3/4)1/s for z ∈ F . Note that as A is an algebra, hi ∈ A,
and also so too is h = h1h2 . . .hs. Then 0≤ h≤ 1 and h(z)≤ 1/4 for z ∈

⋃s
i=1Vi ⊇ E and h(z)≥ 3/4 for z ∈ F .

Taking f = 2h−1 (which is also in A) proves the lemma.

We can now prove the real Stone–Weierstrass theorem.

Proof of Theorem 5.6. Let A be a subalgebra of CR(K) which contains constant functions and separates points.
Suppose that A 6= CR(K). Then by Reisz’s lemma (Proposition 4.7), there exists f ∈CR(X) with ‖ f‖ = 1 and
d( f ,A)> 3/4. So −1≤ f ≤ 1. Define disjoint closed subsets of K by

E = {x ∈ K : f (x)≤−1/4} and F = {x ∈ K : f (x)≥ 1/4}.

By (a scaled version of) Lemma 5.7, there exists g ∈ A with −1/2≤ g≤ 1/2 and g≤−/4 on E and g≥ 1/4 on
F . Then ‖ f −g‖ ≤ 3/4 by checking all cases.47This is a contradiction proving the theorem.

Corollary 5.8 (Weierstrass’ approximation theorem). Let a < b. The real polynomial functions on [a,b] are
‖ · ‖∞ dense in CR([a,b]).

Proof. The polynomial functions are a subalgebra which contains constant functions and separates points. In-
deed the polynomial p(x) = x separates points!

46Bernouli’s inequality is (1+ z)n ≥ 1+nz for z≥−1 and n ∈ N.
47If z ∈ E, then −1≤ f (z),g(z)≤−1/4 so | f (z)−g(z)| ≤ 3/4 and similarly if z ∈ F , then 14≤ f (z),g(z)≤ 1. While if z /∈ E ∪F ,

then −1/4≤ f (z)≤ 1/4 while −1/2≤ g(z)≤ 1/2, so | f (z)−g(z)| ≤ 3/4.
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Corollary 5.9. Let K be a compact subset of Rn. Then polynomials in n-variables restricted to K are dense in
CR(K).

Example 5.10 (An application of Weierstrass’s theorem). We claim that the only continuous real valued function
f ∈CR([0,1]) for which ∫ 1

0
f (t)tndt = 0 for every n ∈ N

is the zero function. To see this, we let X = CR([0,1]) (as always equipped with the sup norm) and we note
that any function f ∈ CR([0,1]) induces a bounded linear functional F ∈ X∗ = B(X ,R) defined by F(h) =∫ 1

0 f (t)h(t)dt, where we note that F is bounded since |F(h)| ≤ ‖ f‖∞‖h‖∞, so ‖F‖X∗ ≤ ‖ f‖∞. If f satisfies the
displayed equation then, by linearity, F(p) = 0 for every polynomial. Since the polynomials are dense in X we
can thus apply Lemma 5.1 to obtain that F = 0, in particular F( f ) =

∫
f 2(t)dt = 0. But as f 2 ≥ 0 this implies

that f 2 = 0 a.e. and so as f is continuous indeed f = 0.

Let’s come back and discuss the lattice versions of Stone–Weierstrass. Fix a compact metric (or compact
Hausdorff) space K. A linear sublattice L⊂CR(K) is a subspace L which has

f ,g ∈ L ⇒max( f ,g) ∈ L and min( f ,g) ∈ L.

Theorem (Real Stone-Weierstrass-Theorem, lattice form). Let K be a compact metric (or compact Haus-
dorff). Let L be a linear sublattice of CR(K) which contains constant functions and separates points. Then L
is dense in CR(K).

The strategy to prove (which can be found in full in the 2023-24 lecture notes) is as follows. Fix some
f ∈CR(K) and ε > 0. Then:

• show that for each x∈K, there is some gx ∈ L with gx(x) = f (x) and gx(y)< f (y)+ε for all y∈K. (For
each y there exists hy ∈ L with hy(x) = f (x) and hx(y) = f (y). Then hy < f on an open neighbourhood
of y. Taking the minimum of a number of these hy given by compactness yields the claim).

• on a suitable small neighbourhood of x we have f −ε < gx, while gx < f +ε globally. Running a second
compactness argument (and now taking a finite maxima) gives a single g ∈ L with f − ε < g < f + ε .

Note how the double use of compactness to control g first from above and then from below resonates with the
proof of Lemma 5.7.

One then normally deduces the real subalgebra version of Stone–Weierstrass from the lattice version by
means of showing that:

Lemma. Let K be a compact metric (or compact Hausdorff) space, and let A⊂CR(K) be a subalgebra. Then
the closure of A is a linear sublattice.

For this we need to show that if f ∈ A, then | f | ∈ A. Since | f |=
√

f 2, this is done by showing that if g∈ A
with g ≥ 0, then g1/2 ∈ A. The 2023-24 notes give details of how to use the contraction mapping theorem
to do this; proofs can also be found in the recommended books, as the lattice approach is the standard way
to obtain Stone–Weierstrass. Since we’ve already proved the algebra version of Stone–Weierstrass we can
cheat and deduce the lemma by approximating the function g(t) = t1/2 on the compact set [−‖ f‖∞,‖ f‖∞]

Deep Dive
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by polynomial function. Using such approximations (which we could get from the classical Weierstrass
approximation theorem) gives the lemma.

It is also possible to obtain the lattice version of Stone–Weierstrass from the subalgebra version by show-
ing that if L is a linear sublattice of CR(K) which contains constants, then the closure L is a subalgebra, for
which it suffices to check that f ∈ A =⇒ f 2 ∈ A (by means of the usual trick ( f + g)2 = f 2 + 2 f g+ g2).a

Note that if L is a linear lattice containing constants, then for f ∈ L and λ ∈R, the element max( f −λ ,0)∈ L.
On the interval [−‖ f‖∞,‖ f‖∞] we can uniformly approximate the function g(t) = t2 by a suitable finite linear
combination of functions of the form t 7→ max(t−λ ,0).b. Using such approximations we can approximate
f 2 by elements of L. That said, I think this isn’t a sensible thing to do: if we want the lattice version of
Stone–Weierstrass best is to follow the double compactness argument above and just prove it directly.

aNote the cute symmetry: to get from the lattice to the algebra version of Stone–Weierstrass we approximate the square root
function; to get from the algebra to the lattice version we approximate the square function.

bWe don’t need a Weierstrass approximation theorem for this, it can be done by hand.

