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In this lecture, we will cover the following topics:
» Key concepts of Supervised Learning
» Classification
» Bayes Classifier
» Decision Trees
>

Regression
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Supervised Learning

Institute

Supervised learning consists of algorithms that are trained on labeled data. It is
suitable for solving problems where the goal is to predict the output value based on the
input data.

» There is a clear relationship between the input data and the output labels.
» Sufficient labeled data is available to train the algorithm.

» The problem can be defined as a classification or regression task.

>

The goal is to make accurate predictions on new, unseen data.
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Supervised Learning: Problem Setup

Institute

Definition. Let X be the input space and ) the output space. Given a training set
S =A{0a, ¥} X <Y,
the goal of supervised learning is to find a function
f:X—=Y

such that f generalizes well to unseen data:

" ={0q, ¥y} C X x Y,
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From Training Data to Predictions

Institute

Setup. Given the training data
(xi,yi) €EX xY, i=1,...,n,

the goal is to predict a new y € ) from a previously unseen x € X,
Prediction rule. A supervised learning algorithm outputs a function

f: X —=).

Challenge: Good predictions on unseen (test) data.
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From Training Data to Predictions

M
Institute

Question: What would be the best possible predictor for p() | X) if the joint
distribution p(&X', ) is known?

» Random variables (X,)) ~ pon X x ).
» Prediction function f : X — V.

» Performance measured by a loss function £:) x Y — R.
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Loss Function

Institute

Definition. A loss function measures the penalty for predicting z € ) when the true
label is y € V:
0:YxY =R, (v,2) = Uy, 2).
Interpretation:
» /(y,z) = 0 when prediction z is correct.

» Larger /(y, z) means worse prediction.

Role in learning: The choice of ¢ determines what we consider a “good” predictor
and drives both theoretical analysis and practical algorithms.
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Supervised Learning Problems and Loss Functions

Example Task Loss function /(y, z)
Binary classification y e {-1,1} 1,., (0-1 loss)
Multiclass classification | y € {1,..., K} | 1,., (0-1 loss)
Regression yeR (y — 2z)? (squared loss)
Regression yeR ly — z| (absolute loss)
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Supervised Learning Problems

Institute

Examples of supervised learning problems:
» Binary classification: Is this image a Cat y =1 or a Dog y = —17
» Multiclass classification: Given a set of medical exam measurements classify the
patient into the following categories: Healthy y = 1, Disease 1 y = 2, Disease 2
y=3,...
» Regression: Predicting house prices from a list of features (house size, location,
dates).
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Definition of errors (risks)

Expected risk (generalization error):

R(F) = (Y, (X)) = / Uy, (x)) dp(x, ).

XxY

Empirical risk (training error):
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Classification of a Medical Condition

Mathematical
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We want to predict the condition of a patient, based on some medical observations. If
the patient is healthy (H), the doctor does not need to prescribe anything. If the
patient has a virus (V/), the doctor will prescribe painkillers. If the patient has a

bacterial infection (B) the doctor needs to prescribe antibiotics. The doctor will assess
the condition based on the following features:

» Temperature
» Blood pressure

» Coughing frequency

Oxford
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Classification of a Medical Condition

Institute

We want to predict the condition of a patient, based on some medical observations.

H
V

Figure: Patients distributed in three medical conditions: healthy (H), viral (V) or bacterial (B)
infection.

Oxford
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Classification of a Medical Condition
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We want to predict the condition of a patient, based on some medical observations:

PatientlD Temperature BloodPressure CoughFreq Condition

0 81
1 85
2 34
3 82
4 94
5 18
6 37
7 83
8 70
9 66

Figure: Medical conditions: healthy (H), viral (V) or bacterial (B) infection.
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Classification of a Medical Condition

Institute

Distribution of Temperature

H (n=50) V (n=30) B (n=20)

35.5 36.0 365 37.0 375 38.0 37.0 375 38.0 385 39.0 39.5 40.0 405 37 38 39 40
Temperature (°C) Temperature (°C) Temperature (°C)

Figure: Temperature by condition: healthy (H), viral (V) or bacterial (B) infection.

