L is a first-order language.

An K-theory is a Set of Y-sendences

Compactness Theorem:

If an L-theory T is finitely satisfiedle.
then it is satisfiedle.

We say that a theory T is finitely satisfiable if every finite subset of T is satisfiable. We will show that every finitely satisfiable theory T is satisfiable. To do this, we must build a model of T. The main idea of the construction is that we will add enough constants to the language so that every element of our model will be named by a constant symbol. The following definition will give us sufficient conditions to construct a model from the constants.

Definition We say that an \mathcal{L} -theory T has the witness property if whenever $\phi(v)$ is an \mathcal{L} -formula with one free variable v, then there is a constant symbol $c \in \mathcal{L}$ such that $T \models (\exists v \ \phi(v)) \rightarrow \phi(c)$.

An \mathcal{L} -theory T is maximal if for all ϕ either $\phi \in T$ or $\neg \phi \in T$.

Our proof will frequently use the following simple lemma.

Lemma 1 Suppose T is a maximal and finitely satisfiable \mathcal{L} -theory. If $\Delta \subseteq T$ is finite and $\Delta \models \psi$, then $\psi \in T$.

Proof If $\psi \notin T$, then, because T is maximal, $\neg \psi \in T$. But then $\Delta \cup \{\neg \psi\}$ is a finite unsatisfiable subset of T, a contradiction.

Lemma 2. Suppose that T is a maximal and finitely satisfiable \mathcal{L} -theory with the witness property. Then, T has a model. In fact, if κ is a cardinal and \mathcal{L} has at most κ constant symbols, then there is $\mathcal{M} \models T$ with $|\mathcal{M}| < \kappa$.

Proof Let \mathcal{C} be the set of constant symbols of \mathcal{L} . For $c, d \in \mathcal{C}$, we say $c \sim d$ if $T \models c = d$.

Claim $1 \sim$ is an equivalence relation.

Clearly, c = c is in T. Suppose that c = d and d = e are in T. By Lemma 2.1.6, d = c and c = e are in T.

The universe of our model will be $M = \mathcal{C}/\sim$, the equivalence classes of \mathcal{C} mod \sim . Clearly, $|M| \leq \kappa$. We let c^* denote the equivalence class of c and interpret c as its equivalence class, that is, $c^{\mathcal{M}} = c^*$. Next we show how to interpret the relation and function symbols of \mathcal{L} .

Suppose that R is an n-ary relation symbol of \mathcal{L} .

Claim 2 Suppose that $c_1, \ldots, c_n, d_1, \ldots, d_n \in \mathcal{C}$, and $c_i \sim d_i$ for $i = 1, \ldots, n$, then, $R(\overline{c}) \in T$ if and only if $R(\overline{d}) \in T$.

Because $c_i = d_i \in T$ for i = 1, ..., n, by Lemma (\overline{c}) and (\overline{c}) and (\overline{c}) is in (\overline{c}) , then both are in (\overline{c}) .

We will interpret R as

$$R^{\mathcal{M}} = \{(c_1^*, \dots, c_n^*) : R(c_1, \dots, c_n) \in T\}.$$

By Claim 2, $R^{\mathcal{M}}$ is well-defined.

Suppose that f is an n-ary function symbol of \mathcal{L} and $c_1, \ldots, c_n \in \mathcal{C}$. Because $\emptyset \models \exists v \ f(c_1, \ldots, c_n) = v$ and T has the witness property, by Lemma \blacksquare , there is $c_{n+1} \in \mathcal{C}$ such that $f(c_1, \ldots, c_n) = c_{n+1} \in T$. As above, if $C \models c_i$ for $i = 1, \ldots, n+1$, then $f(d_1, \ldots, d_n) = d_{n+1} \in T$. Moreover, because f is a function symbol, if $e_i \sim c_i$ for $i = 1, \ldots, n$ and $f(e_1, \ldots, e_n) = e_{n+1} \in T$, then $e_{n+1} \sim c_{n+1}$. Thus, we get a well-defined function $f^{\mathcal{M}} : \mathcal{M}^n \to \mathcal{M}$ by

$$f^{\mathcal{M}}(c_1^*,\ldots,c_n^*)=d^*$$
 if and only if $f(c_1,\ldots,c_n)=d\in T$.

This completes the description of the structure \mathcal{M} . Before showing that $\mathcal{M} \models T$, we must show that terms behave correctly.

Claim 3 Suppose that t is a term using free variables from v_1, \ldots, v_n . If $c_1, \ldots, c_n, d \in \mathcal{C}$, then $t(c_1, \ldots, c_n) = d \in T$ if and only if $t^{\mathcal{M}}(c_1^*, \ldots, c_n^*) = d^*$.

 (\Rightarrow) We first prove, by induction on terms, that if $t(c_1,\ldots,c_n)=d\in T$, then $t^{\mathcal{M}}(c_1^*,\ldots,c_n^*)=d^*$. If t is a constant symbol c, then $c=d\in T$ and $c^{\mathcal{M}}=c^*=d^*$.

