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We say that a theory T is finitely satisfiable if every finite subset of T is
satisfiable. We will show that every finitely satisfiable theory 7" is satisfiable.
To do this, we must build a model of T". The main idea of the construction
is that we will add enough constants to the language so that every element
of our model will be named by a constant symbol. The following definition
will give us sufficient conditions to construct a model from the constants.

Definition We say that an L-theory 7' has the witness property
if whenever ¢(v) is an L-formula with one free variable v, then there is a
constant symbol ¢ € £ such that T' = (v ¢(v)) — &(c).

An L-theory T is maximal if for all ¢ either ¢ € T or —¢ € T.

Our proof will frequently use the following simple lemma.

Lemma 1  Suppose T is a maximal and finitely satisfiable L-theory. If
A C T is finite and A =1, theny € T.

Proof If ¢ ¢ T, then, because T is maximal, =) € T. But then AU{—¢}
is a finite unsatisfiable subset of T, a contradiction.

Lemma 2  Suppose that T is a maximal and finitely satisfiable L-
theory with the witness property. Then, T has a model. In fact, if k is
a cardinal and L has at most K constant symbols, then there is M = T

with IM| < k.

Proof Let C be the set of constant symbols of L. For ¢,d € C, we say
gra g if T =10 =d.

Claim 1 ~ is an equivalence relation.
Clearly, ¢ = cis in T'. Suppose that ¢ = d and d = e are in 7. By Lemma
2.16,d=cand c=earein T.

The universe of our model will be M = C/ ~, the equivalence classes of
C mod ~. Clearly, |M| < k. We let ¢* denote the equivalence class of ¢ and
interpret c as its equivalence class, that is, ™ = ¢*. Next we show how to
interpret the relation and function symbols of L.



Suppose that R is an n-ary relation symbol of L.

Claim 2 Suppose that ci,...,cp,d1,...,dp € C, and ¢; ~ d; for i =
1,...,n, then, R(¢) € T if and only if R(d) € T.
Because ¢; =d; € T fori =1,...,n, by Lemma 1 | if one of R(¢) and

R(d) is in T', then both are in 7. —
We will interpret R as

RM={(c,...,c}) : R(c1,...,cn) €T}

By Claim 2, RM is well-defined.

Suppose that f is an n-ary function symbol of £ and ¢1,...,¢, € C.
Because 0 = Jv f(c1,...,¢,) = v and T has the witness property, by
Lemma 24 , there is c,41 € C such that f(ci,...,cn) = cpy1 € T. As
above, it @~ ¢; for i = 1,...,n+ 1, then f(di,...,dn) = dpt1 € T.
Moreover, because f is a function symbol, if e; ~ ¢; for i = 1,...n and
fler,...,en) = eny1 € T, then e, 41 ~ ¢pp1. Thus, we get a well-defined
function fM : M™ — M by

fMet, ... ety =d* if and only if f(cy,...,c,)=d € T.

This completes the description of the structure M. Before showing that
M = T, we must show that terms behave correctly.

Claim 3 Suppose that t is a term using free variables from vy, ..., v,. If
Ciy...,¢n,d € C, then t(cy,...,c,) =d € T if and only if tM(ct,...,ck) =
d*.

(=) We first prove, by induction on terms, that if ¢(cy,...,c,) =d €T,
then tM(c3, ..., c) = d*. If t is a constant symbol ¢, then ¢ = d € T and
M =gt =¥,

If ¢ is the variable v;, then ¢; = d € T and t"M(c},...,c}) = ¢f = d*.

Suppose that the claim is true for ¢y, ...,t,, and ¢t is f(t1,...,tm). Using
the witness property and Lemma 2.1.6, we can find d,dy,...,d, € C such
that t;(c1,...,¢n) =d; € T for i < m and f(dy,...,dn) =d € T. By our
induction hypothesis, t(c%,...,c%) = df and fM(d},...,d",) = d*. Thus
e, ... ey =d"

(«<=) Suppose, on the other hand, than t™(c3, ..., c;) = d*. By the wit-
ness property and Lemma 1, there is e € C such that t(c1,...,¢,) =
e € T. Using the (=) directionr of the proof, t™(ci,...,c:) = e*. Thus,
e*=d" and e=d € T. By Lemma 2.1.6, t(c1,...,¢,) =d€T.

Claim 4 For all £-formulas ¢(vy,...,v,) and ¢1,...,¢, € C, M = ¢(¢¥)
if and only if ¢(c) € T.

We prove this claim by induction on formulas.

