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Unsupervised Learning

Institute

Unsupervised Learning

> Learn patterns in data without labels.

» Discover structure: clusters, manifolds, or lower-dimensional representations.
Differences from supervised learning:

» No ground-truth labels Y.

» Harder evaluation (no direct prediction error).

» Focus on similarity, structure, and representation.
Challenges:

P> Requires large datasets.

» Sensitive to hyperparameters.

» Results can be hard to interpret.
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Unsupervised Learning
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We have no labels Y. What can we use to assess similarity between data, based only
on the features X7
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Problem Setup

Institute

Setup:
X1,X2,...,Xp € X, no labels.
Goal: Find structure such that:
» In clustering: assign each x; to a cluster label ¢; € {1,...,K}.
» In dimensionality reduction: map x; — z € R with d < dim(X).

Objective: Minimize within-group distances and maximize between-group distances.
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Clustering: Basic Idea
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Definition: Partition n data points into K groups such that points in the same group
are “similar”.
Key idea: we need to define a "distance” to assess similarity between data.
Main approaches:
» Centroid-based (e.g., K-means).
» Density-based (e.g., DBSCAN).

» Hierarchical clustering.
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Clustering Example
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Example of Clustering (Unlabeled Data)
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Figure: Example of 2D data points.
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Clustering Example
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Example of Clustering (Unlabeled Data)
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Figure: Example of 2D data points.
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Clustering Example
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Example of Clustering (Unlabeled Data)
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Figure: Example of 2D data points.

Oxford

Mathematics Unsupervised Learning October 2025 9/59



K-Means Algorithm
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Idea: Partition data into K clusters, each represented by its centroid.
1. Randomly initialize K centroids.
2. Assign each point to the nearest centroid.
3. Update centroids as the mean of their assigned points.
4. Repeat steps 2 to 3 until the algorithm converges.
Objective:

n
min 3" xi — gl
ClysCK £
i=1
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K-Means
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Objective: Partition n datapoints {x;}7_; into K clusters so that points within a
cluster are as close as possible to their cluster center.

» Each cluster G is represented by its centroid (mean) ;.

» We seek clusters that minimise within-cluster variance.

» Equivalent to minimising the sum of squared distances between each point and its
assigned centroid.
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K-Means Objective
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We jointly optimise cluster assignments and centroids:

K
min  W(C) = xi — will?.
e (©) =D lxi — mll

j=1ieg
Note:
— 1 [
> L= = Zieqx,- — the mean of cluster j.

» Problem is NP-hard even for K = 2 in RP.

» But becomes easy if we fix either centroids or assignments.
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K-Means Objective
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Two simple subproblems:
P> Assignment step: assign each point to a cluster.

» Update step: compute the mean values for each cluster.

Alternate between these two steps — K-Means algorithm.
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K-Means — Initialization
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Initialization: Choose K initial centroids 1, ..., uk.
> We can start by selecting K random data points.
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K-Means — Initialization
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Example of Clustering (Unlabeled Data)
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Figure: Initialization of Kmeans.
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K-Means — Initialization

Institute

Initialization: Choose K initial centroids 1, ..., uk.
> We can start by selecting K random data points.

P> Improvement: spread out initial centers to improve convergence.
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K-Means — Initialization

Institute

Initialization: Choose K initial centroids 1, ..., uk.
> We can start by selecting K random data points.

» Improvement: spread out initial centers to improve convergence.

Good practice:
» Run the algorithm multiple times with different initializations.
» Keep the result with smallest objective W(C).
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K-Means — lteration Step
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Repeat until convergence:

1. Assignment step: Assign each point to its closest centroid:
P . 2
G={i:j=arg min l[xi = pjr[|°}-

2. Update step: Recompute centroids using current assignments:

1
,uj:@ZX,-.

ieG
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K-Means — Stopping criterion
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Stopping criterion:
» Cluster assignments no longer changes.
» Objective W/(C) only improves by less than a threshold.

Output: Final centroids {x;} and data points assigned to classes {C;}.
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K-Means Visualization
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K-means Clustering (3 Classes)
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K-Means - Converge
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Does the K-Means algorithm always converge?
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Does the K-Means Algorithm Always Converge?
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Yes!

1. There are finitely many possible partitions of n points into K clusters.

2. W(C) (within-cluster sum of squares) is either the same or decreases in each
update step.

3. Therefore, the algorithm must stop after a finite number of iterations.
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K-Means Limitations
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However, there are some limitations:

| 4

>

v

The algorithm converges to a local minimum, there is no guarantee for the
global one.

Convergence speed: often fast in practice, but can be slow in the a " worse-case”
situation.

Assumes clusters are roughly spherical (or convex).
The algorithm is sensitive to initializationn and outliers.

Number of clusters need to be defined in advance.
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K-Means Limitations — Shape Assumptions
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To improve robustness:
» Run multiple times with random initializations.
» Select the run that minimizes W(C).

Oxford

Mathematics Unsupervised Learning

October 2025

24/59



K-Means Alternatives
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When to avoid K-Means:
» Clusters with non-spherical shapes (e.g., concentric rings).
» Highly unbalanced cluster sizes or densities.
» Non-Euclidean or categorical feature spaces.
Alternatives:
» Spectral clustering — embeds data via Laplacian eigenvectors before clustering.
» Hierarchical clustering — Separates the data hierarchically based on distances.

Takeaway: K-Means is simple, fast, and effective for spherical clusters, but struggles
on complex geometries or uneven data.
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Limitations of K-Means

Mathematical
Institute

K-means (Fails on Rings)
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DBSCAN: Density-Based Clustering
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DBSCAN (Density-Based Spatial Clustering of Applications with Noise):
» Groups densely packed points.
» |dentifies outliers as noise.
» Does not require specifying K.
Parameters:
» c: neighborhood radius.
» MinPts: minimum points to form a dense region.

