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0 Introduction

This is a work in progress for lectures notes to go alongside my lectures on B4.1: Functional Analysis I. I am
updating and modifying previous versions by Melanie Rupflin, Luc Nguyen, which in turn are based on Hilary
Priestley’s notes for the course. I am greatful to them all for making these notes available to me. Naturally I am
responsible for any errors.

Not having the strict time-limit imposed on a lecture course, the notes tend to go into various (interesting!)
digressions and cover additional material which is meant to provide the reader with a “larger and clearer picture”.
Some parts of the material which are additional and are not covered in the lectures are clearly labeled (as deep
dives). However, this is not always possible so to know the examinable material you should attend the lectures.
I should stress the examinable material is summarised in the syllabus and covered in the lectures – nothing less
or more is examinable.

Thanks too to Jan, for the style file for the deep dives, and to Austin for the ducks!
These notes are work in progress and are being constantly improved. I am very grateful to all who have

helped me to improve them. Your comments, corrections, but also questions during office hours, are precious.

Please send all your comments and corrections to stuart.white@maths.ox.ac.uk. Thank you!

0.1 Overview / Background

Will follow - it’s always best to write these last!

0.2 Notation

We will write F for either R or C when it does not matter which of these is the underlying field of our vector
space. This course it will rarely matter, but when we focus on operators, particularly from B4.2 onwards it
will often be advantageous to work over C, as this is algebraically closed. You’ll be familiar with the fact that
complex square matrices always have eigenvalues, as the characteristic equation must have a solution over C, but
real square matrices need not have any real eigenvalues. This phenomena persists into the infinite dimensional
setting: the spectrum of a bounded linear operator on a complex Banach space is always non-empty, and for this
reason I prefer to work over the complex field when studying operators. When one is studying Banach spaces in
their own right,

Anything marked as a Deep Dive covers material outside of the syllabus. It is only intended for those who are
interested and eager to understand things in more depth. It is non-examinable and not necessary for the course.
It goes above and beyond the material, often indicating links with other courses and parts of mathematics.

Deep Dive
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Even the eager readers should skip those parts on the first reading. More deep dives may appear as I revise
the notes. The depth of deep dives may vary considerably from one dive to another.

0.3 Course Synopsis

• Brief recall of material from Part A Metric Spaces and Part A Linear Algebra on real and complex normed
vector spaces, their geometry and topology and simple examples of completeness.

• The norm associated with an inner product and its properties.

• Banach spaces, exemplified by ℓp, Lp and C(K), and spaces of differentiable functions.

• Finite-dimensional normed spaces, including equivalence of norms and completeness.

• Hilbert spaces as a class of Banach spaces having special properties (illustrations, but no proofs); examples
(Euclidean spaces, ℓ2 and L2), projection theorem, Riesz Representation Theorem.

• Density. Approximation of functions, Stone-Weierstrass Theorem. Separable spaces; separability of sub-
spaces.

• Bounded linear operators, examples (including integral operators).

• Continuous linear functionals. Dual spaces.

• Statement of the Hahn-Banach Theorem; applications, including density of subspaces and embedding of
a normed space into its second dual.

• Adjoint operators.
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1 Normed spaces and Banach spaces

In this section we introduce Banach spaces as complete normed spaces. Our main objective is to give a range of
examples. The important special case of Hilbert spaces when the norm is induced from an inner product is the
subject of Section ??.

1.1 Definitions and review from metric spaces

The key tool linking used to perform analysis on vector spaces is a norm, a suitable notion of distance compatible
with the linear algebra structure.

Definition 1.1. Let X be a vector space (over either F = R or F = C). A norm ∥ · ∥ : X → R is a function with
the following properties:

(N1) for all x ∈ X , we have ∥x∥ ≥ 0 with ∥x∥= 0 ⇔ x = 0;

(N2) for all x ∈ X and λ ∈ F, we have ∥λx∥= |λ |∥x∥;

(N3) for all x,y ∈ X , the triangle inequality ∥x+ y∥ ≤ ∥x∥+∥y∥ holds.

We call a pair (X ,∥ · ∥) a normed space. We will often suppress explicit mention of the norm and say ‘Let X be
a normed space.’

Every norm ∥ · ∥ induces a metric
d : X ×X → R

via d(x,y) := ∥x− y∥ and so all standard notions and properties of a metric space encountered in part A are
applicable. Recall:

• Definition of convergence of a sequence (xn) in X to x ∈ X :

xn → x ⇐⇒ d(xn,x)→ 0 ⇐⇒ ∥xn − x∥→ 0.

• A sequence (xn) in X is called Cauchy if:

∀ε > 0, ∃N such that ∀n,m ≥ N, ∥xn − xm∥< ε.

This is written as ∥xn − xm∥ → 0 as m,n → ∞. Recall that a metric space X is called complete if and only
if every Cauchy sequence in X converges to a point in X . For proving completeness it’s worth reminding
yourself of the following lemma. The proof, left as an exercise, is essentially the same as the last part of
the proof of the that Cauchy sequences in R converge (using the Bolzano–Weierstrass theorem).

Lemma 1.2. Let (xn) be a Cauchy sequence in a normed space X. Then the following are equivalent:

(i) (xn) converges,

(ii) (xn) has a convergent subsequence.