Recall that in integration we showed that the continuous functions are dense in Lp (for p < ∞). Although
off syllabus we can improve this to obtain density of compactly supported smooth functions inside Lp-spaces
for p < ∞; this is often very useful in applications to PDES. Let’s first do so via a combination of Stone–
Weierstrass plus the existence of smooth bump functions (which appears as a bonus prelims exercise in anal-
ysis 2).a

Theorem. Let 1 ≤ p < ∞. Then C∞
c (R) = { f : R→ R| f is smooth and has compact support} is dense in

Lp(R).b.

Proof. Let f ∈ Lp(R) and ε > 0. We already know from integration that there is a continuous function g
of compact support on R such that ‖ f − g‖p < ε/2. Let I1 = [−M,M] be such that g(x) = 0 for all x /∈ I1
and I2 = [−M− 1,M + 1]. Then A = {h ∈ CR(I2) : f is smooth} is a subalgebra of CR(I2), which is dense
by Stone–Weierstrass. For δ = ε/2(2M + 2)1/p we can find h ∈ A with supx∈I2

|h(x)− g(x)| ≤ δ . If we let
b : R→ [0,1] be a bump function which is 1 on I1 and 0 outside I2 then we can view hb as defined on all of R
where it has compact support and supx∈R |h(x)b(x)−g(x)| ≤ δ . Then ‖hb−g‖p

p ≤ (2M+2)δ p = (ε/2)p.

We could produce a version of this for Rn but let’s do so in a more explicit way, which illustrates the idea
of mollifying an integrable function to obtain a good smooth approximation to the original function (which
need not be continuous). This technique is widely applicable in the theory of and applications to PDES; for
more see the C4.3 course on Functional Analytic Methods for PDEs.

Theorem. For any 1 ≤ p < ∞ and K ⊂ Rn the space C∞(K) of smooth real valued functions is dense in
Lp(K).

Proof. We let φ : Rn→ R be defined by

φ(x) := c

{
exp(− 1

1−|x|2
), |x|< 1

0 else

Deep Dive
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where c > 0 is chosen so that
∫
Rn φ(x)dx = 1 and set φε(x) := 1

εn φ( x
ε
). These smooth functions φε (which are

often called ‘mollification kernels’ or a family of ’standard mollifiers’) have
∫
Rn φε = 1 and are zero outside

of Bε(0). One can get a sequence fε of smooth functions that approximates a given f ∈ Lp(K) as follows: We
extend f by zero outside of K to get a function that is defined on all of Rn and then set

fε := φε ∗ f , i.e. define fε(x) :=
∫
R

φ(x− y) f (y)dy.

Then one can check that fε ∈C∞(Rn) with derivatives Dα fε = (Dαφε) ∗ f (follows from the differentiation
theorem from Part A Integration) and one can indeed prove with more care that fε → f in Lp.

All these statements are false for p = ∞ as you can easily see when trying to approximate step functions
by continuous functions. We give two quick sketches.

aPrecisely, given a closed and bounded interval I contained in an open interval U , there exists a smooth function f : R→ [0,1]
with f (x) = 1 for x ∈ I and f (x) = 0 for x ∈ R\U .

bCompact support means that the closure of the set {x : f (x) 6= 0} is compact, i.e. f has compact suppose if f is zero outside a
compact subset of R.

5.3 Complex Stone–Weierstrass

We now turn to complex coefficients. In keeping with my preferences for scalars I will write C(K) for CC(K),
the complex valued continuous functions on a compact metric (or compact Hausdorff) space K.

Example 5.11. Let D be the open unit disc in C and let K = D be the closed unit disc in C. Define A = { f ∈
C(D) : f |D is holomorphic}. This is a closed48 subalgebra which separates points but it is not all of C(D).

What goes wrong in Example 5.11 is that f (z) = z can not be uniformly approximated by holomorphic
functions. But essentially this is the only problem: the algebra A is not closed under the additional operation we
have with complex scalars of complex conjugation. We define a subalgebra of C(K) in just the same way as for
real scalars: a subspace closed under pointwise multiplication, and likewise the notion of separating points.

Theorem 5.12 (Complex version of Stone–Weierstrass). Let K be a compact metric (or compact Hausdorff)
space. Let A⊂C(K) be a subalgebra which:

• is closed under complex conjugation

• separates points

• contains constant functions.

Then A is dense in C(K).

The proof amounts to taking real and imaginary parts.

Proof. Let AR = {Re f : f ∈ A} ⊂ CR(K). This is subalgebra of CR(K) which is contained in A (as Re f =
( f + f )/2)) which contains constants and separates points so is dense in CR(K). Now given f ∈ C(K), and
ε > 0, find g,h ∈ AR such that ‖Re f −g‖,‖Im f −h‖< ε/2. Then g+ ih ∈ A and ‖ f − (g+ ih)‖< ε .

Example 5.13. Let T= {z ∈ C : |z|= 1}. A trigonometric polynomial is a function T→ C of the form p(z) =
∑

n
r=−n crzr for some n and scalars c−n, · · · ,cn ∈ C. These are the finite combinations of the terms appearing in

Fourier series. By Stone–Weierstrass the trigonometric polynomials are uniformly dense in C(T)

48If fn ∈ A has fn→ f ∈C(D) uniformly, then f is holomorphic as the uniform limit of holomorphic functions (as a consequence of
Morera’s theorem.
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Just as we learnt that the polynomial functions are uniformly dense in CR[0,1] but not every continuous
function is given as a uniformly convergent power series, so too there are continuous functions on T which
can not be written as a uniformly convergent infinite series ∑

∞
−∞ cnzn. We will see a way of obtaining this

from the uniform boundedness principle in B4.2.

Deep Dive

Let 1 ≤ p < ∞. As C(T) is dense in Lp(T) and the trigonometric polys are dense in C(T), and the Lp-
norm is controlled in terms of the supremum norm (as T has finite measure), it follows that the trigonometric
polynomials are dense in Lp(T). Indeed, given ε > 0 and f ∈ Lp(T), there exists g ∈ C(T) with ‖ f − g p| <
ε/2 and then a trigonometric polynomial h with ‖g− h‖∞ < ε/2(2π)1/p so that ‖g− h‖p ≤ ε/2. In this way
‖ f − h‖p < ε . Taking p = 2 it follows that the trigonometric polynomials have dense linear span in L2(T).
Therefore the elements en(z) = zn/(

√
2π) form an orthonormal basis for L2(T) and so by Theorem 2.18 every

element f ∈ L2(T) is equal to its Fourier series with convergence in L2(T). This can also be proved much more
directly (as discussed in B4.2).

