B1.1 Logic

Sheet 2 — MT25

You may freely use the equivalences of Exercise 3.14 on this sheet, except where you are specifically asked to prove them,

Section A

- 1. Let ϕ be the formula $((p_0 \to p_1) \land (p_1 \to p_2))$. Find a formula in disjunctive normal form which is logically equivalent to ϕ and has precisely three disjuncts.
- 2. Prove that for any formulas α, β of \mathcal{L}_0 , the following formulas are theorems of the system L_0 . You may use the deduction theorem.
 - (a) $(\neg \alpha \rightarrow (\alpha \rightarrow \beta))$
 - (b) $((\neg \alpha \to \alpha) \to (\neg \alpha \to \beta))$

Section B

3. Prove that the following logical equivalences hold for any $n \geq 1$ and any formulas $\psi, \phi_1, \ldots, \phi_n \in \text{Form}(\mathcal{L}_{\text{prop}})$.

(a)
$$\neg \bigwedge_{i=1}^n \phi_i \vDash \exists \bigvee_{i=1}^n \neg \phi_i$$
.

(b)
$$(\psi \vee \bigwedge_{i=1}^n \phi_i) \vDash \exists \bigwedge_{i=1}^n (\psi \vee \phi_i).$$

(c)
$$(\psi \wedge \bigvee_{i=1}^{n} \phi_i) \vDash \exists \bigvee_{i=1}^{n} (\psi \wedge \phi_i).$$

- 4. Prove that every formula is logically equivalent to one in conjunctive normal form¹. (You may use results from lectures, including the corresponding result for disjunctive normal form, Theorem 3.19.)
- 5. (a) Show that $\mathcal{L}_{prop}[\vee, \wedge, \rightarrow]$ is **not** adequate.
 - (b) Find all possible truth tables for a binary connective \star such that $\mathcal{L}_{\text{prop}}[\star]$ is adequate. Justify your answer.
- 6. Prove that for any formulas α, β of \mathcal{L}_0 , the following formulas are theorems of the system L_0 . You may use the deduction theorem.
 - (a) $(\neg \neg \alpha \rightarrow \alpha)$
 - (b) $(\alpha \rightarrow \neg \neg \alpha)$
 - (c) $((\alpha \to \beta) \to (\neg \beta \to \neg \alpha))$
 - (d) $((\alpha \to \beta) \to ((\neg \alpha \to \beta) \to \beta))$
- 7. The Four Colour Theorem asserts that on any "reasonable" map showing finitely many countries, each country may be coloured either red, green, blue, or yellow in such a way that no two neighbouring countries get the same colour. Assuming this fact, use the Compactness Theorem of propositional logic to deduce that such a colouring also exists for any reasonable map with countably infinitely many countries. (Assume that deleting countries from a reasonable map yields a reasonable map; this is all you need to know about the definition of "reasonable".²)

Mathematical Institute, University of Oxford Martin Bays: bays@maths.ox.ac.uk

¹Conjunctive normal form (CNF) is defined analogously to disjunctive normal form: a formula in CNF is a conjunction of disjunctions of propositional variables and negated propositional variables.

²For the curious, we can define "reasonable" as follows: it must be possible to draw a point inside each country (the country's *capital*) and plane curves (*roads*) between the capitals of neighbouring countries such that no two roads intersect at a point which is not a capital.

Section C

- 8. A graph $\langle V; R \rangle$ consists of a set V and a symmetric irreflexive binary relation R on V. (In the terminology of first-order logic, a non-empty graph is precisely a model of $\forall x \forall y ((xRy \leftrightarrow yRx) \land \neg xRx).)$
 - (a) Prove the Infinite Ramsey Theorem: any infinite graph $\langle V; R \rangle$ contains an infinite homogeneous subset, i.e. an infinite subset $X \subseteq V$ such that either any two distinct elements of X are related by R, or no two distinct elements of X are related by R.
 - (b) Apply the compactness theorem of propositional logic to deduce the Finite Ramsey Theorem: for any $k \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that any graph of size at least n contains a homogeneous subset of size k.
- 9. The Yablo paradox can be stated informally as: "The following sentences are all false. The following sentences are all false. The following...".

We could formalise this by adding infinitary conjunctions to \mathcal{L}_{prop} , true if every conjunct is true, and considering

$$\Gamma := \{ (p_i \leftrightarrow \bigwedge_{j>i} \neg p_j) : i \in \mathbb{N} \}.$$

Show that Γ is not satisfiable but every finite subset is satisfiable, so the compactness theorem fails in this logic.

Mathematical Institute, University of Oxford Martin Bays: bays@maths.ox.ac.uk