• A function f : X → Y is continuous at x ∈ X if

∀ε > 0, ∃δ > 0 such that ∀x0 ∈ X ,∥x− x0∥< δ =⇒ ∥ f (x)− f (x0)∥< ε.
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The function f is continuous if it is continuous at x for all x∈X . These definitions, and in fact all properties
of metric spaces,1 have sequential characterisations: continuous functions are those that preserve limits of
sequences. Precisely f is continuous at x ∈ X if and only if for all sequences (xn) in X with xn → x, we
have f (xn)→ f (x). for every x ∈ X and every sequence (xn) in X

xn → x =⇒ f (xn)→ f (x).

Setting this out in the context of normed spaces, f : X → Y is continuous if and only if whenever (xn) is a
sequence in X with ∥xn − x∥X → 0, we have ∥ f (xn)− f (x)∥Y → 0.

• A set U ⊂ X is open if for every x0 ∈U there exists r > 0 such that

Br(x0) := {x ∈ X : ∥x− x0∥< r} ⊂U.

Here Br(x0) is the open ball centred at x0 with radius r.

• By definition, a set F ⊂ X is closed if its complement X \F is open. This can be characterised in terms
of sequences: F is closed if and only if whenever (xn) is a sequence of elements in F which converges to
x ∈ X , then x ∈ F , i.e. F contains the limits of all convergent sequences.

The definition of the norm ensures that all the algebraic operations are automatically continuous:

• The scalar multiplication F×X → X , (λ ,x) 7→ λx is continuous, where F×X is given the product metric.

• The addition X ×X → X , (x,y) 7→ x+y is continuous, where X ×X is given the product metric (below we
will give X ×X a norm, but here we only need a metric).

• The norm ∥ · ∥ : X → R is continuous.

We also recall the appropriate notions of equivalence. First, the equivalence of different norms on the same
space:

Definition 1.3. Let X be a vector space. Two norms ∥ ·∥1 and ∥ ·∥2 on X are equivalent if and only if there exist
a constant C > 0 so that for all x ∈ X

C−1∥x∥1 ≤ ∥x∥2 ≤C∥x∥1.

1The topology on a metric space is fully determined by knowledge of which sequences converge to which points. It is for this reason
that any property which can be described using the metric can in some way be characterised by sequences. Therefore when I work with
normed spaces, or more generally metric spaces, I have a tendancy towards giving sequence based arguments.

Altthough this course, and Functional Analysis II do not rely on the Part A topology course, I can’t resist pointing out that while one
can’t ‘do everything with sequences’ in a general topological space, there is a suitable generalisation of a sequence – known as a net
– and one can do everything with nets. For example a function f : X → Y between topological spaces is continuous if and only if
whenever xi → x is a convergent net in X , then f (xi)→ f (x) is a convergent net in Y . I’ve found that the sort of functional analysis
arguments I need to do in general topological spaces, work well with nets — sometimes all one needs to do is replace all the n’s
indexing the sequence with an i indexing a net! Of course you need to know about nets for this; the classic place which I learnt this
from is Kelley’s ‘General topology’, and another source is Willard’s ‘General Topology’ (the section on nets is nice and short, but
you’ll need to dig around elsewher to learn that, for example, a subset is compact if and only if every net has a convergent subnet).

Deep Dive
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The normed spaces (X ,∥·∥1) and (X ,∥·∥2) are equivalent precisely when the metrics are strongly equivalent
in the sense of the metric spaces course.2 This ensures that all metric notions (open sets, convergent sequences,
Cauchy sequences etc) are all the same in both norms.

Secondly, the notion of isomorphism between normed spaces. While there is only one possible notion of an
isomorphism between vector spaces –

Definition 1.4. Let (X ,∥ · ∥X) and (Y,∥ · ∥Y ) be normed spaces. Say X and Y are isometrically isomorphic if
there exists a surjective linear map T : X → Y with ∥T (x)∥Y = ∥x∥X for all x ∈ X .3 Say X and Y are isomorphic
if there exists an isomorphism T : X → Y of vector spaces which is also a homeomorphism of the underlying
metric spaces.

We will have much more to say about the linear operators T appearing here in Section ?? and beyond. For
now it is useful to know that (X ,∥·∥1) and (X ,∥·∥2) can be (isometrically) isomorphic, without being equivalent
(Problem sheet 1 asks you to produce an example).

You’ve met a number of theorems in your analysis courses so far that give conditions under which a continuous
bijection is a homeomorphism, i.e. has continuous inverse. For example in prelims, a continuous bijection
between two intervals has continuous inverse, or a continuous bijection from a compact metric (or topological)
space into a metric space (or Hausdorff topological space) has continuous inverse. In functional analysis we
have the following consequence of Banach’s open mapping theorem, proved in B4.2 using the baire category
theorem: if T : X → Y is a bijective continuous linear map between Banach spaces, then T−1 is continuous,
and hence X and Y are isomorphic Banach spaces. This is sometimes called the Banach isomorphism theorem,
and decreases the work needed to obtain an isomorphism between Banach spaces.

Deep Dive

One of the key objects we study in this course are Banach spaces and linear maps between such spaces.

Definition 1.5. A normed space (X ,∥ ·∥) is a Banach space if it is complete, i.e. if every Cauchy sequence in X
converges.

A normed space is complete if and only if absolute convergence of series implies convergence of series:

Proposition 1.6. Let X be a normed space. Then the following are equivalent

(i) X is a Banach space,

(ii) Absolute convergence of series implies convergence, i.e. for sequences (xn) in X and the corresponding
partial sums sn := ∑

n
k=1 xk we have

∞

∑
i=1

∥xn∥< ∞ ⇒ sn converges to some s ∈ X .