The operation of complex conjugation on C(K) is something that we can abstract to a general (Banach al-
gebra): ∗ is an involution on the algebra A if (x∗)∗ = x, (xy)∗ = y∗x∗ and ∗ is conjugate linear (λx+ µy)∗ =
λx∗+ µy∗ for all x,y ∈ A and λ ,µ ∈ C. In the setting of a Banach algebra, we would call the involution
isometric when ‖x∗‖= ‖x‖.

The example of complex conjugation in C(K) as an involution is a bit misleading as this algebra is abelian
so the reason for requiring that involutions reverse the order of multiplication is not apparent. Perhaps a more
familiar example is the operation of conjugate transpose on complex matrices. We will see a very important
example of these involutions in the last section of the course when we look at the adjoint of an operator on a
Hilbert space.

Deep Dive

6 Separability

With tools for obtaining interesting examples of dense subspaces at hand, we now come back to separability.

6.1 Definition and basic properties

Recall:

Definition 6.1. A normed space X is separable if it has a countable dense subset and inseparable otherwise.

Separability is a topological property invariant under isomorphism (and hence under equivalence of norms).
Of course it is possible for the same space to be separable in one norm, and not separable in a different non-
equivalent norm.49

Lemma 6.2. (i) Let X be a vector space and let ‖ · ‖ and 9 ·9 be two norms on X that are equivalent. Then
(X ,‖ · ‖) and (X ,9 ·9) are either both separable or both inseparable.

(ii) Let X and Y be isomorphic normed spaces. Then X and Y are either both separable or both inseparable.

49For example L∞[0,1] is separable in the L1-norm but not in the L∞-norm.
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Just as when we start out with sets we tend to view countable as reasonably small, and uncountable as large,
separability is the right notion of smallness for metric and normed spaces. As we will see, separability often
allows us to perform arguments powered by countability. If we want to view separability as being small, then
we need to have the following proposition.

Proposition 6.3. Let (X ,d) be a separable metric space, and Y ⊂ X. Then Y is separable (with the subspace
metric). In particular any subspace of a separable normed space is separable.

Proof. Let (xn)
∞
n=1 be a countable dense sequence in X . For each n,m ∈ N, if B1/m(xn)∩Y 6= /0 fix some ym,n in

this intersection. Then the countable collection of those ym,n which have been chosen is dense in Y .

This is not true for topological spaces; there exists a topological space X with a countable dense subset,
together with a subspace Y which does not have a countable dense subset (when equipped with the subspace
topology). The notion for topological spaces which does pass to subspaces is being second countable; every
point having a countable basis of neighbourhoods. But this is far from the same as being separable: every
metric space is second countable as a topological space.

Deep Dive

Proposition 6.4. Let X be a normed space. Then X is separable if and only if there is a sequence (xn)
∞
n=1 with

dense linear span.

Proof. If X is separable, then it has a countable dense set, so this set certainly has dense linear span. Conversely
if (xn)

∞
n=1 has dense span, then the countable set

{
n

∑
i=1

n ∈ N, λi ∈Q(i)}

is dense (use coefficients from Q in the case that F= R).50

6.2 Examples and non-examples

We have the following examples of separable normed spaces.

• Finite dimensional normed spaces are separable: they have a finite basis, so certainly a sequence with
dense linear span.

• Both c0 and the sequence spaces `p for 1 ≤ p < ∞ as the subspace c00 of finitely supported sequences
(spanned by the canonical elements en = (0, . . . ,0,1,0, . . .) withe 1 in the n-th position) is dense in all
these spaces. Indeed for `p, give any element x = (x1, . . .) ∈ `p we can now use that since ∑

∞
j=1 |x j|p

converges, the cut-off sequences x(k) := (x1, . . . ,xk,0,0, . . .) approximate x in the sense of `p, namely
‖x− x(k)‖`p =

(
∑ j≥k+1 |x j|p

)1/p → 0 as k→ ∞. We thus conclude that c00 is dense in `p. Likewise for
(xn) ∈ c0, the condition that xn→ 0, shows that the cut off sequences ‖x(k)− x‖∞→ 0.

• For K ⊂ Rn compact, C(K) is separable, as by Stone–Weierstrass the monomial functions have dense
linear span.

50I leave the details as an exercise.
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• For K ⊂ Rn compact, and 1≤ p < ∞, Lp(K) is separable. One way to do this is to argue in the same way
we showed that trigonometric polynomials are dense in Lp(T) by combining:

– C(K) is dense in Lp(K)

– C(K) is norm separable

– ‖ f‖p ≤ µ(K)1/p‖ f‖∞ for f ∈C(K).

Alternatively, and more directly for K = [a,b], the space of step functions, that is finite linear combinations
of characteristic functions of intervals, is dense in Lp. We then note that given any interval [c,d] ⊂
[a,b] with real endpoints, we can choose cn,dn ∈ Q so that cn → c and dn → d and that this guarantees
that χ[ci,di] → χ[c,d] in Lp as ‖χ[c,d]− χ[ci,di]‖ ≤

(
|c− ci|+ |d−di|)1/p → 0. Hence also the span of all

characteristic functions χ[c,d] of intervals with rational endpoints is dense in Lp and as the set of such
functions {χ[c,d],c < d,c,d ∈Q} is countable, Lp([a,b]) is separable.

• More generally, the function spaces Lp(E) are separable for any measurable subset E ⊂ Rn and any
1 ≤ p < ∞. It suffices to prove this for E = Rn (as in general Lp(E) is a subspace of Lp(Rn). Since
Rn =

⋃
∞
r=1 Br, where Br is the closed ball of radius r, the dominated convergence theorem version of the

baby MCT shows that
⋃

∞
r=1 Lp(Br) is dense in Lp(Rn). But each of these spaces is separable, so Lp(Rn)

is separable. Alternatively, and more directly, one could use step functions corresponding to rectangles in
Rn with rational end points.