%&Emaucs Supervised Learning October 2025 14 /67



Classification of a Medical Condition
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Density estimates for Temperature

H (n=50) V (n=30) B (n=20)

0.6 4 1 -
> 04 : :
@
c
&

0.2 1 -

0.0 1 :

35 36 37 38 39 36.5 37.0 375 380 385 39.0 395 38 39 40 a1

Temperature (°C)

Temperature (°C) Temperature (°C)

Figure: Temperature density by condition: healthy (H), viral (V) or bacterial (B) infection.
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Probabilistic view on the classification task

Institute

We will make some assumptions so that we can use probabilities on our problem.

» Independence between the features.

» Each feature within each condition is statistically distributed according to a
specific known distribution.
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Probabilistic view on the classification task

Let's assume that the features can be characterized by a normal distribution. For
example, the temperature of each patient is normally distributed according to the

following:
p(T | c,w) = N(uc,o?)
where w is a set of parameters:

2 2 2
w = (UH, v, 4B, Ty, Oy, O5)
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Probabilistic view on the classification task

Let's assume that the features can be characterized by a normal distribution for each

condition:
N(uw, o3

N(/LV70-%/)
N(ug,03)
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Probabilistic view on the classification task

Institute

Let's assume that the features can be characterized by a normal distribution for each
condition:

H

Vv
B

N(IU‘B7G-2B)

N(n, o%) N(py,o%)

Figure: Patients distributed in three medical conditions: healthy (H), viral (V) or bacterial (B)
infection.
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Different views on the classification problem

Institute

The probability of an event represents the frequency over a large number of samples.
For example, if | keep taking measurements of the temperature T of patients, the

proportion of temperatures of healthy patients in the interval [37,38]°C degrees will
converge to:

38
P(T =[37,38] | H,w) :/ p(T | Hyw)dT
37

Oxford
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Different views on the classification problem

The probability of an event, represents the degree of belief about the event. For
example, if | take the temperature of a patient, | cannot predict the exact value, but |
can estimate the probability that it will be between [37,38]°C degrees as:

P(T = [37,38] | H, w)

Furthermore, if P(T =[37,38] | H,w) > P(T = [38,39] | H, w) it is more likely that
the measurement will be between [37,38]°C degrees.
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Bayes classification task

Institute

How do we infer the posterior p(w | X’) from the input data X7
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Bayes classification task

How do we infer the posterior p(w | X’) from the input data X7

Let's recall from Bayes probability:

p(X, w) = p(w | X)p(X)
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Bayes classification task

How do we infer the posterior p(w | X')?

Let's recall from Bayes probability:

p(X,w) = p(w | X)p(X) = p(X | w)p(w)
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Bayes classification task

Mathematical
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How do we infer the posterior p(w | X')?

Let's recall from Bayes probability:
p(X,w) = p(w | X)p(X) = p(X | w)p(w)

Bayes theorem:

p(X | w)p(w)

plw | 1) = =

Oxford
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Bayes classification task

Bayes theorem:

p(X | w)p(w)
pw|X)="————"=
W=
where,
p(w) is the prior representing the initial belief about w.

p(w | X) is the posterior representing the updated belief about w after observations of
data D.

p(X | w) is the likelihood that the data X are observed for the distributions with
parameters w.
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Bayes classification task

Institute

Two types of uncertainty:

1. Epistemic: which model is correct, given the data we have observed? The more
patient data | collect, the more certain | am about MH,J,Z_,.
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Bayes classification task

Two types of uncertainty:
1. Epistemic: which model is correct, given the data we have observed? The more
patient data | collect, the more certain | am about MH,JI%,.
2. Aleatoric: related to the stochastic nature of the variables. | will never be able to
predict a precise temperature measurement even when | know exactly the
condition of the patient.
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Bayes classification task
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Based on our assumptions:
» Independence of features

» Normal distribution of features within a class

Oxford
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Bayes classification task m
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Condition 05 Condition
e H N e H
— —

Condition
0.8 —H
-V

0.084

m B B 0.4 B
0.06 4
z Z 03
2 2
8 0.04] 8
0.2
0.02 0.1
0.00 - 0.0
36 37 38 39 110 120 130 140 5.0 75 10.0 125 15.0
Temperature (°C) Systolic BP (mmHg) Coughs per hour

Figure: Temperature, blood pressure and coughing frequency for: healthy (H), viral (V) or
bacterial (B) infection.
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Three dimensional representation of the medical conditions

Condition
e H
e V
e B

175

=
o
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n
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°gy 40 100
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Bayes Classifier

M
Institute

Definition. Suppose V = {1,..., K} is a finite label set. The Bayes classifier assigns
to each input x € X the class with the highest posterior probability:

f*(x) =argmax P(Y =y | X = x).
yey

Intuition: The Bayes classifier uses complete knowledge of the data distribution to
minimize the classification error.