Proof. (i) =⇒ (ii): Suppose X is complete and ∑
∞
n=1 ∥xn∥ < ∞. Then, for sn = ∑

n
k=1 xn, the sequence (sn) is

Cauchy as for m > n ≥ N

∥sn − sm∥= ∥
m

∑
k=n+1

xk∥ ≤
m

∑
k=n+1

∥xk∥ ≤
∞

∑
k=N+1

∥xk∥→ 0 as N → ∞.

2You might be suspicious of the terminolgy: normed spaces are called equivalent when their underlying metric structures are strongly
equivalent. But while in the generality of metric spaces, equivalence of two metrics d1 and d2 on X – defined in Part A metric spaces to
mean that the identity map IdX is a homeomorphism – is not the same notion as strong equivalence, for normed spaces it is. This will all
follow from equivalence between continuity and boundedness of linear maps in Section ??.

3Such a map T is necessarily injective, so T is an isomorphism of vector spaces which is also an isometry.
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As X is complete we thus obtain that sn converges to some element s ∈ X .
(ii) =⇒ (i): Suppose (ii) holds and let (xn) be a Cauchy sequence. Select a subsequence xn j so that

∥xn j − xn j+1∥ ≤ 2− j,

where the existence of such a subsequence is ensured by the fact that (xn) is Cauchy. Then ∑
∞
j=1 ∥xn j+1 − xn j∥ ≤

1 < ∞ so (ii) ensures that ∑
∞
j=1(xn j+1 − xn j) converges. Hence xnk = xn1 +∑

k−1
j=1(xn j+1 − xn j) converges, so (xn)

has a convergent subsequence and must thus, by Lemma 1.2, itself converge.

1.2 Examples

(Rn,∥ · ∥p) and (Cn,∥ · ∥p), 1 ≤ p ≤ ∞. Consider Rn, or Cn, equipped with

∥x∥p :=
(
∑

i
|xi|p

)1/p
for 1 ≤ p < ∞

respectively
∥x∥∞ := sup

i∈{1,...,n}
|xi|.

One can show that these are all norms, with the challenging bit being the proof of the triangle inequality

∥x+ y∥p =
(
∑

i
|xi + yi|p

)1/p
≤ ∥x∥p +∥y∥p,

which is is the finite dimensional version of Minkowski’s inequality.

Warning. This inequality does not hold if we were to extend the definition of ∥ ·∥p to 0 < p < 1, and hence the
above expression does not give a norm on Rn if p < 1.

We will write ℓp
n for the normed space (Rn,∥ · ∥p). A useful property to deal with the p norms 1 ≤ p ≤ ∞

(and their generalisations to sequence and functions spaces) is Hölder’s inequality (which we proved in much
more generality in the Integration course – see Proposition 1.12).

Lemma 1.7 (Hölder’s inequality in Rn). For 1 ≤ p,q ≤ ∞ with

1
p
+

1
q
= 1 (1)

we have that for any x,y ∈ Cn ∣∣ n

∑
i=1

xiyi
∣∣≤ ∥x∥p∥y∥q.

In (1) we use the convention that 1
p = 0 for p = ∞, and one often calls numbers p,q ∈ [1,∞] satisfying (1) Hölder

conjugate exponents.

Remark. As you will show on Problem sheet 1, we have that for all 1 ≤ p < ∞

∥x∥∞ ≤ ∥x∥p ≤ n1/p∥x∥∞.

Hence the ∞-norm is equivalent to every p-norm and thus, by transitivity, we have that ∥ · ∥p is equivalent to
∥ · ∥q for every 1 ≤ p,q ≤ ∞. In fact as we will show in Section ??, all norms on finite dimensional spaces are
equivalent.
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With some small exceptions (which I neglected to mention in lectures), the spaces ℓp
n are not isometrically

isomorphic as p varies. The first exception is if n = 1: then all the norms are the same! The only other
exception is if n = 2, when ℓ1

2 is isometrically isomorphic to ℓ∞
2 , via the map (x,y)→ (x+ y,x− y). In a deep

dive below we discuss to how see this sort of thing for the sequence spaces ℓp, and come back to ℓ1
n and ℓ∞

n
for n ≥ 3.

Deep Dive

Sequence spaces ℓp and c0. An infinite dimensional analogue of (Rn,∥ · ∥p), respectively (Cn,∥ · ∥p) are the
spaces of sequences ℓp, 1 ≤ p ≤ ∞, where for 1 ≤ p < ∞

ℓp :=
{
(x j) j∈N :

∞

∑
j=1

|x j|p < ∞

}
equipped with ∥ · ∥p where for 1 ≤ p < ∞

∥x∥ℓp =
( ∞

∑
j=1

|x j|p
)1/p

,

while ℓ∞ denotes the space of bounded sequences, equipped with

∥(x j)∥∞ := sup
j
|x j|.

For any 1 ≤ j ≤ ∞ we have that ℓp is a normed space (where we define addition and scalar-multiplication
component-wise). Again the main difficulty is to obtain Minkowski’s inequality, which is precisely the triangle
inequality.

Example 1.8. ℓp is complete for 1 ≤ p ≤ ∞.

This follows the standard procedure for showing completeness. Given a Cauchy sequence (xn) in a normed
space X :

1. identify a candidate x for limxn;

2. show that x ∈ X ;

3. show ∥x− xn∥X → 0 as n → ∞.

Often, as in the proof below, which we recall from metric spaces, steps 2 and 3 can be performed simultaneously.
The p = ∞ case is easier (and a special case of the Banach space Fb(Ω) below, by taking Ω = N.)

