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Unsupervised Learning

Unsupervised Learning

▶ Learn patterns in data without labels.

▶ Discover structure: clusters, manifolds, or lower-dimensional representations.

Differences from supervised learning:

▶ No ground-truth labels Y .

▶ Harder evaluation (no direct prediction error).

▶ Focus on similarity, structure, and representation.

Challenges:

▶ Requires large datasets.

▶ Sensitive to hyperparameters.

▶ Results can be hard to interpret.
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Unsupervised Learning

We have no labels Y . What can we use to assess similarity between data, based only
on the features X?
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Problem Setup

Setup:
x1, x2, . . . , xn ∈ X , no labels.

Goal: Find structure such that:

▶ In clustering: assign each xi to a cluster label ci ∈ {1, . . . ,K}.
▶ In dimensionality reduction: map xi 7→ zi ∈ Rd with d ≪ dim(X ).

Objective: Minimize within-group distances and maximize between-group distances.
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Clustering: Basic Idea

Definition: Partition n data points into K groups such that points in the same group
are “similar”.
Key idea: we need to define a ”distance” to assess similarity between data.
Main approaches:

▶ Centroid-based (e.g., K-means).

▶ Density-based (e.g., DBSCAN).

▶ Hierarchical clustering.
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Clustering Example

Figure: Example of 2D data points.
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Clustering Example

Figure: Example of 2D data points.
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Clustering Example

Figure: Example of 2D data points.
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K-Means Algorithm

Idea: Partition data into K clusters, each represented by its centroid.

1. Randomly initialize K centroids.

2. Assign each point to the nearest centroid.

3. Update centroids as the mean of their assigned points.

4. Repeat steps 2 to 3 until the algorithm converges.

Objective:

min
c1,...,cK

n∑
i=1

∥xi − µc∥2.
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K-Means

Objective: Partition n datapoints {xi}ni=1 into K clusters so that points within a
cluster are as close as possible to their cluster center.

▶ Each cluster Cj is represented by its centroid (mean) µj .

▶ We seek clusters that minimise within-cluster variance.

▶ Equivalent to minimising the sum of squared distances between each point and its
assigned centroid.
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K-Means Objective

We jointly optimise cluster assignments and centroids:

min
{Cj}, {µj}

W (C ) =
K∑
j=1

∑
i∈Cj

∥xi − µj∥2.

Note:

▶ µj =
1

|Cj |
∑

i∈Cj
xi — the mean of cluster j .

▶ Problem is NP-hard even for K = 2 in RD .

▶ But becomes easy if we fix either centroids or assignments.
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K-Means Objective

Two simple subproblems:

▶ Assignment step: assign each point to a cluster.

▶ Update step: compute the mean values for each cluster.

Alternate between these two steps → K-Means algorithm.
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K-Means — Initialization

Initialization: Choose K initial centroids µ1, . . . , µK .

▶ We can start by selecting K random data points.
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K-Means — Initialization

Figure: Initialization of Kmeans.
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K-Means — Initialization

Initialization: Choose K initial centroids µ1, . . . , µK .

▶ We can start by selecting K random data points.

▶ Improvement: spread out initial centers to improve convergence.
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K-Means — Initialization

Initialization: Choose K initial centroids µ1, . . . , µK .

▶ We can start by selecting K random data points.

▶ Improvement: spread out initial centers to improve convergence.

Good practice:

▶ Run the algorithm multiple times with different initializations.

▶ Keep the result with smallest objective W (C ).
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K-Means — Iteration Step

Repeat until convergence:

1. Assignment step: Assign each point to its closest centroid:

Cj = {i : j = argmin
j ′

∥xi − µj ′∥2}.

2. Update step: Recompute centroids using current assignments:

µj =
1

|Cj |
∑
i∈Cj

xi .
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K-Means — Stopping criterion

Stopping criterion:

▶ Cluster assignments no longer changes.

▶ Objective W (C ) only improves by less than a threshold.

Output: Final centroids {µj} and data points assigned to classes {Cj}.
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K-Means Visualization
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K-Means - Converge

Does the K-Means algorithm always converge?
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Does the K-Means Algorithm Always Converge?

Yes!

1. There are finitely many possible partitions of n points into K clusters.

2. W (C ) (within-cluster sum of squares) is either the same or decreases in each
update step.

3. Therefore, the algorithm must stop after a finite number of iterations.
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K-Means Limitations

However, there are some limitations:

▶ The algorithm converges to a local minimum, there is no guarantee for the
global one.

▶ Convergence speed: often fast in practice, but can be slow in the a ”worse-case”
situation.

▶ Assumes clusters are roughly spherical (or convex).

▶ The algorithm is sensitive to initializationn and outliers.

▶ Number of clusters need to be defined in advance.
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K-Means Limitations — Shape Assumptions

To improve robustness:

▶ Run multiple times with random initializations.

▶ Select the run that minimizes W (C ).
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K-Means Alternatives

When to avoid K-Means:

▶ Clusters with non-spherical shapes (e.g., concentric rings).

▶ Highly unbalanced cluster sizes or densities.

▶ Non-Euclidean or categorical feature spaces.

Alternatives:

▶ Spectral clustering — embeds data via Laplacian eigenvectors before clustering.

▶ Hierarchical clustering — Separates the data hierarchically based on distances.

