Problem Sheet 1 - parts A and C solutions

Part A.

- 1. Show that the following topological spaces (with natural subspace topologies induced from \mathbb{R}) are homeomorphic.
 - a) The interval [0, 1] and the interval [3, 8].
 - b) The interval (-1,1) and the real line.

Solution.

- a) Let $f:[0,1] \to [3,8]$ be the map defined by f(t)=3+5t. Then, f is continuous and bijective with continuous inverse $f^{-1}(t)=\frac{t-3}{5}$. Therefore f is a homeomorphism.
- b) First, note that (-1,1) is homeomorphic to $(-\frac{\pi}{2},\frac{\pi}{2})$: a homeomorphism is given by $f(t) = \frac{\pi}{2}t$. Moreover, the interval $(-\frac{\pi}{2},\frac{\pi}{2})$ is homeomorphic to \mathbb{R} , via the tangent function $\tan:(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}$.
- **3.** Let \mathbb{S}^2 denote the sphere, and let X be a compact, connected surface. Show that the connected sum S # X is homeomorphic to X.

Solution. Note that

$$\chi\left(\mathbb{S}^{2}\#X\right)=\chi\left(\mathbb{S}^{2}\right)+\chi\left(X\right)-2=2+\chi\left(X\right)-2=\chi\left(X\right).$$

So $\mathbb{S}^2 \# X$ and X have the same Euler characteristic. And $\mathbb{S}^2 \# X$ is orientable if and only if X is orientable. Hence by the classification theorem $\mathbb{S}^2 \# X$ and X are homeomorphic.

2. Show that there is a quotient map $q:(-2,2)\to[-1,1]$, but not a quotient map $p:[-2,2]\to(-1,1)$.

Solution. Let \sim be the equivalence relation on (-2,2) given by $x \sim y$ if and only if x = y or $x, y \leq -1$ or $x, y \geq 1$. Then, $(-2,2)/\sim$ is homeomorphic to [-1,1]. On the other hand, since the image of a compact set under a continuous map should be compact, there is no continuous surjection, in particular no quotient map, $p:[-2,2]\to (-1,1)$.

Part C.

1. Show that the closed disc of radius 1 in \mathbb{R}^2 and the closed square in \mathbb{R}^2 are homeomorphic.

Solution. We will write a homeomorphism between the closed unit disc

$$B = \{x \in \mathbb{R}^2 : |x - (0,0)| \le 1\}$$

and the square $Q = [-1,1] \times [-1,1]$. Consider polar coordinates $(r,\theta) \in [0,\infty) \times [0,2\pi)$ on \mathbb{R}^2 . Note that, for each value of $\theta \in [0,2\pi)$, there is exactly one value of $r_B(\theta)$ such that $(r_B(\theta),\theta) \in \partial B$ (i.e. $r_B(\theta)=1$), and exactly one value $r_Q(\theta)$ such that $(r_Q(\theta),\theta) \in \partial Q$. Let $g:[0,2\pi) \to (0,\infty)$ be the function defined as $g(\theta) = \frac{r_Q(\theta)}{r_B(\theta)} = r_Q(\theta)$, which is continuous. Then, define Then, let $f:B\to Q$ to be the function defined as $f(r,\theta)=(g(\theta)r,\theta)$. The function f is a bijection from f to f0 with inverse f1 are continuous since f3 is continuous, hence they are homeomorphisms.