Proof for 1 ≤ p < ∞. Let (x(n)), be a Cauchy-sequence in ℓp and write x(n) = (x(n)j ) j=1∞ . As for every j ∈ N

|x(n)j − x(m)
j | ≤ ∥x(n)− x(m)∥2 → 0

as m,n → ∞, the sequence (x(n)j ) is Cauchy in F so converges, say x(n)j → x j.
Fix ε > 0. Then there exists N so that for all n,m ≥ N

∥x(n)− x(m)∥p ≤ ε.
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Thus for every K ∈ N and for all n ≥ N we have that

K

∑
j=1

|x(n)j − x j|
p
= lim

m→∞

K

∑
j=1

|x(n)j − x(m)
j |

p
≤ ε

p.

Letting K → ∞, it follows that for all n ≥ N, we have x(n)− x ∈ ℓp, and so x ∈ ℓp (step 2), and ∥x(n)− x∥p ≤ ε

for n ≥ N, so that x(n) → x in ℓp.

Again Hölder’s inequality is valid. That is for every 1 ≤ p,q ≤ ∞ with 1
p +

1
q = 1 and any (x j) ∈ ℓp and

(y j) ∈ ℓq we have that ∑x jy j converges, i.e. the pointwise product xy ∈ ℓ1 and

|∑
j

x jy j| ≤ ∥(x j)∥p∥(y j)∥q.

Again this is a special case of Proposition 1.12 from Integration, taking the measure space to be N equipped
with counting measure.

We will sometimes also consider the subspace

c0 := {(xn) ∈ ℓ∞ : xn → 0}

of ℓ∞, which is closed4 and hence, when equipped with the ℓ∞- norm a Banach space (see Proposition 1.16
below)

Note that all of these sequence spaces contain a common subspace c00 – the collection of sequences which
are eventually zero. You should check that c00 is dense in c0, and in ℓp for 1 ≤ p < ∞. Accordingly it can not be
a Banach space in any of the p-norms (by Proposition 1.16 below).

In fact there is no norm on c00 under which it is a Banach space.

Theorem. No infinite dimensional Banach space X can have a countable Hammel basis.

A Hammel basis is what up to now we’ve just called a basis, i.e. a linearly independent spanning set. This
is a purely algebraic notion so S is a Hammel basis for X when no non-trivial finite linear combination of
elements of S can be zero, and every element of X can be written as a finite linear combination of elements
of S . While in a normed space we are allowed to consider infinite sums, these are not used to define Hammel
bases. Certainly the polynomials have a countably infinite Hamel basis and so can not be a Banach space
under any norm.

For background, by a Zorn’s lemma argument every vector space has a Hammel basis. Zorn’s lemma is
a tool equivalent to the axiom of choice, which will appear in some other deep dives, but is definitely non-
examinable. Zorn’s lemma will be described in B1.2 (Set Theory) which will show that every vector space
having a Hammel basis is another reformulation of the axiom of choice (that course will use the language of
basis, rather than Hammel basis, as the vector spaces there do not come equipped with norms).

The normal, and in my view best way, to prove that no Banach space can have a countably infinite Hammel
basis is through the Baire category theorem, which will be proved in B4.2 Functional Analysis 2. This states
that a complete metric space is never a countable union of nowhere dense subsets.a We will see in Section ??
that finite dimensional subspaces of normed spaces are always closed, and it is an easy exercise to check that
a proper closed subspace of a normed space is nowhere dense. Then the result follows. On problem sheet 2
we will see an alternative, slightly messier proof in Section C, using Riesz’s lemma from Section ??.

Deep Dive

4This is very similar to Problem sheet 1, B.1(a).
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This result shows that Hammel bases, while they generally exist, are unlikely to be all that useful for
working with Banach spaces. Even for spaces such as ℓ1 or c0, where we clearly only need countably many
bits of data to specify elements, do not have countable bases. Instead, one needs the appropriate analytic
notion of a basis – Schauder bases – to develop a satisfactory theory for Banach spaces. These appear in
more detail at the end of the C4.1 course, but they are perfectly accessible to you now. A good book taking
a basis first approach, and so developing interesting properties of the sequence spaces is Carothers ‘A short
course in Banach space theory’. Definitely the first 6 chapters of this book are very readable along side this
course - but from chapter 3 onwards go in different direction.

aA nowhere dense set is a set whose closure has empty interior.

When I’m trying to build counter examples, my first thought is to check the finite dimensional case, and
assuming that doesn’t work then I tend to look for an example using sequences.

While for n ∈N fixed, all the n-dimensional normed spaces ℓp
n are equivalent, this fails in infinite dimensions.

Also, just as in the finite dimensional case, by looking at the geometry of the unit balls one can see that no
pair of these spaces is isometrically isomorphic. One thing you can look at here is the modulus of convexity,
which quantifies the convexity of the unit ball. For a Banach space X , define the modulus of convexity
δX : [0,2]→ [0,1] by

δX(ε) = inf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥ : x,y ∈ X , ∥x∥= ∥y∥= 1, ∥x− y∥ ≥ ε

}
.

This measures how far the average of two points x and y of distance at least ε on the sphere must get pushed
inside the unit ball. (There’s some nice pictures to be drawn here; if someone draws them I’ll be happy to
include). You should be able to see that for ℓ∞ and ℓ1 we have δ = 0. The modulus of convexity of ℓ2, and
indeed any Hilbert space, is δ (ε) = 1−

√
1− ε2/4 = ε2/8+O(ε4) as ε → 0.f́ootnoteIt’s small ε we care

about, otherwise we wouldn’t have used the notation ε . A two-dimensional geometric argument shows that
this is the upper bound of the modulus of convexity for any normed space X ; in this sense Hilbert space’s
have the ”convexest” unit ball. For other p, we have

δℓp(ε) =

{
(p−1) ε2

8 +o(ε2), 1 < p ≤ 2;
ε p

p2p , 2 ≤ p < ∞.