Takeaway: K-Means is simple, fast, and effective for spherical clusters, but struggles
on complex geometries or uneven data.
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Limitations of K-Means
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DBSCAN: Density-Based Clustering

DBSCAN (Density-Based Spatial Clustering of Applications with Noise):

▶ Groups densely packed points.

▶ Identifies outliers as noise.

▶ Does not require specifying K .

Parameters:

▶ ε: neighborhood radius.

▶ MinPts: minimum points to form a dense region.

Output: Clusters and noise points (outliers).
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DBSCAN Example
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DBSCAN Example
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Comparing K-Means and DBSCAN

K-Means:

▶ Requires number of clusters K .

▶ Assumes spherical, similar-sized clusters.

▶ Sensitive to outliers.

DBSCAN:

▶ No need for K .

▶ Finds arbitrarily shaped clusters.

▶ Robust to outliers.

▶ Typically more expensive.
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Choosing the Number of Clusters

Problem: Algorithms like K-means require K .
Strategies:

▶ Visual inspection (plots, dendrograms).

▶ Statistical criteria (AIC, BIC for model-based clustering).

▶ Heuristics: Elbow and Silhouette methods.
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Elbow Method

Idea: Plot within-cluster sum of squares (WCSS) vs. K :

WCSS(K ) =
K∑
j=1

∑
xi∈Cj

∥xi − µj∥2.

The “elbow” indicates a balance between compactness and complexity.
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Elbow Method

Figure: Elbow method to select optimal K .
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Silhouette Method

Silhouette coefficient:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
,

where a(i) is the average distance to same-cluster points and b(i) to the nearest other
cluster.
Interpretation:

▶ s(i) ≈ 1: well-clustered.

▶ s(i) ≈ 0: on boundary.
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Silhouette Method

Figure: Silhouette method to select optimal K .
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Hierarchical Clustering

Idea: Build a hierarchy of clusters by defining an iterative process.

▶ Start by computing the distances of all the points in our dataset.

▶ Then, based on the distances, we can distribute points into clusters iteratively.
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Hierarchical Clustering

Strategies to distribute points iteratively:

▶ Agglomerative: start with singletons, merge clusters iteratively.

▶ Divisive: start with one cluster, recursively split.
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Hierarchical Clustering

Strategies to distribute points iteratively:

▶ Agglomerative: start with singletons, merge clusters iteratively.

▶ Divisive: start with one cluster, recursively split.

Linkage criteria:

▶ Single-link (minimum distance).

▶ Complete-link (maximum distance).

▶ Average-link (mean pairwise distance).
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Hierarchical Clustering Example

Figure: Hierarchical clustering visualized as a dendrogram.

Unsupervised Learning October 2025 39 / 59



The Curse of Dimensionality

Problem: As dimensionality d increases:

▶ Distances between points become less meaningful:

maxi ∥xi − µ∥ −mini ∥xi − µ∥
mini ∥xi − µ∥

→ 0.

▶ Nearest neighbor search becomes unreliable.

▶ The data requirements for statistical significance increases exponentially.

Implication: Clustering performance deteriorates in high-dimensional spaces.
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Dimensionality Reduction: Motivation

▶ Remove noise and redundancy.

▶ Visualize high-dimensional data.

▶ Mitigate the curse of dimensionality.
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Principal Component Analysis (PCA)

▶ Identify the directions that explain the most variance in the data.
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Principal Component Analysis (PCA)

Goal: Find a linear projection that maximizes the variance in the data.

max < (xi ) >
N
i=1

Solution: Find the eigenvalues and eigenvectors of the covariance matrix

Σ =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)⊤.

Interpretation: PCA finds directions of maximal variance and orthogonal axes for
projection.
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

Algorithm: Find a set of orthonormal vectors v1, v2, . . . , vk .

▶ The first principal component PCA1 is the direction of largest variance v1.

▶ The first principal component PCA2 is the direction v2 of the second maximum
variance, that is orthogonal to v1.
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Dimensionality reduction
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PCA
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Manifold Learning: UMAP

Uniform Manifold Approximation and Projection (UMAP):

▶ Graph-based manifold learning.

▶ Preserves local neighborhoods.

▶ Scales well to large datasets.
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Manifold Learning: UMAP
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Manifold Learning: t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE):

▶ Preserves local similarities using probabilistic neighborhoods.

▶ Effective for 2D/3D visualization.

▶ Can distort global structure; not ideal for quantitative analysis.
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Manifold Learning: t-SNE
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Spectral clustering

Spectral clustering is similar to combining a dimensionality reduction method, such
as PCA, and then perform Kmeans.
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Spectral clustering

Spectral clustering algorithm:

▶ Construct a graph from the data using a similarity measure:

si ,j = exp(−|xi − xj |2/σ)

▶ Generate the K-nearest neighbors subgraph, based on similarity si ,j
▶ The weights of the edges is si ,j
▶ Use the graph to partition the dataset into clusters, based on the laplcian.
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Spectral clustering for two circles
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Spectral Clustering
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Spectral Clustering
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Closing Remarks

Unsupervised classification uses the input data X and their respective distances to
generate clusters that minimize the distances of the data within a class and maximize
the distance between classes.

▶ K-means is an efficient algorithm to solve simple clustering problems.

▶ However, K-means converges to a local minimum, it is not always fast and
assumes spherical distribution of the data.

▶ Effective alternatives are density based algorithms and spectral algorithms.

▶ Combining the clustering method with a dimensionality reduction method can
optimize the computational cost and result in more accurate clustering.
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Thank you! Questions?