Stone–Weierstrass shows that for a compact Hausdorff space K, C(K) will be separable if and only if there
exists a countable collection ( fn) of continuous functions which separate points in K. Certainly if C(K) has
a countable dense set, then this set must separate points. Conversely, if ( fn)n is a countable collection of
continuous functions which separate points, then the countable collection of the constant function 1 together
with all finite products fi1 . . . fin over all n ∈ N has dense span by Stone–Weierstrass.a

Therefore given any separable compact metric space K, the space C(K) is separable, as if (xn) is countable
dense in K, then the functions fn(y) = d(y,xn) are a countable collection of functions which separate points
in K. In fact for a compact Hausdorff space K, separability of C(K) is equivalent to metrisability of K, i.e. the
existence of a metric d inducing the topology on K. We can use the techniques in C4.1 to prove the reverse
direction.b We can be more direct (though essentially it’s the same proof): if ( fn) is a countable dense subset
of the unit ball of= C(K), then we get a map θ : K→∏

∞
n=1 D given by k 7→ ( f1(k), f2(k), . . . ,). Give ∏

∞
n=1D

the product metric from one of the exercises in the metric spaces course,c and check that θ is a continuous
bijection. Since K is compact and ∏

∞
n=1D is a metric space (so Hausdorff), θ is a homeomorphism onto

θ(K), which is a subspace of the metric space ∏
∞
n=1D.

aNote that the span of this set is closed under multiplication, so is an algebra. It is the algebra generated by fi and 1, i.e., the
smallest subalgebra of C(K) containing these elements.

bThe unit ball of C(K)∗ will be metrisable in the weak∗-topology when you know what this means, and the map sending k ∈ K
to evk ∈C(K)∗, defined by evk( f ) = f (k) will give a homeomorphism of K onto {evk : k ∈ K} ⊂ Ball(C(K)∗).

cAs D is already bounded this can be given by d((xn),(yn)) = ∑
∞
n=1 2−n|xn− yn|, with the point being that x(k) = (x(k)n ) has

x(k)→ y as k→ ∞ if and only if x(k)n → yn as k→ ∞ for all n.

Deep Dive
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Let 1≤ p<∞ and (Ω,F ,µ) a measure space.. We hinted in one of the earlier deep dives at when Lp(Ω,F ,µ)
is separable. This happens when⊗ is σ -finite, and F is the completion of a countably generated σ -algebra.
The latter condition rules out stuff like Lp(Ω,F ,µ), where µ is the counting measure on an uncountable
set.a So the result will follow in just the same way as for Lp(Rn) above once we show that Lp(Ω,F ,µ)
is separable when Ω is finite, and F is the completion of a countably generated σ -algebra. For this, show
that the linear combinations of characteristic functions of a countable collection of subsets which generate a
σ -algebra which completes to F is dense.

aYou should be able to show that such a space is not separable.

Deep Dive

Example 6.5 (`∞ and L∞ are inseparable). The sequence space (`∞,‖ · ‖∞) and the function spaces L∞(Ω),
Ω⊂ Rn any non-empty open set, are inseparable.

We provide the proof of this result for the sequence space `∞ and note that a very similar proof, using
characteristic functions of sets, shows that also L∞ is inseparable. The standard idea for proving non-separability
directly is to find an uncountable set of elements which are all a fixed distance apart.

Proof. For I ⊆ N, let

x(I)n =

{
1 n ∈ I;
0 n /∈ I.

Note that A = {x(I) : I ⊆ N} ⊂ `∞ and for I 6= J, ‖x(I)− x(J)‖∞ = 1. So no countable subset of A can be dense in
A, and hence the metric space A (with the metric induced from `∞ is not separable. Therefore `∞ is not separable
by Proposition 6.3.

Corollary 6.6. `p 6∼= `∞ for 1≤ p < ∞ and `∞ 6∼= c0.

Warning. L∞([0,1]) is contained in L1([0,1]) but L1([0,1]) is separable but L∞([0,1]) is not. This is not a
contraction to Proposition 6.3, L∞([0,1]) is a vector subspace of L1([0,1]) but not a subspace as a normed space
(since the norm is not the same).

6.3 A small outlook

Finally we want to give a brief outlook on the use of separability and density of subspaces.

• Bases. We have already seen the notion of an orthonormal basis for a Hilbert space, and used these to see
that all separable infinite dimensional Hilbert spaces are isomorphic (see Theorems 2.15 and 2.18). While
for Hilbert spaces the notion of orthonormal basis works outside the separable setting, the appropriate
notion for Banach spaces of a Schauder basis very much requires separability.

Since a basis is supposed to provide a useful co-ordinate system, the usual linear algebra notion of a basis
(a linearly independent spanning set, often called a Hamel basis in functional analysis), is not that useful
for separable infinite dimensional Banach spaces, as every such basis is necessarily uncountable, but one
of the points of separability is that the spaces is small enough that we should be able to use a countable
co-ordinate system. To do so we must allow convergent infinite series: A Schauder basis is a sequence
(sn)

∞
n=1 in a Banach space X such that every element x ∈ X has a unique norm-convergent representation
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x=∑
∞
n=1 λnsn for some scalars λn ∈F.51 A lot of work examining Banach spaces, particularly the classical

sequence spaces, went through a careful analysis of bases (see the book of Albiac and Kalton), leading to
nice characterisations of reflexivity in the presence of a Schauder basis in terms of properties of the basis.

One thing a basis enables you to do is obtain an infinite matrix representation for operators. We’ve already
had a couple of examples of operators defined by infinite matrices on the problem sheet, and the spectral
theorem for compact self-adjoint operators on a Hilbert space (found across B4.2 / C4.1) will give you a
nice generalisation to a class of operators on a Hilbert space that can be diagonalised.

For a long time it was an open problem dating back to the foundations of the subject of Banach spaces
whether every separable Banach space admits a basis. This was resolved negatively by Per Enflo in 1973
(but as you can imagine by the time this took, all the naturally occurring separable Banach spaces you’re
familiar with have bases).

• Approximating by a nice set. In applications, it is often possible to reduce the proof of a property or
inequality to first proving the claim for a dense subset of “nice” elements of the space, such as smooth
functions in case of Lp and then a second step that uses the density of such functions to prove that this
property extends to the whole space. Similarly, as a bounded linear operator T ∈B(Y,Z), Z a Banach
space, that is defined on a dense subspace Y ⊂ X has a unique extension to an element T ∈B(X ,Z), in
many instances one defines operators first on a dense subset of “nice” elements (e.g. continuous functions)
and then extends this operator to the whole space.

Many instances of such arguments can be seen in the Part C course on Functional analytic methods for
PDEs.

