Unsupervised Learning: Clustering and Dimensionality Reduction

Lida Kanari

Mathematical Institute University of Oxford

Introduction to Machine Learning, October 2025

Table of Contents

- ► Key Concepts of Unsupervised Learning
- Clustering
- Centroid clustering (K-means)
- ► Density clustering (DBSCAN)
- ► Hierarchical Clustering
- ▶ Dimensionality Reduction
- Spectral Clustering

Unsupervised Learning

Unsupervised Learning

- ► Learn patterns in data without labels.
- ▶ Discover structure: clusters, manifolds, or lower-dimensional representations.

Differences from supervised learning:

- ► No ground-truth labels Y.
- ► Harder evaluation (no direct prediction error).
- Focus on similarity, structure, and representation.

Challenges:

- Requires large datasets.
- Sensitive to hyperparameters.
- Results can be hard to interpret.

Unsupervised Learning

We have no labels Y. What can we use to assess similarity between data, based only on the features X?

Setup:

$$x_1, x_2, \ldots, x_n \in \mathcal{X}$$
, no labels.

Goal: Find structure such that:

- ▶ In clustering: assign each x_i to a cluster label $c_i \in \{1, ..., K\}$.
- ▶ In dimensionality reduction: map $x_i \mapsto z_i \in \mathbb{R}^d$ with $d \ll \dim(\mathcal{X})$.

Objective: Minimize within-group distances and maximize between-group distances.

Definition: Partition n data points into K groups such that points in the same group are "similar".

Key idea: we need to define a "distance" to assess similarity between data.

Main approaches:

- Centroid-based (e.g., K-means).
- ► Density-based (e.g., DBSCAN).
- Hierarchical clustering.

7 / 59

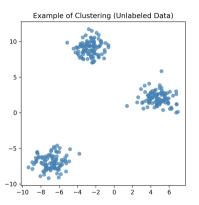


Figure: Example of 2D data points.

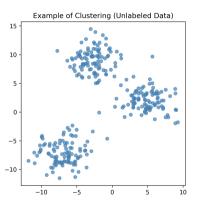


Figure: Example of 2D data points.

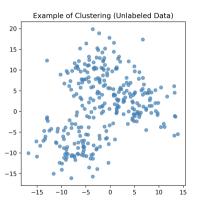


Figure: Example of 2D data points.

Idea: Partition data into K clusters, each represented by its centroid.

- 1. Randomly initialize K centroids.
- 2. Assign each point to the nearest centroid.
- 3. Update centroids as the mean of their assigned points.
- 4. Repeat steps 2 to 3 until the algorithm converges.

Objective:

$$\min_{c_1,...,c_K} \sum_{i=1}^n ||x_i - \mu_c||^2.$$

Objective: Partition n datapoints $\{x_i\}_{i=1}^n$ into K clusters so that points within a cluster are as close as possible to their cluster center.

- ▶ Each cluster C_j is represented by its centroid (mean) μ_j .
- ▶ We seek clusters that minimise within-cluster variance.
- Equivalent to minimising the sum of squared distances between each point and its assigned centroid.

We jointly optimise cluster assignments and centroids:

$$\min_{\{C_j\},\{\mu_j\}} W(C) = \sum_{j=1}^K \sum_{i \in C_j} ||x_i - \mu_j||^2.$$

Note:

- $\blacktriangleright \mu_j = \frac{1}{|C_j|} \sum_{i \in C_j} x_i$ the mean of cluster j.
- ▶ Problem is **NP-hard** even for K = 2 in \mathbb{R}^D .
- ▶ But becomes easy if we fix either centroids or assignments.

K-Means Objective

Two simple subproblems:

- Assignment step: assign each point to a cluster.
- ▶ Update step: compute the mean values for each cluster.

Alternate between these two steps \rightarrow *K-Means algorithm*.

Initialization: Choose K initial centroids μ_1, \ldots, μ_K .

 \blacktriangleright We can start by selecting K random data points.