While the modulus of convexity doesn’t distinguish ℓ∞
n and ℓ∞

n , for n ≥ 3, you can see that nevertheless they
are not isometrically isomorphic from the geometry of the unit balls: the ball of ℓ1

n has 2n extreme points, and
the ball of ℓ∞

n has 2n extreme points.a

Showing that in infinite dimensions none of the sequence spaces ℓp or c0 are isomorphic is more chal-
lenging. By section ?? we will know that ℓ∞ is not isomorphic to any of the other spaces — it is too big
(not separable to be precise). By the end of the course, we will know that c0, ℓ

1 are not isomorphic and also
not isomorphic to any other ℓp space. In fact all these spaces are pairwise non-isomorphic. This is much
harder, and we won’t prove it in any of the functional analysis courses here. (The way this is normally done is
through Pitt’s theorem, that says that for 1 ≤ p < q < ∞, any bounded linear map (see Section ??) T : ℓq → ℓp

is compact (a concept that will be defined in B4.2). Taking this fact for granted (a proof can be found in
Chapter 2 of Albaic and Kalton’s ”Topics in Banach Space Theory”) you should be able to deduce that all

Deep Dive
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these sequence spaces are pairwise non-isomorphic by the end of B4.2.
aI’ll let you formalise or look up the definition of an extreme point. A picture ought to work in finite dimensions, but in infinite

dimensions some unit balls need not have extreme points, for example c0. I will make further deep dive remarks on this later in the
notes.

Function spaces with supremum-norm

The supremum norm is often used to make spaces of bounded functions complete.

Example 1.9. Let Ω be any set. Then

F b(Ω) := { f : Ω → F bounded}

is a Banach space under the norm ∥ f∥sup = supx∈Ω | f (x)|. (We will often drop the subscript sup on these norms).

Proof of completeness of F b(Ω). This is another example of the three step process. If ( fn) is Cauchy in F b(Ω)
then for each x ∈ Ω, ( fn(x)) is Cauchy so converges to f (x) ∈ F, say. Fixing ε > 0, there is N ∈ N with
| f (n)(x)− f (m)(x)| ≤ ε for m,n ≥ N and all x ∈ Ω. Taking limits as m → ∞, | fn(x)− f (x)| ≤ ε for all x ∈ Ω and
n ≥ N. Therefore f is bounded, and ∥ fn − f∥ ≤ ε . Accordingly F b(Ω) is complete.

For a metric5 space K, the vector space Cb(K) := { f : K → F continuous and bounded} is closed in F b(K),6

and hence Cb(K) is a Banach space with the sup norm (see Proposition 1.16). If K is compact, then all continuous
functions are bounded, and we write C(Ω) := { f : Ω → F continuous}=Cb(Ω).

Example 1.10. Let K be a compact metric space. Then C(K) is a Banach space with the sup-norm.

Similarly, on spaces of differentiable functions (with bounded derivatives) such as C1([0,1]) – the space of
functions on [0,1] which have continuous derivatives (including at the end points), to get completeness we will
need norms that are built using the sup norm of both the function and its derivative. Indeed, since C1([0,1]) is
dense in C[0,1] (in fact the smaller set of polynomials is dense in C[0,1] – see Section ??), it is not closed in
the sup-norm and so is not a Banach space with respect to ∥ · ∥sup. Instead we use a standard trick for creating a
norm on spaces like this; take the sum of two norms that we want to be able to control. Then a sequence which
is Cauchy in the sum of the norms, will necessarily be Cauchy in each norm.

Example 1.11. C1([0,1]) is a Banach space with ∥ f∥C1 := ∥ f∥sup +∥ f ′∥sup

Proof. Suppose ( fn) is a Cauchy sequence in C([0,1]). Then ( fn) is ∥ · ∥sup-Cauchy so converges to some
f ∈ C([0,1]) and ( f ′n) is also ∥ · ∥sup-Cauchy so converges to some g ∈ C([0,1]). Now prelims comes to the
rescue: since ( fn) converges uniformly to f and each f ′n is differentiable and f ′n converges uniformly to g, it
follows that f is differentiable and f ′ = g. Hence f ∈C([0,1]), and then ∥ fn − f∥C1 → 0.

The map f 7→ ( f ′, f (0)) gives an isomorphisma from C1([0,1]) to C([0,1])×R (we will discuss norms
on the Cartesian product below. In fact, using a Schauder basis for C([0,1]) it is possible to show that
C([0,1]) ∼= C([0,1])×R though the isomorphism can not be isometric,b so that as Banach spaces C1([0,1])
and C([0,1]) are isomorphic. But in applications we would most likely care about how our elements are
realised as functions: so while these Banach spaces are abstractly isomorphic, it makes sense to understand

Deep Dive

5this works fine for a topological space
6this is a consequence of the fact that a uniform limit of continuous functions is continuous — a 3ε or ε/3 argument depending on

your taste.
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them separately.
aThis map is bounded and bijective between Banach spaces, so an isomorphism from Banach’s isomorphism theorem; though

you could show directly that the inverse map is bounded.
bWe’re implicitly working with reals here, so you can use the geometry of the unit ball: C([0,1]) has two extreme points, the

constant functions ±1, while the unit ball of C([0,1]×R with the ℓ2-norm has more.