• Finite dimensional approximations For separable spaces there exists a sequence of finite dimensional
subspaces Y1 ⊂ Y2 ⊂ ... of X so that

⋃
Yi is dense in X . This property is used in many instances (be it to

try to prove the existence of a solution of a problem, like a PDE, or more practically in numerics to obtain
an approximate solution) when considering problems on separable Banach spaces (e.g. subspace of Lp,
1≤ p < ∞). The idea of this method (also called Galerkin’s method) is to first determine solutions xn ∈Yn

of approximate problems defined on the finite dimensional spaces Yn, where results from Linear Algebra
such as the rank-nullity theorem apply (and e.g. ensure that an operator T : Yj→Yj is invertible if and only
if it is injective) and then hope to obtain that xn converges to a solution x of the original problem (in some
sense, usually one only obtains so called “weak convergence”, see Part C courses on Functional Analysis
and Fixed Point Methods for Nonlinear PDEs), respectively in applications in numerical analysis that xn

provides a good approximation of the solution.

Finite dimensional approximations are also crucial in more abstract situations. A lot of my own work has
focused on the classification of C∗-algebras – certain subalgebras of B(H) (which will appear in a later
deep dive).

• Some proofs intrinsically use separability (either through back and forward arguments, or other ap-
proaches that really rely on building maps on a countable dense set through means of an inductive con-
struction).52. Again in the area I work, for some results (but certainly not all) there can be a stark difference
between the separable and non-separable. In particular all the classification results for C∗-algebras (and
the earlier work for von Neumann algebras, going back to von Neumann!) on which they rely, use sep-
arability in an essential way and there are examples showing the results fail without it. In other places
separability may be a convenience,

51It is necessary to keep track of the order of a basis as there are Schauder bases (sn) with the property that some rearrangements
(sσ(n))

∞
n=1 (corresponding bijections σ : N→ N) are not Schauder bases. Of course those bases we can ‘reorder’ are better (these are

called unconditional Schauder bases).
52An example of a sort of argument like this can hopefully be found in your solution to 3.C.5!
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• As a personal piece of propaganda, I believe most of modern functional analysis and its applications are
to separable objects, or things built from separable objects. For example if H is the infinite dimensional
separable Hilbert space, then B(H ) is in separable,53 but it is the bounded operators on a separable
space. Moreover, it turns out we’re

7 The Hahn-Banach Theorem and applications

Recall the dual space X∗ of a normed space X is given by

X∗ := B(X ,F)

and we know this space is complete. In all our natural examples it is not difficult to give elements of the dual
space; for example for X = `p, and y = (yn) ∈ `q for q the Hölder conjugate of p, the function fy(x) = ∑xnyn

gives an element fy ∈ (`p)∗ (using Hölder’s inequality to show fy is bounded). Indeed, we will come back to
this in the next section to show that for 1 ≤ p < ∞, the dual of `p is given by `q. However in general it is not
immediate that there are any non-zero continuous linear functionals on an arbitrary normed space X , i.e. why is
X∗ 6= {0}.54

Our aim is to prove the Hahn Banach theorem55 and show that bounded linear functionals always exist, and
moreover there are enough continuous functionals to see the norms of elements (the precise statement behind
this slogan is Corollary 7.2).

7.1 Statement of the Hahn-Banach extension theorem

We note that if f ∈ X∗ and Y is a subspace of X (as always equipped with the same norm to turn it into a normed
space), then we can restrict any f ∈ X∗ to obtain an element f |Y of Y ∗, where we of course set f |Y (y) := f (y).
We note that the definition of the operator norm immediately implies that ‖ f |Y‖Y ∗ ≤ ‖ f‖X∗ .

Conversely we may ask whether we can extend a functional g ∈ Y ∗ to a bounded linear operator G ∈ X∗,
where we call such a G an extension of g provided G|Y = g. We know how to do this if Y is dense in X (and
there the extension is unique; see Theorem 5.2). Hahn–Banach shows that we can always extend bounded linear
functionals from Y to X and retain control of the norm.

Theorem 7.1 (Hahn-Banach existence of a bounded extension). Let X be a (real or complex) normed space,
Y ⊂ X a subspace and let f ∈ Y ∗ be any given element of the dual space of Y . Then there exists an extension
F ∈ X∗ of f , i.e. an element F of X∗ so that F |Y = f , so that

‖F‖X∗ = ‖ f‖Y ∗ .

We will give the proof (in the separable case, and modulo a Zorn’s lemma argument in general) in the next
section. As an immediate consequence we can always find bounded linear functionals that witness the norms of
elements of normed spaces, and so bounded linear functionals separate points in normed spaces.

Corollary 7.2. Let X be a normed space. Then for any x ∈ X \{0} there exists an element f ∈ X∗ with ‖ f‖= 1
so that f (x) = ‖x‖.

53can you see this, for example by embedding `∞ into B(H ) as a family of diagonal operators
54As mentioned in a deep dive in Section 3.2, we can use the axiom of choice to produce unbounded linear functionals on X , but this

argument can not be adjusted to directly produce a bounded linear functional.
55As a warning there are many different variations and consequences of Hahn–Banach, and in papers these all tend to be referred to

as ‘by Hahn–Banach’ leaving the reader to work out which version/consequence is intended. We’ll see several more in C4.1, with my
personal favourite – i.e. the one I’ve used the most – appearing on one of the C4.1 exercises
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Proof. Let Y = Span(x) and define g(λx) = λ‖x‖ for λ ∈ F. Then g ∈ Y ∗ with ‖g‖ = 1 and hence g has an
extension f ∈ X∗ with ‖ f‖= 1 and f (x) = g(x) = ‖x‖.

Corollary 7.3 (Bounded linear functionals separate points). Let X be a normed space and suppose x 6= y in X.
Then there exists f ∈ X∗ with f (x) 6= f (y).

Proof. Apply the previous corollary to x− y 6= 0.

Comparing X∗ and X we get the following.

• By definition of the operator norm we have:

For every f ∈ X∗ we have ‖ f‖X∗ = supx∈X ,‖x‖X=1 | f (x)|

but the supremum might not be attained.

• By Hahn Banach we have:

For every x ∈ X we have ‖x‖X = sup f∈X∗,‖ f‖X∗=1 | f (x)|

and the supremum is attained.