Key property: Assuming perfect knowledge of p(x,y) then f* is the optimal classifier,
achieving the lowest possible error (the Bayes error).
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Bayes Classifier: Example

Mathematical
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Bayes Classifier (Optimal Decision Boundary)

® Class 0
4 @ Class1
. ° 0. o.... R
3] o o .o:$ @
-] oo s SGMI.
° '.‘
0o o P  ° =
1 o o .oo.:“ o O °®
A % " o
0 ° :.‘ ....' S o © ©
% © ’$.O : %o : .o. O
1] Pe. e e
° ©0C ® ¢
21 5
°
-3 - - - v T v .
-3 -2 -1 0 1 3 4 5

Figure: Example of a Bayes classifier in a binary classification problem
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Bayes Classifier: Medical use case

Mathematical
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GaussianNB
Test acc = 0.840
10.0 4 ° . ° ) @ B (train 15)
+* +* @ H(train 37)
751 e : ‘: @ Vltrain 23)
*eo o # Bltests)
5.0 4 4 H(test 13)
i * o¥ ® o x Vitest7)
° L] .

PCA 2

7.5 4 o

T
-20 -10 0 10 20

Figure: Bayes classifier to distinguish medical conditions.

(A)Agtohrgmancs Supervised Learning October 2025 34 /67



Bayes Risk

M
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Definition. The lowest achievable risk given full knowledge of p is the Bayes risk:
R* =Ex|inf E[{ X1 .
x| inf B[ty 2) [ A]

Excess risk is defined as:
R(f) — R* > 0.
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Bayes Predictor

Institute

Definition. The Bayes optimal predictor minimizes conditional risk:
R*(x) = argmin E[¢((Y,z) | X = x].
ze)y
Special cases:

» Classification: 0 — 1 loss

> Regression: squared loss
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Example: Binary Classification

Let n(x) =p(Y =1| X = x).
Bayes classifier:
Fx) = {1 if n(x) > 1/2,
-1 ifn(x) <1/2.
Bayes risk:
R* = E[min{n(x), 1 —n(x)}].
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Bayes Classifier: Error
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Bayes Error: Overlap Between Class-Conditional Densities

0.40 — p(x|y=0)
— plxly=1)

0.35 4 Overlap = Bayes error

0.30 4

0.25 A

0.20 4

0.15 4

0.10 A

0.05 4

0.00 4

Figure: Example of a Bayes error

(A)Agtonrgmancs Supervised Learning October 2025 38/67



Bayes Classifier: Error on Example

Institute

0.5+ Condition Condition 0.254 Condition
— 005 —H —H
—v —v —v
041 —sB — B 020 —B
0.04
2% 2003 2
0.2 002 0104
014 0.01 005
0.0 0.00 0.004
35 36 37 38 39 40 a1 100 110 120 130 140 150 00 25 50 75 100 125 150 175
Temperature (°C) Systolic BP (mmHg) Coughs per hour

Figure: Bayes error in the classification of medical conditions.
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Learning from Data

Key idea: The Bayes predictor is optimal but requires full knowledge of p(x, y).
In practice: The distribution p(x,y) is unknown.

Objective: Approximate the Bayes predictor from finite training data:
» Generative methods: approximate p(x | y) and p(y), then apply Bayes rule.

» Discriminative methods: approximate f* which corresponds to p(y | x) directly
from the data.
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Generative vs. Discriminative Models

Mathematical
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Discriminative models:
» Model the conditional distribution p(y | x) directly.
P> Learn a decision boundary between classes.

» Examples: Logistic regression, SVMs, neural networks.

Oxford
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Generative vs. Discriminative Models

Mathematical
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Generative models:
» Model the joint distribution p(x,y) = p(y) p(x | y).
» Capture how the data x is generated for each class y.

» Use Bayes' rule to compute p(y | x):

_ply)p(x|y)
PV = = o) x| 77

» Examples: Naive Bayes, LDA, QDA.