Suppose that ¢ is t; = t5. By Lemma 4 and the witness property, we
can find d; and ds such that t;(¢) = dy anat2(¢) = dy are in T. By Claim
8, ¢2M(6") = gF for i =1.2: Then



MEE) & & =d
S di=dyeT
& t1(¢) =t2(¢) € T by Lemma 4 .

Suppose that ¢ is R(t1,...,ty). Because T has the witness property, by
Lemma 4 there are dy,...,d,, € C such that ;(¢) = d; € T and, Claim
4, tM(@y=d; for i =1,...,m. Thus,

ME¢@E) & d eRM

< R(d)eT
& ¢(e) € T by Lemma A

Suppose that the claim is true for ¢. If M = —¢(¢*), then M [~ ¢(c¢*).
By the induction hypothesis, ¢(¢) ¢ T. Thus by maximality, —¢(¢) € T.
On the other hand, if —¢(¢) € T, then, because T is finitely satisfiable,
¢(¢) ¢ T. Thus, by induction, M }£ ¢(¢*) and M = —¢(c¥).

Suppose that the claim is true for ¢ and ¥. Then

ME(@AY)E) & 4@ €T andy(e)eT
& (pAY)(©) € T by Lemma 19 .

Suppose that ¢ is Jv 1 (v) and the claim is true for ¥. If M = ¢(d*, ),
then, by the inductive assumption, ¢(d,¢) € T and Jv ¢(v,¢) € T, by

1L . On the other hand if Jv ¢(v,¢) € T, then by the witness property
and Lemma 14 , ¢(d,¢) € T for some c¢. By induction, M = ¢(d*,c¥)
and M = Jv ¢(v, ).

This completes the induction. In particular, we have M = T, as desired.

The following lemmas show that any finitely satisfiable theory can be
extended to a maximal finitely satisfiable theory with the witness property.

Lemma 3 Let T be a finitely satisfiable L-theory. There is a language
L* D L and T* O T a finitely satisfiable L*-theory such that any L*-
theory extending T* has the witness property. We can choose L* such that

|1L¥| = |£]+ Ro.

Proof We first show that there is a language £, 2 £ and a finitely
satisfiable £q-theory T} O T such that for any L-formula ¢(v) there is an
L4-constant symbol ¢ such that 77 | (Jv ¢p(v)) — ¢(c). For each L-formula
#(v), let ¢y be a new constant symbol and let £1 = LU {cy : ¢(v) an L-
formula}. For each L-formula ¢(v), let ©, be the £;i-sentence (v ¢(v)) —
¢(cy). Let Ty =T U {Oy : ¢(v) an L-formula}.
Claim 7T is finitely satisfiable.

Suppose that A is a finite subset of 7. Then, A = AgU{Oy,,...,04, },
where Ay is a finite subset of 7. Because T is finitely satisfiable, there is



M = Ay. We will make M into an LU{cy,, ..., ¢s, }-structure M’. Because
we will not change the interpretation of the symbols of £, we will have
M’ = Ag. To do this, we must show how to interpret the symbols ¢4, in M’.
If M = Jv ¢(v), choose a; some element of M such that M |= ¢(a;) and
let cfg/‘ = a;. Otherwise, let cM be any element of M. Clearly, M’ |= Oy,
for i < n. Thus, T} is ﬁmtcly satlsﬁablc

We now iterate the construction above to build a sequence of languages
L C Ly C Ly C...and a sequence of finitely satisfiable £;-theories T C
Ty C Ty C ... such that if ¢(v) is an L;-formula, then there is a constant
symbol ¢ € £;41 such that T;11 = (Jvo(v)) — ¢(c).

Let £ = |JL£; and T* = |JT;. By construction, 7™ has the witness
property. If A is a finite subset of 7™, then A C T; for some i. Thus, A is
satisfiable and 7™ is finitely satisfiable.

If |£;] is the number of relation, function and constant symbols in £;,
then there are at most |£;|+ X formulas in £;. Thus, by induction, |£*| =
|L] + Ro.



Theorem If T is a finitely satisfiable L-theory and k is an infinite
cardinal with k > |L|, then there is a model of T of cardinality at most k.

Proof By Lemma J , we can find £* O £ and 7" D T a finitely

satisfiable L*-theory such that any £*-theory extending 7™ has the witness

property and the cardinality of £* is at most x. By fep 2:€ Nstes | we can

find a maximal finitely satisfiable £*-theory T" O T™*. Because T" has the
colled wbro com plete



witness property, Lemma 2. ensures that there is M = T with | M| < k.