It’s really useful to keep in mind how one of these is the definition and the other a consequence of Hahn–
Banach. Notice too that by Hahn–Banach

For every f ∈ X∗ we have ‖ f‖X∗ = supΦ∈(X∗)∗,‖Φ‖(X∗)∗=1 |Φ( f )|

and here the supremum is attained. That is we might not attain ‖ f‖ = sup‖x‖≤1 | f (x)| = 1, but we will always
attain the supremum when we work over elements of the unit ball of (X∗)∗ (a space we will come back to in the
last section of the course).

Warning. The Theorem of Hahn-Banach is specific to functionals, that is maps from a vector space to the
corresponding field F, and does not hold true for linear operators between two normed spaces.

One can e.g. show that there is no continuous linear extension of the identity map Id : c0 → c0 to a map
f : `∞→ c0 where c0 ⊂ `∞ denotes the closed subspace of all sequences that tend to zero.

A Banach space X with the property that whenever Y is a Banach space and F is a closed subspace of Y ,
and T : F → X is a bounded linear operator, then there exists a bounded linear extension T̃ : F → X is called
injective. X is called isometrically injective when we can arrange for ‖T̃‖= ‖T‖. The Hahn Banach theorem
tells is that F is isometrically injective, and you can use this to show (see exercise 4.C.1) that `∞ is also
isometrically injective. The space c0 is not injective. In exercise 4.C.3 we show that c0 is not a complemented
subspace of its bidual `∞ ∼= (c0)

∗∗, i.e. there is no bounded linear operator P ∈ B(`∞) with P2 = P and
P(`∞) = c0. From this c0 can not be injective, as otherwise we could extend the identity operator on c0 to
such a P.

More generally, there are no infinite dimensional separable injective Banach spaces (see Chapters 5 and
6 of Albaic and Kalton).

Deep Dive
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7.2 Extending functionals controlled by sublinear functionals

We now discuss the proof of Hahn–Banach. First in the real case, and we will come back to the complex case
afterwards. In the statement of Theorem 7.1 we extended bounded linear functionals; those controlled by a
multiple of the norm. In fact we can extend functionals satisfying a weaker notion of control: those controlled
by a sublinear functional.

Definition 7.4. Let X be a real vector space. Then p : X → R is called sublinear if for every x,y ∈ X and every
λ ≥ 0 we have that

p(x+ y)≤ p(x)+ p(y) and p(λx) = λ p(x).

We also note that every norm, and indeed every seminorm, on X is a sublinear functional. There are also
many other constructions that yield sublinear functions that are important in applications (as discussed e.g. in
Part C Further Functional Analysis), such as the so called Minkowski functional associated to each convex set
C that contains the origin.

To get a simple example of a sublinear functional that is not induced by a semi-norm, we can consider
any linear function p : X → R, or to a get a more geometric example consider p : Rn → R that is defined by
p(x) = max(xn,0), i.e. that is given by the distance of a point x to the halfspace {x : xn ≤ 0}.

The general version of the Hahn-Banach extension theorem (for real vector spaces) is

Theorem 7.5 (Real Hahn-Banach extension theorem). Let X be a real vector space, Y ⊂ X a subspace and
p : X → R sublinear. Suppose that f : Y → R is a linear functional with the property that

f (y)≤ p(y) for all y ∈ Y.

Then there exists a linear extension F : X → R so that

F(x)≤ p(x) for all x ∈ X .

Since a norm is a sublinear functional, Theorem 7.1 (for real normed spaces) is a special case of Theorem
7.5.

Proof that Theorem 7.1 for real vector spaces follows from Theorem 7.5. Given f ∈Y ∗, let p(x) = ‖ f‖Y ∗‖x‖ so
that f (y)≤ p(y) for all y ∈ Y . Then Theorem 7.5 gives a linear extension F : X → R with F |Y = f and F(x)≤
p(x) for all x ∈ X . Note that we also have −F(x) = F(−x) ≤ p(−x) = p(x) for all x, so that |F(x)| ≤ ‖ f‖‖x‖
for all x ∈ X . Therefore F is bounded and has ‖F‖X∗ ≤ ‖ f‖Y ∗ . Since F extends f we have ‖F‖X∗ = ‖ f‖Y ∗ .

The strategy behind the proof of Theorem 7.5 is to extend one-dimension at a time by means of the following:

Lemma 7.6 (1-step extension lemma). Let X be a real vector space, p : X→R sublinear and let Y be a subspace
of X and x0 ∈ X \Y . Then for any linear f : Y → R for which f (y) ≤ p(y) for all y ∈ Y there exists a linear
extension f̃ : Span(Y ∪{x0})→ R so that

f̃ (x)≤ p(x) for all x ∈ Span(Y ∪{x0}). (8)

Proof of Lemma 7.6. Write Ỹ = Span(Y ∪{x0} and note that every ỹ ∈ Ỹ can be uniquely written as

ỹ = y+λx0 for some λ inR

so given any number r ∈ R we obtain a well defined linear map f̃r : Ỹ → R if we set

f̃r(y+λx0) := f (y)+λ r for every y ∈ Y and λ ∈ R
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and note that f̃r|Y = f no matter how r is chosen. We now need to show that we can choose r so that this function
f̃ has the required property that f̃r(ỹ)≤ p(ỹ) for all ỹ ∈ Ỹ , which is equivalent to

λ r ≤ p(y+λx0)− f (y) for all y ∈ Y,λ ∈ R. (9)

We first note that for λ = 0 this is trivially true no matter how r is chosen as by assumption f ≤ p on Y .
For λ > 0 the above inequality (9) holds true if and only if

r ≤ 1
λ

[
p(y+λx0)− f (y)

]
= p( 1

λ
y+ x0)− f ( 1

λ
y)

for all y ∈ Y or equivalently, setting v = 1
λ

y and using that Y is a vector space, if and only if

r ≤ inf
v∈Y

(
p(v+ x0)− f (v)

)
. (10)

For λ < 0 we write λ =−|λ | to rewrite (9) as −|λ |r≤ p(y−|λ |x0)− f (y). We hence obtain that (9) is satisfied
for all λ < 0 and y ∈ Y if and only if

r ≥−|λ |−1(p(y−|λ |x0)− f (y)) = f (|λ |−1y)− p(|λ |−1y− x0),

i.e. if and only if r is chosen so that
r ≥ sup

w∈Y

(
f (w)− p(w− x0)

)
. (11)

For f̃r to be the required extension we thus need to choose r so that both (10) and (11) hold, which is possible
provided

inf
v∈Y

(
p(v+ x0)− f (v)

)
≥ sup

w∈Y

(
f (w)− p(w− x0)

)
.