Output: Clusters and noise points (outliers).
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DBSCAN Example
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DBSCAN Clustering
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DBSCAN Example
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Comparing K-Means and DBSCAN
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K-Means:
» Requires number of clusters K.
» Assumes spherical, similar-sized clusters.
» Sensitive to outliers.
DBSCAN:
> No need for K.
» Finds arbitrarily shaped clusters.
» Robust to outliers.
>

Typically more expensive.
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Choosing the Number of Clusters
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Problem: Algorithms like K-means require K.
Strategies:

» Visual inspection (plots, dendrograms).
» Statistical criteria (AIC, BIC for model-based clustering).
» Heuristics: Elbow and Silhouette methods.
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Elbow Method
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Idea: Plot within-cluster sum of squares (WCSS) vs. K:

K
wess(k) =373 I — il

J=1 xeq;

The “elbow” indicates a balance between compactness and complexity.
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Elbow Method
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Elbow Method
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Figure: Elbow method to select optimal K.
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Silhouette Method
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Silhouette coefficient: b(i) — a(i)
. i) —a(i
s(i) = max{a(i), b())}’
where a(/) is the average distance to same-cluster points and b(i) to the nearest other
cluster.
Interpretation:
» s(i) ~ 1: well-clustered.

» s(i) =~ 0: on boundary.
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Silhouette Method

Silhouette Method
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Figure: Silhouette method to select optimal K.

Oxford Unsupervised Learning October 2025 35/59

Mathematics



Hierarchical Clustering
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Idea: Build a hierarchy of clusters by defining an iterative process.
» Start by computing the distances of all the points in our dataset.

» Then, based on the distances, we can distribute points into clusters iteratively.
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Hierarchical Clustering
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Strategies to distribute points iteratively:
> Agglomerative: start with singletons, merge clusters iteratively.

» Divisive: start with one cluster, recursively split.
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Hierarchical Clustering
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Strategies to distribute points iteratively:
> Agglomerative: start with singletons, merge clusters iteratively.
» Divisive: start with one cluster, recursively split.
Linkage criteria:
» Single-link (minimum distance).
» Complete-link (maximum distance).

» Average-link (mean pairwise distance).
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Hierarchical Clustering Example
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Hierarchical Clustering Dendrogram,  Hierarchical Clustering Dendrogram, Hierarchical Clustering Dendrogram,
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Figure: Hierarchical clustering visualized as a dendrogram.
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The Curse of Dimensionality
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Problem: As dimensionality d increases:

» Distances between points become less meaningful:

max; [|x; — pl| = mini [|x; — pl]

- — 0.
min; [[x; — p|

P Nearest neighbor search becomes unreliable.
» The data requirements for statistical significance increases exponentially.

Implication: Clustering performance deteriorates in high-dimensional spaces.
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Dimensionality Reduction: Motivation
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» Remove noise and redundancy.
» Visualize high-dimensional data.

> Mitigate the curse of dimensionality.
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Principal Component Analysis (PCA)
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» Identify the directions that explain the most variance in the data.
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Principal Component Analysis (PCA)

Mathematical
Institute

Goal: Find a linear projection that maximizes the variance in the data.

max < (x;) >N,

Solution: Find the eigenvalues and eigenvectors of the covariance matrix

y— 1 o D068
= N,;(X’ —X)(xi —x) .

Interpretation: PCA finds directions of maximal variance and orthogonal axes for
projection.
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Principal Component Analysis (PCA)
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Anisotropic dataset
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Principal Component Analysis (PCA)
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Anisotropic dataset
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Principal Component Analysis (PCA)
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Algorithm: Find a set of orthonormal vectors vy, vo, ..., v.
» The first principal component PCAL is the direction of largest variance v;.

» The first principal component PCA2 is the direction v, of the second maximum
variance, that is orthogonal to v;.
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Dimensionality reduction
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Random Projection
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PCA K
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PCA Projection
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Manifold Learning: UMAP
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Uniform Manifold Approximation and Projection (UMAP):
» Graph-based manifold learning.
» Preserves local neighborhoods.

» Scales well to large datasets.
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Manifold Learning: UMAP
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UMAP Projection (Digits)
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Manifold Learning: t-SNE
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t-Distributed Stochastic Neighbor Embedding (t-SNE):
» Preserves local similarities using probabilistic neighborhoods.
» Effective for 2D/3D visualization.

» Can distort global structure; not ideal for quantitative analysis.
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Manifold Learning: t-SNE
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t-SNE Projection (Digits)
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Spectral clustering
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Spectral clustering is similar to combining a dimensionality reduction method, such
as PCA, and then perform Kmeans.
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Spectral clustering
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Spectral clustering algorithm:

» Construct a graph from the data using a similarity measure:
sij = exp(—|xi — x;[*/0)

» Generate the K-nearest neighbors subgraph, based on similarity s; ;
» The weights of the edges is s; ;

P Use the graph to partition the dataset into clusters, based on the laplcian.
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Spectral clustering for two circles
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K-means (Fails on Rings)
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Spectral Clustering
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Nearest-Neighbors Graph used in Spectral Clustering
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Spectral Clustering
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Spectral Clustering (Works)
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Closing Remarks
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Unsupervised classification uses the input data X and their respective distances to
generate clusters that minimize the distances of the data within a class and maximize
the distance between classes.

> K-means is an efficient algorithm to solve simple clustering problems.

» However, K-means converges to a local minimum, it is not always fast and
assumes spherical distribution of the data.

» Effective alternatives are density based algorithms and spectral algorithms.

» Combining the clustering method with a dimensionality reduction method can
optimize the computational cost and result in more accurate clustering.
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Thank you! Questions?