Oxford
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Focus on Generative Models

We model:
p(x,y | 0,m) =ply | ) p(x | y,0)
where
ply=c|m)=m, Y m=1
o
Procedure:

1. Choose a model for p(x | y = ¢,0.) (e.g. Gaussian, multinomial).
2. Estimate parameters 7, 6. from training data.

3. Predict using:

y=argmax m.p(x |y =c,0c).
Cc
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Naive Bayes Classifier (NBC)

Institute

Assumption: Features are conditionally independent given the class.

D
p(x |y =c.0) =] r05 |y =cb)
j=1
Advantages:
» Simple and fast to train.
» Surprisingly effective for text and categorical data.
Limitations:
» Independence assumption rarely true.

> Model is often misspecified but works well for classification.
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Linear Discriminant Analysis (LDA)

ical
Institute

Goal: classify by modelling how each class generates the data, then use Bayes' rule.
Key idea:

» For each class ¢ assume the features x € RP are Gaussian with mean . and a
shared covariance X.

» Because covariances are shared, class-conditional contours are ellipses with the
same shape, only their centers differ.

» Decision boundaries between classes become linear in x.
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L D‘ \ Mathematical
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Assume for each class c:
p(x |y =c)=N(x| pc, X).

Prior class probabilities: 7. = p(y = ¢), > 7mc = 1.
Posterior (unnormalised):

p(y = ¢ | x) o m¢ exp( —Lx—pe) T (x — uc)).
Algebra (rearrange quadratic term):
ply = c | x) ocexp (B x +7c),

with
Be = Z_luc, Ye = _%,U:IZ_IMC + log 7c.
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LDA
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e: empirical mean of class ¢ (centre of class ¢).

> : shared covariance across classes: controls feature scaling and correlation.

>
>
» (. =YX luc: a weight vector: direction in which class ¢ pulls the log-odds.
» ~.: offset combining class prior 7. and a quadratic correction —%ujz_l,uc.
>

Decision function for class c: gc(x) = B x + 7c. Predict class with largest gc(x).
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LDA Algorithm

Institute

Training (ML estimates):
1. Compute class counts N, and priors 7. = N¢/N.

2. Compute class means: [ic = Ni Zl-.y__c Xi.
c R4

3. Compute pooled covariance:
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Quadratic Discriminant Analysis (QDA)

Institute

Goal: Similar to LDA but allows more flexibility in the shapes.
» Each class ¢ has its own covariance > . and mean fic.
» Class-conditional contours can have different shapes and orientations.

» Decision boundaries between classes are in general quadratic surfaces (ellipses,
parabolas, etc).
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QDA

Assume for each class c:

p(x |y =c)=N(x|pc ).

Using Bayes' rule:
ply = ¢ | x) oc me [Te[ 2 exp( = J(x — ) T (x — pe)).
Decision rule (take log and compare):
g = argmax | = 3(x— ) T (x — puc) — }log |Te| + log e .

Because of the quadratic term XTZ;lx that depends on c, the boundary is quadratic.
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QDA
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fe: mean (center) of class c.

Y .. class-specific covariance (controls shape/orientation of class c's density).
—2(x — p1e) "E2Y(x — pie): log-likelihood for class c.

—% log |X|: volume term, penalises classes with large covariance.

log 7r¢: prior log-probability (accounts for class imbalance).

vVvYvYyVvyVvyy

The quadratic term in x depends on Y1, hence different ¥ leads to quadratic
decision boundaries.
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QDA Algorithm

Institute

Training (ML estimates):
1. Compute class counts N, and priors . = N./N.
a1
2. Compute class means: fic = A Zi:y,:c X;.
3. Compute class covariances:

2 N Z ,UC)T
iryi=

Prediction: for a test x compute scores

A

se(x) = —3(x = fic) "2 (x — fic) — 3 log | Ee| + log e,

and predict arg maxc s¢(x).
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Comparing LDA and QDA

M
Institute

Summary table:

Model Covariance Decision boundary
LDA Y (shared) Linear

QDA Y . (class-specific) Quadratic
Naive Bayes | Diagonal / independent Linear/naive
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Comparing LDA and QDA
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Trade-offs:

» QDA more flexible (can model complex class shapes) but needs more data to
estimate X .

» LDA is a compromise: fewer parameters — lower variance but possibly higher bias
if covariances truly differ.

» Naive Bayes imposes stronger independence assumptions and is very
parameter-efficient.