However this easily follows since for any v,w ∈ Y we have that(
p(v+ x0)− f (v)

)
−
(

f (w)− p(w− x0)
)
= p(v+ x0)+ p(w− x0)− f (v+w)

≥ p(v+w)− f (v+w)≥ 0

where we use the sublinearity of p in the second and the assumption that f ≤ p on Y in the last step.

We illustrate how to use the one-step extension lemma to prove Theorem 7.1 for a separable space,

Proof of Theorem 7.1 for a separable real normed space X. Write Y0 = Y , and using separability of X we can
find y1,y2, · · · ∈ X such that Span(Y ∪{yn : n ∈ N}) is dense in X . Write Yn = Span(Y ∪{y1, . . . ,yn}), and let g0
be the original f ∈ Y ∗.

Suppose inductively we have found a linear gn : Yn → R extending gr for r < n (there is no extension re-
quirement in the base case when n = 0) with |gn(z)| ≤ ‖g‖‖z‖ for all z ∈ Yn. Then use the one step extension
lemma to obtain an extension gn+1 : Yn+1 → R with |gn+1(z)| ≤ ‖g‖‖z‖ for z ∈ Yn+1. Then X0 =

⋃
∞
n=0Yn is a

dense subspace of X and we get a well defined element f ∈ X∗0 given by f (x) = gn(x) for any n for which x ∈Yn

with ‖ f‖ ≤ ‖g‖. Extending this to X by density (using Theorem 5.2) gives the result.

The (non-examinable) proof of the general version of Hahn-Banach extension theorem (Theorem 7.5) uses
the one-step extension lemma together with a Zorn’s lemma powered maximality argument. If you’ve done
the set theory course I recommend having a go at doing this. If not the details will be in C4.1 (modulo Zorn’s
lemma, which I’m happy to view as a black box – it’s equivalent to an axiom after all – I claim this is easier
than the arguing using separability and density, though note that such arguments only use countable choice).
An controlled extension of g : Y → R is a pair (Y1,g1) with Y1 a subspace of X containing Y and g1 a linear

Deep Dive
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extension of g to Y1 satisfying g1(x) ≤ p(x) for all x ∈ Y1. These are ordered by saying (Y1,g1) ≤ (Y2,g2) if
and only if Y1 ⊂Y2 and g2|Y1 = g1.a Zorn’s lemma guarantees the existence of a maximal controlled extension
(Ỹ , f ) of g. Now if Ỹ 6= X , then we can use the one-step extension lemma to extend this by one further
dimension, contradicting maximality.

aThis condition precisely says that the graph of g1 is a subset of the graph of g2.

For complex spaces we shouldn’t use sublinear functions; these are designed to work with real scalars, but
we can use seminorms:

Theorem 7.7 (Complex Hahn-Banach extension theorem). Let X be a complex normed space and s : X→ [0,∞)
a seminorm on X. Given a subspace Y ⊆ X and f : Y → C linear with | f (y)| ≤ s(y) for all y ∈ Y , there exists
g : X → C linear with g|Y = f and |g(x)| ≤ s(x) for all x ∈ X.

The proof of this theorem is to forget that X is a complex space, and view it as a real normed space and look
at Re g as a real linear functional. Historically it took 10 or so years for the complex version of Hahn Banach to
be deduced from the real scalar case, but I’d encourage you to have a go – it won’t take you that long! It’ll be
discussed in C4.1.

It is natural to ask how unique is a Hahn–Banach extension? The answer is given by the proof of Lemma 7.6.
The one step extension is unique if and only if

inf
v∈Y

(
p(v+ x0)− f (v)

)
= sup

w∈Y

(
f (w)− p(w− x0)

)
.

In the case of one important application of Hahn–Banach: for each x 6= 0 in a normed space X , there exists
f ∈ X∗ with f (x) = ‖x‖ and ‖ f‖= 1, one can use these ideas and show:

Theorem. Let X be a real normed space and x0 ∈ X. There is a unique f ∈ X∗ with ‖ f‖= 1 and f (x0) = ‖x0‖
if and only if the norm of X is smooth at x0 in the sense that for all z ∈ X,

lim
h→0

‖x0 +hz‖−‖x0‖
h

exists.

Again we see how geometric properties of the unit ball interact with other properties of normed spaces:
here the uniqueness of ‘norming functionals’. Note that no norm can be smooth at 0 (for the same reason that
the modulus function is not differentiable. It’s worth satisfying yourself that the norm of `p is smooth at all
non-zero points if and only if 1 < p < ∞ (you can see this with a nice picture in 2- dimensions for `1 and `∞).

There are interesting connections between the norm being smooth at all non-zero points and notions of
convexity: if X∗ is strictly convex (‖λx+(1−λ )y‖< 1 whenever 0 < λ < 1 and ‖x‖= ‖y‖= 1 with x 6= y)a

then the norm of X is smooth at all non-zero points. Likewise if X∗ has a smooth norm at all non-zero points,
then X is strictly convex. You can find results of this nature set out in the book by Fabian et al.

adraw a picture to understand what this is saying. Note that uniformly convex spaces are strictly convex.

Deep Dive
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7.3 Further applications of the Hahn-Banach Theorem

We have already seen that the Hahn–Banach theorem shows that bounded functionals separate points (Corollary
7.3). There are many further ‘Hahn–Banach separation theorems’, which have a strong connection to convexity
(see C4.1) and powerful applications both to PDES but also to other advanced topics in functional analysis an its
applications across pure mathematics. Here’s a separation theorem which works in the same way as Corollary
7.2 which separates points from closed subspaces.

Proposition 7.8. Let X be a normed space, Y a proper closed subspace of X. Then for any x0 ∈ X \Y there
exists an element f ∈ X∗ with ‖ f‖= 1 so that

f |Y = 0 while f (x0) = dist(x0,Y ).

Note that since Y is closed we necessarily have dist(x0,Y )> 0.