Function spaces Lp, 1 ≤ p ≤ ∞

Let (Ω,F ,µ) be a measure space (considering examples like Ω an interval in R or a measurable subset of
Rn with Lebesgue measure will be more than sufficient for the course). Consider for 1 ≤ p < ∞ the space of
functions

L p(Ω) :=
{

f : Ω → R (or C) measurable so that
∫

Ω

| f |pdx < ∞

}
respectively

L ∞ :=
{

f : Ω → R (or C) measurable so that ∃M with | f | ≤ M a.e.
}
.

This is not a course on Lebesgue integration, so typically in examples we will only work with measurable
functions; you may assume that all functions you encounter are measurable when needed (though don’t let that
stop you briefly reminding yourself why). But of course not all measurable functions are integrable and that
indeed for a general measurable function the integral might not even be defined, so justification is needed to
consider integrals in general. However we also recall that the integral of a non-negative functions f is always
defined though might be infinite.

We equip these spaces with

∥ f∥p :=
(∫

Ω

| f |pdx
)1/p

for 1 ≤ p < ∞

respectively
∥ f∥∞ := ess sup| f | := inf{M > 0 : | f | ≤ M a.e. }.

We note that ∥ · ∥p is only a seminorm on L p with ∥ f − g∥p = 0 if and only if f = g a.e. We can hence turn
(L p,∥ · ∥) into a normed space by taking the quotient with respect to the equivalence relation

f ∼ g ⇐⇒ f = g a.e..

The resulting quotient space
Lp(Ω) := L p/∼ equipped with ∥ · ∥p

is one of the most important spaces of functions in the modern theory of PDE, and will be further developed in
the course C4.3 Functional analytic methods for PDEs. Recall the following two key inequalities for Lp spaces;
the first giving the triangle inequality, and the second will be crucial later in the course when we examine the
dual spaces of Lp(Ω).

Proposition 1.12 (Minkowski and Hölder). • The Minkowski-inequality, which is the triangle inequality
for Lp holds: for f ,g ∈ Lp(Ω), we have

∥ f +g∥p ≤ ∥ f∥p +∥g∥p.

• Hölder’s inequality holds: If f ∈ Lp(Ω) and g∈ Lq(Ω) where 1
p +

1
q = 1 then their product f g is integrable

with ∣∣∫
Ω

f gdx
∣∣≤ ∥ f∥p∥g∥q.

12
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None of the Lp norms are equivalent, though when Ω has positive and finite measure, we can estimate the
Lp norm of functions by their Lq norm if p < q and we have

L∞(Ω)⫋ Lq(Ω)⫋ Lp(Ω)⫋ L1(Ω) for any 1 < p < q < ∞. (2)

As an example consider Ω = (0,2) ⊂ R and p = 2, q = 4. Adding in a multiplication by the constant function
g = 1 we can estimate, using Hölder’s inequality,

∥ f∥2
L2 =

∫
| f |2 ·1dx ≤ ∥| f |2∥L2∥1∥L2 =

(∫ 2

0
f 4 dx

)1/2
·
(∫ 2

0
1dx

)1/2
=
√

2∥ f∥2
L4 ,

so we get ∥ f∥L2 ≤
√

2∥ f∥L4 and in particular that every f ∈ L4([0,2]) is also an element of L2([0,2]). The
general case is discussed on the first problem sheet.

Warning. • Note that the inclusions of the function spaces Lp(Ω) for sets Ω with bounded measure are the
“other way around” compared with the inclusions of the sequence spaces ℓp.

• The inclusion (2) is wrong for unbounded domains, e.g. the constant function f = 1 is an element of
L∞(R) but isn’t contained in any Lp(R), 1 ≤ p < ∞.

Remark. In practice it is can be useful to extend ∥·∥Lp to a function from the space of all (measurable) functions
to [0,∞)∪{∞} by simply setting ∥ f∥Lp = ∞ if

∫
| f |p = ∞ (respectively for p = ∞ if f /∈ L∞), and we note that

also with this ‘abuse of notation’ the triangle and Hölder-inequality still hold (with the convention that 0 ·∞ = 0
for Hölder’s inequality). Similarly we can extend ∥ · ∥p to a function that maps all sequences to [0,∞)∪{∞}
but we stress that while this notation/convention can be useful and used in the literature, these functions into
[0,∞)∪{∞} are not norms as a norm is by definition a function into [0,∞).

Example 1.13. (L∞(Ω),∥ · ∥L∞) is a Banach space.

The proof is more or less similar to the proof of completeness for Fb(Ω), or a direct proof of completeness
for C(K) in the supremum norm, except that we have to take care of the almost everywhere nature of things.

Proof. Let ( fn) be a Cauchy sequence in L∞(Ω,R). For each k ∈ N, there exists Nk such that

∥ fn − fm∥L∞ ≤ 1
k

for all n,m ≥ Nk.

This means that, for each k and m,n ≥ Nk there is a null subset Zk,m,n of Ω such that

| fn(x)− fm(x)| ≤
1
k

for x ∈ Ω\Zk,m,n.

Let Z = ∪k ∪n,m≥Nk Zk,n,m, which, as a countable union of null set, is null. Then,

| fn(x)− fm(x)| ≤
1
k

for all n,m ≥ N,x ∈ Ω\Z. (3)

So for almost all x ∈ Ω, ( fn(x)) is Cauchy, and hence converges to some f (x).
Being an almost everywhere limit of measurable functions, f is measurable. Sending m → ∞ while keeping

n fixed in (3) we get

| fn(x)− f (x)| ≤ 1
k

for all n ≥ Nk,x ∈ Ω\Z.