Practical rule: use QDA if you have lots of data and evidence that the covariances
differ.
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Generative classifiers: LDA and QDA
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Linear vs Quadratic Discriminant Analysis

LDA QDA
5 5
° °
4 4
e® oo e® oo
3 .. 0.000:‘ . ° .: 34 .. o..oO:‘ . ° .:
2 o 8, o800 gef 80 2 o 8, 809 ged® 890
e 90g od® 88°, e %g o a9
1 a5 Do o 1 o %Ot o
o .ﬁ.& Y ° .ﬁ..& Y
)
S ST o
1 O“ 1) 1 0“ oo
-2 1 : -2
-4 -2 0 2 4 -4 -2 0 2 4

Figure: Example of LDA vs QDA
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LDA on the medical example
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LDA
Test acc = 0.880
10.09 L] * o @ @ Bltrain15)
* * @ H (train 37}
7.5 Y ) *. ‘*. @ Vitrain23)
*e e # B (tests)
5.0 1 ¥ H{test13)
’ * 0*. @ o * Vitest?)
> ®
]
2.5 7 ®
~
S o0
o
—-2.54
—=5.0 4
—754

T
-20 -10 0 10 20
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QDA on the medical example
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QDA
Test acc = 0.920
10.09 L] * o @ @ Bltrain15)
* * @ H (train 37}
7.5 * Ao @ Vltrain 23)
. * °
*e e # B (tests)
5.0 1 ¥ H{test13)
’ * 0*. @ o * Vitest?)
-]
2.5 1
~
S o0
o
—-2.54
—=5.0 4
—754

T
-20 -10 0 10 20
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Regression Problems

M
Institute

Definition. In regression, the output space is continuous, ) C R.
The goal is to find a function f : X — R that predicts ) from X by minimizing the
expected squared error:

f*(x) = arg mfin E[(V - f(X))*| & =x].
Result: The optimal predictor is the conditional expectation:
*(x) =E[Y | X =x].

Example: Linear regression assumes f(x) = w'x + b.
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Linear Regression

Institute

Given x; € RY, vi € R, we model
f(x)=w'x+ b.
The least-squares estimator minimizes
1 n
Rn(w, b) = - Z(y,- —w'x;— b)2
i=1
Solution:

w=X"X)XTy, b=y-w'x,

provided X T X is invertible.
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Linear Regression
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20 A

151

10

Regression: Conditional Mean and Residuals

® Data
—— Regression Line

10

Figure: Example of Linear Regression
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Logistic Regression (Classification problem)

Setup: Binary classification with ) = {—1,1}.
Model: Posterior probability

— T —
ply =1|x)=0c(w x+b), U(t)—m~
Decision rule:

f(x) = sign(w ' x + b).

Learning: Parameters (w, b) are estimated by minimizing the logistic loss, a convex
surrogate of the 0-1 loss.
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Logistic Regression n
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Figure: Example of Logistic Regression (image from Prof. Seth Flaxman)
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Decision Trees

Institute

Idea: Partition the input space X into regions and assign a prediction in each region.

Construction:
» Recursively split X' along feature dimensions.

» At each node, choose the split that maximizes class separation (e.g., Gini index,
entropy).
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Decision Trees

Institute

Prediction: A new point x is assigned to the region it falls into; prediction is the
majority label (classification) or mean response (regression).

Remarks:
» Easy to interpret.

» High variance (often reduced with ensembles: random forests, boosting).
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Decision Trees
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Decision Tree Structure

x1 <= 0.025
gini = 0.5
samples = 200
value =[99, 101]

‘ilse

© Y
x1 <= 0.378
gini = 0.432
samples = 19
value = [6, 13]

/N
EE e
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Decision Trees
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Decision Tree
Test acc = 0.880

10.0 4 ° * ° ) @ B (train 15)
+* +* @ H(train 37)
751 e 4 : ‘: @ Vltrain 23)
*eo o # Bltests)
504 # Hltest13)
i * C*‘ ® o x Vitest7)
o -] ) (<]
259 o li L
“ o [Bge*
< L]
J  004® ®
a
* * .
B I BT
]
50l o g t.t .
L]
] ®
-75 ko ko Y
T T T T T
=20 -10 0 10 20

Figure: Decision Trees of medical example
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Thank you! Questions?