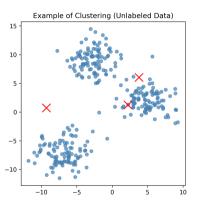


Figure: Initialization of Kmeans.

Initialization: Choose K initial centroids μ_1, \ldots, μ_K .

- ightharpoonup We can start by selecting K random data points.
- ▶ Improvement: spread out initial centers to improve convergence.

Initialization: Choose K initial centroids μ_1, \ldots, μ_K .

- ▶ We can start by selecting *K* random data points.
- Improvement: spread out initial centers to improve convergence.

Good practice:

- ▶ Run the algorithm multiple times with different initializations.
- ▶ Keep the result with smallest objective W(C).

Repeat until convergence:

1. Assignment step: Assign each point to its closest centroid:

$$C_j = \{i : j = \arg\min_{j'} \|x_i - \mu_{j'}\|^2\}.$$

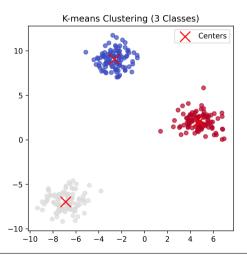
2. **Update step:** Recompute centroids using current assignments:

$$\mu_j = \frac{1}{|C_j|} \sum_{i \in C_j} x_i.$$

Stopping criterion:

- ► Cluster assignments no longer changes.
- ightharpoonup Objective W(C) only improves by less than a threshold.

Output: Final centroids $\{\mu_j\}$ and data points assigned to classes $\{C_j\}$.



K-Means - Converge

Does the K-Means algorithm always converge?

Yes!

- 1. There are finitely many possible partitions of n points into K clusters.
- 2. W(C) (within-cluster sum of squares) is either the same or **decreases** in each update step.
- 3. Therefore, the algorithm must stop after a finite number of iterations.

However, there are some limitations:

- ► The algorithm converges to a **local minimum**, there is no guarantee for the global one.
- ► Convergence speed: often fast in practice, but can be slow in the a "worse-case" situation.
- ► Assumes clusters are roughly **spherical** (or convex).
- ► The algorithm is sensitive to initialization and outliers.
- ▶ Number of clusters need to be defined in advance.

To improve robustness:

- ▶ Run multiple times with random initializations.
- ▶ Select the run that minimizes W(C).

K-Means Alternatives

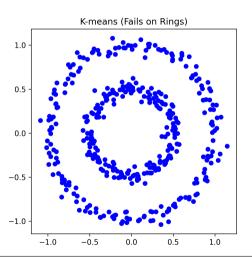
When to avoid K-Means:

- ► Clusters with non-spherical shapes (e.g., concentric rings).
- ► Highly unbalanced cluster sizes or densities.
- ▶ Non-Euclidean or categorical feature spaces.

Alternatives:

- ▶ **Spectral clustering** embeds data via Laplacian eigenvectors before clustering.
- ▶ **Hierarchical clustering** Separates the data hierarchically based on distances.

Takeaway: K-Means is simple, fast, and effective for spherical clusters, but struggles on complex geometries or uneven data.



DBSCAN (Density-Based Spatial Clustering of Applications with Noise):

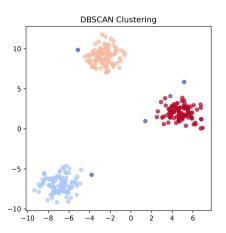
- Groups densely packed points.
- Identifies outliers as noise.
- ▶ Does not require specifying K.

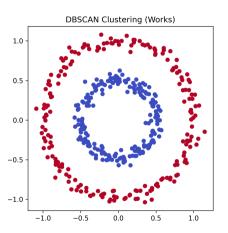
Parameters:

 \triangleright ε : neighborhood radius.

► *MinPts*: minimum points to form a dense region.

Output: Clusters and noise points (outliers).





Comparing K-Means and DBSCAN

K-Means:

- \triangleright Requires number of clusters K.
- ► Assumes spherical, similar-sized clusters.
- Sensitive to outliers.

DBSCAN:

- ▶ No need for K.
- Finds arbitrarily shaped clusters.
- Robust to outliers.
- ► Typically more expensive.