Proof of Proposition 7.8. We define a suitable linear map g on the subspace U = Span (Y ∪{x0}) and then use
Hahn-Banach to extend g to f . To this end we note that every u ∈U can be written uniquely as u = y+λx0 for
some λ ∈ R and y ∈ Y so that defining

g(y+λx0) := λd, where d := dist(x0,Y )> 0

gives a well defined linear map on Y which has the property that g(x0) = d and g|Y = 0.
For any u = y+λx0 ∈U , we have

‖y+λx0‖= |λ |‖x0− (−λ
−1y)‖ ≥ |λ | inf

ỹ∈Y
‖x0− ỹ‖= |λ |d = |g(y+λx0)|,

so that ‖g‖ ≤ 1. For the reverse inequality, given 0 < ε < 1, choose y ∈ Y with ‖x− y‖< 1
1−ε

d. Then

|g(x0− y)|
‖x0− y‖

=
d

‖x0− y‖
> 1− ε.

Since ε was arbitrary between 0 and 1, it follows that ‖g‖= 1.
Now apply Hahn–Banach to obtain f ∈ X∗ with f |Y = 0, f (x0) = d and ‖ f‖= ‖g‖= 1.

From this we get another proof of Reisz’s lemma (Lemma 4.7).56

Proof that Proposition 7.8 implies Reisz’s lemma. Given 0 < ε < 1 and a proper closed subspace Y of X , let f
be as in Proposition 7.8 and find x ∈ X with ‖x‖= 1 and | f (x)|> 1− ε . For y ∈ Y , we have

‖x− y‖ ≥ | f (x− y)|= | f (x)|> 1− ε,

so dist(x,Y )≥ 1− ε .

Next we revisit the concepts of annihilators we saw in part A linear algebra in the context of algebraic dual
spaces, and examine these analytically. Let’s start with the definitions.

56But note that the original proof did not use the axiom of choice, whereas going via Hahn–Banach as in this proof does does. On
the up side the proof makes it completely transparent why being able to find vectors which attain the norm of functionals gives rise to
being able to take ε = 0 in Reisz’s lemma from an earlier deep dive.
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Definition 7.9. Given any subset A⊂ X , we define the annihilator of A to be

A◦ := { f ∈ X∗ : f |A = 0}.

Furthermore, for subsets B⊂ X∗ we define

B◦ :=
{

x ∈ X : f (x) = 0 for all f ∈ B
}
=
⋂
f∈B

ker( f ).

This is called the pre-anhilator of B

In the purely algebraic setting, we know57 that if we start with a subset S of a vector space X , then form
the algebriac pre-annhilator of the algebraic annhilator58 of S we recover the span of S. This is not going to
work analytically as both annihilators and pre-annhilators are closed.59 The necessary modification is that the
pre-annhilator or the annhilator gives the closed linear span of S (Theorem ??), and we can use annhilators to
test for having dense span.

Proposition 7.10. Let X be a normed space. Then the following hold true:

(i) Let A⊂ X. Then Span(A) is dense if and only if the annihilator of A is trivial, i.e. A◦ = {0} ⊂ X∗

(ii) If B⊂ X∗ is so that Span(B) is dense in X∗ then B◦ = {0} ⊂ X.

Proof. (i) Suppose first that Span(A) is dense. Then for any f ∈ A◦, we have by linearity that also f |Y = 0
where we set Y = Span(A). As Y is dense in X we thus get that f = 0 by Lemma 5.1.

Conversely, suppose that Span(A) is not dense. Then Y = Span(A) is a closed proper subspace of X so we
can choose x0 ∈ X \Y and apply Proposition 7.8 to obtain an f ∈ X∗ with f |Y = 0 and f (x0) = ‖x0‖ 6= 0
so have found an element f 6= 0 of A◦.

(ii) Suppose Span(B) is dense in X∗. Then for any f ∈ X∗ there exists a sequence fn ∈ Span(B) with fn→ f .
Therefore for x ∈ B◦, we have f (x) = lim fn(x) = 0. Since f ∈ X∗ is arbitrary, x = 0, by Hahn–Banach (in
the form of Corollary 7.2). Therefore B◦ = {0}.

The converse to part (ii) above is false; though it’ll be easiest to wait until we have some explicit computa-
tions of dual spaces to give an example.

The proof of (ii) of shows why the converse is false, as we didn’t need that fn→ f in the norm of X∗ just that
fn(x)→ f (x) for all x ∈ X , i.e. if Span(B) has the property that it is dense in the weak∗-topology (which will
be introduced in C4.1)a then B◦ = {0}. This now does characterise when a pre-anhilator vannishes: B◦ = {0}
if and only if B has weak∗ dense span in X∗.

To give examples we should look for subspaces B which are weak∗-dense but not norm dense. For reasons
that will not be clear now (but follow from my favourite version of Hahn-Banach to be given in C4.1) it is
necessary to use a non-reflexive spaceb to obtain an example, so – looking ahead – we should work with one
of c0, `1 or `∞ as these are easy to work with. Take X = `1 when X∗ is canonically identified with `∞, and
let B = c00 ⊂ `∞. This is separable, so can not be norm dense in `∞, but identifying `∞ with (`1)∗ we have

Deep Dive

57Most likely this was only proved in finite dimensions; but the same result works using the axiom of choice in the right place to
produce suitable functionals

58i.e. the subset { f ∈ X ′ : f (x) = 0 for all x ∈ S} of the algebraic dual space X ′.
59The description of B◦ in terms of an intersection of kernels shows that B◦ is closed. While if fn ∈ A◦ has fn → f ∈ X∗, then for

any x ∈ A, we have fn(x)→ f (x) so f (x) = 0, i.e. f ∈ Acirc, and A◦ is closed.
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B◦ = {0}. What was going on? c00 is weak∗ dense in `∞. In fact if we start with any non-reflexive Banach
space X , and consider the canonical map j : X → X∗∗ from Section ??, you can check that j(X)⊂ X∗∗ is not
norm dense, but does have j(X)◦ = {0} in X∗.

athis topology is not metrisable so we will have to avoid sequence arguments, but that doesn’t cause a difficulty here.
bSee Section ??

Theorem 7.11. Let A be any subset of a normed space X. Then

Span(A) = (A◦)◦.

Proof. Note that for any B⊆ X∗, we have B◦ is a closed subspace in X . Further, for a ∈ A, and f ∈ A◦, we have
f (a) = 0, so that a ∈ (A◦)◦. Since Span(A) is the smallest closed subspace containing A, and (A◦)◦ is a closed
subspace containing A, it follows that Span(A)⊆ (A◦)◦.

For the reverse inclusion if x /∈ Span(A), then by Proposition 7.8, there exists f ∈ Span(A)◦ ⊆ A◦ with
f (x) 6= 0. Then x /∈ (A◦)◦.
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