If t is the variable v_i , then $c_i = d \in T$ and $t^{\mathcal{M}}(c_1^*, \dots, c_n^*) = c_i^* = d^*$.

Suppose that the claim is true for t_1, \ldots, t_m and t is $f(t_1, \ldots, t_m)$. Using the witness property and Lemma 2.1.6, we can find $d, d_1, \ldots, d_n \in \mathcal{C}$ such that $t_i(c_1, \ldots, c_n) = d_i \in T$ for $i \leq m$ and $f(d_1, \ldots, d_m) = d \in T$. By our induction hypothesis, $t_i^{\mathcal{M}}(c_1^*, \ldots, c_n^*) = d_i^*$ and $f^{\mathcal{M}}(d_1^*, \ldots, d_m^*) = d^*$. Thus $t^{\mathcal{M}}(c_1^*, \ldots, c_n^*) = d^*$.

(\Leftarrow) Suppose, on the other hand, than $t^{\mathcal{M}}(c_1^*, \ldots, c_n^*) = d^*$. By the witness property and Lemma $\mathbf{1}$, there is $e \in \mathcal{C}$ such that $t(c_1, \ldots, c_n) = e \in T$. Using the (\Rightarrow) direction of the proof, $t^{\mathcal{M}}(c_1^*, \ldots, c_n^*) = e^*$. Thus, $e^* = d^*$ and $e = d \in T$. By Lemma 2.1.6, $t(c_1, \ldots, c_n) = d \in T$.

Claim 4 For all \mathcal{L} -formulas $\phi(v_1, \ldots, v_n)$ and $c_1, \ldots, c_n \in \mathcal{C}$, $\mathcal{M} \models \phi(\overline{c}^*)$ if and only if $\phi(\overline{c}) \in T$.

We prove this claim by induction on formulas.

Suppose that ϕ is $t_1 = t_2$. By Lemma and the witness property, we can find d_1 and d_2 such that $t_1(\overline{c}) = d_1$ and $t_2(\overline{c}) = d_2$ are in T. By Claim 3, $t_i^{\mathcal{M}}(\overline{c}^*) = d_i^*$ for i = 1, 2. Then

$$\mathcal{M} \models \phi(\overline{c}^*) \iff d_1^* = d_2^*$$

$$\Leftrightarrow d_1 = d_2 \in T$$

$$\Leftrightarrow t_1(\overline{c}) = t_2(\overline{c}) \in T \text{ by Lemma } \blacksquare.$$

Suppose that ϕ is $R(t_1, \ldots, t_m)$. Because T has the witness property, by Lemma $| \mathbf{1} |$ there are $d_1, \ldots, d_m \in \mathcal{C}$ such that $t_i(\overline{c}) = d_i \in T$ and, Claim $d_i(\overline{c}) = d_i$ for $i = 1, \ldots, m$. Thus,

$$\mathcal{M} \models \phi(\overline{c}^*) \quad \Leftrightarrow \quad \overline{d}^* \in R^{\mathcal{M}}$$

$$\Leftrightarrow \quad R(\overline{d}) \in T$$

$$\Leftrightarrow \quad \phi(\overline{c}) \in T \text{ by Lemma} \quad \blacksquare \quad .$$

Suppose that the claim is true for ϕ . If $\mathcal{M} \models \neg \phi(\overline{c}^*)$, then $\mathcal{M} \not\models \phi(\overline{c}^*)$. By the induction hypothesis, $\phi(\overline{c}) \not\in T$. Thus by maximality, $\neg \phi(\overline{c}) \in T$. On the other hand, if $\neg \phi(\overline{c}) \in T$, then, because T is finitely satisfiable, $\phi(\overline{c}) \not\in T$. Thus, by induction, $\mathcal{M} \not\models \phi(\overline{c}^*)$ and $\mathcal{M} \models \neg \phi(\overline{c}^*)$.

Suppose that the claim is true for ϕ and ψ . Then

$$\mathcal{M} \models (\phi \land \psi)(\overline{c}^*) \Leftrightarrow \phi(\overline{c}) \in T \text{ and } \psi(\overline{c}) \in T$$
$$\Leftrightarrow (\phi \land \psi)(\overline{c}) \in T \text{ by Lemma} \quad \mathbf{1} .$$

Suppose that ϕ is $\exists v \ \psi(v)$ and the claim is true for ψ . If $\mathcal{M} \models \psi(d^*, \overline{c}^*)$, then, by the inductive assumption, $\psi(d, \overline{c}) \in T$ and $\exists v \ \psi(v, \overline{c}) \in T$, by **1**. On the other hand if $\exists v \ \psi(v, \overline{c}) \in T$, then by the witness property and Lemma **1**, $\psi(d, \overline{c}) \in T$ for some c. By induction, $\mathcal{M} \models \psi(d^*, \overline{c}^*)$ and $\mathcal{M} \models \exists v \ \overline{\psi(v, \overline{c}^*)}$.