This shows that ∥ fn − f∥L∞ ≤ 1
k for all n ≥ Nk. This implies on one hand that fn − f and hence f belong to

L∞(Ω) and on the other hand that fn → f in L∞(Ω).
13



Stuart White MT 2025, B4.1: Functional Analysis I

Example 1.14. Lp is complete for 1 ≤ p < ∞.

We give two proofs. Firstly we consider the proof lectured in part A integration,7 and show how this really
fits into the abstract framework of proving completeness by showing that absolutely convergence series converge.

Proof. Let ( fn)
∞
n=1 be a sequence in Lp(Ω) with ∑n ∥ fn∥p < ∞. Define gn = ∑

n
r=1 | fr|. This gives an increasing

sequence of non-negative measurable functions which converges to g = ∑
∞
n=1 | fn| (g can of course take the value

∞ whenever this sum diverges). By Minkowski

∫
gp

n = ∥gn∥p
p ≤

(
n

∑
r=1

∥ fn∥p

)p

≤

(
∞

∑
n=1

∥ fn∥p

)p

< ∞.

Therefore by the monotone convergence theorem gp is integrable, i.e. g ∈ Lp, and hence g is finite almost
everywhere. That is the sum ∑

∞
n=1 fn is absolutely convergent almost everywhere, and so converges almost

everywhere, say to f .8 Moreover, applying the triangle inequality pointwise | f |p ≤ gp, so f ∈Lp by comparison.9

Finally, another application of the triangle inequality gives

| f −
n

∑
r=1

fr|p ≤

(
∞

∑
r=n+1

| fr|

)p

≤ gp,

so the dominated convergence theorem gives ∥ f −∑
n
r=1 fr∥p

p → 0, and ∑
∞
n=1 fn = f in Lp.10

The second proof finds the limit through finding by means of finding a subsequence which is convergent
almost everywhere. Since we didn’t lecture convergence in measure in the integration course, I’m reworking
this proof to give some background as the ideas may be useful to you elsewhere.

We should also discuss potential isomorphisms between all the Lp-spaces and all the ℓp spaces. Firstly none
of the Lp spaces are isometrically isomorphic; the same modulus of convexity formula in one of the deep
dives above works for Lp.

L2(Ω,F ,µ) is a Hilbert space, and as we will learn these are determined up to isometric isomorphism by
the size of an orthonormal basis. In most examples of interest to us, (Ω,F ,µ) has just the right ‘size’ to be
separable (have a countable dense subset; see Section ??), and in this case it will be isometrically isomorphic
to ℓ2. This will always be the case when Ω ⊂ Rn is a Lebesgue measurable subset (with non zero measure)
equipped with Lebesgue measure.a As an example you might well be able to guess an isometric isomorphism
between L2(T) and ℓ2(Z).

There is more to come here!
aIn general you need that Ω is σ -finite and F is the completion of a countably generated σ -algebra.

Deep Dive

Some incomplete spaces
7The case of Lp was lectured, but only the case of L1 is in the lecture notes.
8This is Step 1 of the process for completeness (in this absolute convergence framework) by providing a candidate limit.
9Step 2: the limit is in the space it should be in.

10The expression in Lp relating to this sum means that we have justified convergence of the sum in the norm on Lp, as required for
Step 3.
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Example 1.15. We can construct many examples of non-complete spaces by equipping a well known space such
as Cb, C1, ℓp, Lp with the ‘wrong’ norm, or by choosing a subspace of a Banach space that is not closed. As an
example we show that C([0,1]) equipped with ∥ f∥L1 =

∫ 1
0 | f |dx is not complete (which is actually an exercise

from the metric spaces course and so I won’t lecture it).

Proof. We give three proofs: one by direct argument, one via Corollary 1.6, and finally through density.

1. Let

gn(x) =

{
(2x)n for x ∈ [0,1/2),
1 for x ∈ [1/2,1].

For n < m, we have

∥gn −gm∥L1 =
∫ 1/2

0
[(2x)n − (2x)m]dx =

1
2(n+1)

− 1
2(m+1)

,

so (gn) is Cauchy. On the other hand, (gn) is a decreasing sequence of non-negative functions which is
bounded from above by 1. Its pointwise limit is the characteristic function of the interval [1/2,1]. By
Lebesgue’s dominated convergence theorem, gn converges to χ[1/2,1] in L1 and there is no continuous
function which is equal to χ[1/2,1] almost everywhere,11, and hence not in C([0,1]). In other words (gn)

has no limit in C([0,1]).12

2. For

fn(x) :=

{
1−n2x for x ∈ [0, 1

n2 ]

0 else

we have that ∥ fn∥1 =
1

2n2 so ∑∥ fn∥L1 converges. However ∑ fn cannot converge to an element of C([0,1]).
Indeed suppose, seeking a contradiction, that ∑ fn → f converges in L1 to a function f ∈C([0,1]). Then,
as continuous functions on compact sets are bounded, there exists some M ∈ R so that f ≤ M on [0,1].
Hence choosing N ∈ N so that N ≥ 2(M+1) we obtain that for any n ≥ N and any x ∈ [0, 1

2N2 ]

n

∑
j=1

f j(x)− f (x)≥
N

∑
j=1

1
2
− f (x)≥ N/2−M ≥ 1

and thus in particular ∥∑
n
j=1 f j − f∥1 ≥ 1

2N2 ̸→ 0.

3. We know from part A integration that C([0,1]) is a proper dense subspace of L1([0,1]), so can not be
complete (by Proposition 1.16).