This completes the induction. In particular, we have $\mathcal{M} \models T$, as desired.

The following lemmas show that any finitely satisfiable theory can be extended to a maximal finitely satisfiable theory with the witness property.

Lemma 3 Let T be a finitely satisfiable \mathcal{L} -theory. There is a language $\mathcal{L}^* \supseteq \mathcal{L}$ and $T^* \supseteq T$ a finitely satisfiable \mathcal{L}^* -theory such that any \mathcal{L}^* -theory extending T^* has the witness property. We can choose \mathcal{L}^* such that $|\mathcal{L}^*| = |\mathcal{L}| + \aleph_0$.

Proof We first show that there is a language $\mathcal{L}_1 \supseteq \mathcal{L}$ and a finitely satisfiable \mathcal{L}_1 -theory $T_1 \supseteq T$ such that for any \mathcal{L} -formula $\phi(v)$ there is an \mathcal{L}_1 -constant symbol c such that $T_1 \models (\exists v \ \phi(v)) \to \phi(c)$. For each \mathcal{L} -formula $\phi(v)$, let c_{ϕ} be a new constant symbol and let $\mathcal{L}_1 = \mathcal{L} \cup \{c_{\phi} : \phi(v) \text{ an } \mathcal{L}$ -formula}. For each \mathcal{L} -formula $\phi(v)$, let Θ_{ϕ} be the \mathcal{L}_1 -sentence $(\exists v \ \phi(v)) \to \phi(c_{\phi})$. Let $T_1 = T \cup \{\Theta_{\phi} : \phi(v) \text{ an } \mathcal{L}$ -formula}.

Claim T_1 is finitely satisfiable.

Suppose that Δ is a finite subset of T_1 . Then, $\Delta = \Delta_0 \cup \{\Theta_{\phi_1}, \ldots, \Theta_{\phi_n}\}$, where Δ_0 is a finite subset of T. Because T is finitely satisfiable, there is

 $\mathcal{M} \models \Delta_0$. We will make \mathcal{M} into an $\mathcal{L} \cup \{c_{\phi_1}, \dots, c_{\phi_n}\}$ -structure \mathcal{M}' . Because we will not change the interpretation of the symbols of \mathcal{L} , we will have $\mathcal{M}' \models \Delta_0$. To do this, we must show how to interpret the symbols c_{ϕ_i} in \mathcal{M}' . If $\mathcal{M} \models \exists v \ \phi(v)$, choose a_i some element of \mathcal{M} such that $\mathcal{M} \models \phi(a_i)$ and let $c_{\phi_i}^{\mathcal{M}'} = a_i$. Otherwise, let $c_{\phi_i}^{\mathcal{M}'}$ be any element of \mathcal{M} . Clearly, $\mathcal{M}' \models \Theta_{\phi_i}$ for $i \leq n$. Thus, T_1 is finitely satisfiable.

 $\mathcal{L} \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq \ldots$ and a sequence of finitely satisfiable \mathcal{L}_i -theories $T \subseteq T_1 \subseteq T_2 \subseteq \ldots$ such that if $\phi(v)$ is an \mathcal{L}_i -formula, then there is a constant symbol $c \in \mathcal{L}_{i+1}$ such that $T_{i+1} \models (\exists v \phi(v)) \to \phi(c)$.

We now iterate the construction above to build a sequence of languages

Let $\mathcal{L}^* = \bigcup \mathcal{L}_i$ and $T^* = \bigcup T_i$. By construction, T^* has the witness property. If Δ is a finite subset of T^* , then $\Delta \subseteq T_i$ for some i. Thus, Δ is satisfiable and T^* is finitely satisfiable.

If $|\mathcal{L}_i|$ is the number of relation, function and constant symbols in \mathcal{L}_i , then there are at most $|\mathcal{L}_i| + \aleph_0$ formulas in \mathcal{L}_i . Thus, by induction, $|\mathcal{L}^*| = |\mathcal{L}| + \aleph_0$.

Theorem If T is a finitely satisfiable \mathcal{L} -theory and κ is an infinite cardinal with $\kappa \geq |\mathcal{L}|$, then there is a model of T of cardinality at most κ .

Proof By Lemma 3, we can find $\mathcal{L}^* \supseteq \mathcal{L}$ and $T^* \supseteq T$ a finitely satisfiable \mathcal{L}^* -theory such that any \mathcal{L}^* -theory extending T^* has the witness property and the cardinality of \mathcal{L}^* is at most κ . By Prop 2.5 Notes , we can find a maximal finitely satisfiable \mathcal{L}^* -theory $T' \supset \overline{T^*}$. Because T' has the called also complete

witness property, Lemma 2 ensures that there is $\mathcal{M} \models T$ with $|M| < \kappa$.