1.3 Constructions

We end this section with a brief collection of ways to construct new normed spaces from existing examples, and
when this preserves completeness.

11χ[1/2,1] is almost everywhere continuous, but not almost everywhere equal to a continuous function
12Here we are using the fact that we know C([0,1]) is a subspace of L1([0,1]) so limits are unique. When you did this exercise in the

metric spaces course, this answer would not have been sufficient as we didn’t have the space L1([0,1]) to work with. In part A metric
spaces you where supposed to deal with this by showing barehands that there is no continuous function which can arise as the L1 limit.

15
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Subspaces We first note that for any given subspace Y of a normed space (X ,∥ · ∥) we obtain a norm on Y
simply by restricting the given norm to Y . For the resulting normed space (Y,∥ · ∥) we have

Proposition 1.16. Let X be a Banach space, Y ⊂ X a subspace. Then

(Y,∥ · ∥) is complete ⇔ Y ⊂ X is closed .

Proof. Suppose Y is complete, and (yn) is a sequence in Y with yn → x ∈ X . As (yn) converges in X , it is Cauchy.
Therefore by completeness it converges to some y ∈Y . Hence x = y ∈Y by uniqueness of limits and Y is closed.

Conversely, suppose Y is closed in X and let (yn) be a Cauchy sequence in Y . By completeness of X , it
follows that there exists x ∈ X with yn → x ∈ X . But as Y is closed we must have that x ∈ Y and hence that (yn)
converges in Y . Therefore Y is complete.

Direct sums Given two normed spaces X and Y we can define a norm on X ×Y e.g. by

∥(x,y)∥2 = (∥x∥2 +∥y∥2)1/2 (4)

or more generally using any of the p-norms on R2 to define

∥(x,y)∥p := ∥(∥x∥,∥y∥)∥p = (∥x∥p +∥y∥p)1/p respectively ∥(x,y)∥∞ := max(∥x∥,∥y∥)

where here and in the following we simply write ∥ · ∥ instead of ∥ · ∥X and ∥ · ∥Y if it is clear from the context
what norm we are using. As all (the ℓp)-norms on R2 are equivalent, it follows that all the norms ∥(x,y)∥p are
equivalent on X ×Y . We tend to write X ⊕p Y for these spaces.

We note that for all of these norms on X ×Y we obtain that X ×Y is again a Banach space if both X and
Y are Banach spaces. If X and Y are inner product spaces then one uses in general the norm (4) as for this
choice of norm also the product X ×Y will again be a inner product space with inner product ((x,y),(x′,y′)) =
(x,x′)X +(y,y′)Y , while none of the norms with p ̸= 2 preserve the structure of an inner product space.

We can also consider countable direct sums. Given normed spaces (Xn)
∞
n=1, and 1 ≤ p ≤ ∞, one can form the

ℓp-direct sums. For p = ∞, let
X∞ = {(xn) : xn ∈ Xn, sup∥xn∥< ∞}

with the norm ∥(xn)∥∞ = sup∥xn∥. For 1 ≤ p < ∞ let

Xp = {(xn) : xn ∈ Xn :
∞

∑
n=1

∥xn∥p < ∞}

with the norm ∥(xn)∥p = (∑∞
n=1 ∥xn∥p)1/p.

These spaces are often written as (
⊕

∞
n=1 Xn)p.

It’s a good exercise in seeing if you understand the proofs that ℓp forms a Banach space to check these
are norms, and that if each Xn is complete so too our the spaces Xp. This time of course all these norms will
in general give rise to pairwise non-isomorphic spaces (as can be seen by taking each Xn = F when you get
back the classical sequence spaces ℓp). Now you can start asking what sort of spaces you get if you take an
infinite ℓp product say of a sequence of Lqn spaces!

Deep Dive
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Sums of subspaces If X1,X2 ⊂ X are subspaces of a normed space X then also

X1 +X2 := {x1 + x2 : x1 ∈ X1,x2 ∈ X2}

is again a subspace of X , but beware. Just because X1 and X2 are closed in X , it does not necessarily follow that
X1 +X2 is closed; see example sheet 1 (question C1) for an example.

Quotients We saw the process of taking quotients to pass from the semi-norm on L p to the normed space Lp

above. This works generally. Given a vector space X and a semi-norm |·| on X , i.e. a function |·| : X → [0,∞)
satisfying (N2) and (N3), we can consider the quotient space X/X0 where X0 := {x ∈ X : |x|= 0}. Then one can
define a norm on X/X0 by defining ∥x+X0∥ := |x|, see problem sheet 1 for details.

There are many reasons to be interested in quotient spaces more generally. Suppose X is a normed space, and
Y is a subspace of X , when can we put a norm on X/Y ? The solution is to define

∥x+Y∥= inf{∥x+ y∥ : y ∈ Y}= inf{∥x− y∥ : y ∈ Y}= d(x,Y ),

In general this is only a seminorm as if ∥x+Y∥= 0, then there is a sequence yn ∈Y with ∥x+yn∥→ 0. Noting
that −yn ∈ Y , it follows that ∥x+Y∥ = 0 if and only if x is in the closure Y of Y . In this way we get a norm
on X/Y precisely when Y is closed.a.

This will be explored further in C4.1, but it is nice to know that the quotient of a Banach space by a
closed subspace is again a Banach space (this is normally proved by showing absolute convergence implies
convergence).

aWhen Y is not closed, you could follow the construction of taking a further quotient of X/Y by the null space of the seminorm.
You can check that this gives the same thing as considering the quotient X/Y , so in practise we only consider quotients by closed
subspaces.

Deep Dive
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