Choosing the Number of Clusters

Problem: Algorithms like K-means require *K*.

Strategies:

- ► Visual inspection (plots, dendrograms).
- ► Statistical criteria (AIC, BIC for model-based clustering).
- ► Heuristics: **Elbow** and **Silhouette** methods.

Idea: Plot within-cluster sum of squares (WCSS) vs. K:

$$WCSS(K) = \sum_{j=1}^{K} \sum_{x_i \in C_j} ||x_i - \mu_j||^2.$$

The "elbow" indicates a balance between compactness and complexity.

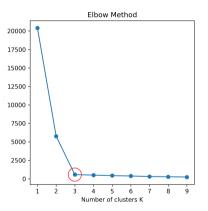


Figure: Elbow method to select optimal K.

Silhouette coefficient:

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}},$$

where a(i) is the average distance to same-cluster points and b(i) to the nearest other cluster.

Interpretation:

▶ $s(i) \approx 1$: well-clustered.

► $s(i) \approx 0$: on boundary.

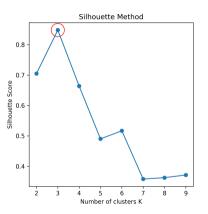


Figure: Silhouette method to select optimal K.

Oxford Unsupervised Learning October 2025 35/59 Mathematics

Hierarchical Clustering

Idea: Build a hierarchy of clusters by defining an iterative process.

- ▶ Start by computing the distances of all the points in our dataset.
- ▶ Then, based on the distances, we can distribute points into clusters iteratively.

Hierarchical Clustering

Strategies to distribute points iteratively:

▶ **Agglomerative:** start with singletons, merge clusters iteratively.

▶ **Divisive:** start with one cluster, recursively split.

Strategies to distribute points iteratively:

- ▶ **Agglomerative:** start with singletons, merge clusters iteratively.
- ▶ Divisive: start with one cluster, recursively split.

Linkage criteria:

- ► Single-link (minimum distance).
- Complete-link (maximum distance).
- Average-link (mean pairwise distance).

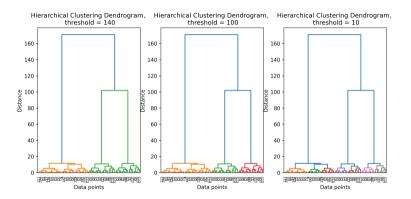


Figure: Hierarchical clustering visualized as a dendrogram.

Oxford Unsupervised Learning October 2025 39/59
Mathematics

Problem: As dimensionality *d* increases:

▶ Distances between points become less meaningful:

$$\frac{\max_{i} \|x_{i} - \mu\| - \min_{i} \|x_{i} - \mu\|}{\min_{i} \|x_{i} - \mu\|} \to 0.$$

- ▶ Nearest neighbor search becomes unreliable.
- ▶ The data requirements for statistical significance increases exponentially.

Implication: Clustering performance deteriorates in high-dimensional spaces.

Dimensionality Reduction: Motivation

- ► Remove noise and redundancy.
- ► Visualize high-dimensional data.
- ► Mitigate the curse of dimensionality.

Principal Component Analysis (PCA)

▶ Identify the directions that explain the most variance in the data.

Goal: Find a linear projection that maximizes the variance in the data.

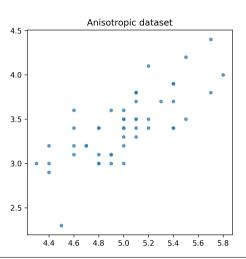
$$\max < (x_i) >_{i=1}^{N}$$

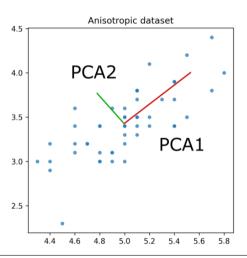
Solution: Find the eigenvalues and eigenvectors of the covariance matrix

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^{\top}.$$

Interpretation: PCA finds directions of maximal variance and orthogonal axes for projection.

Principal Component Analysis (PCA)



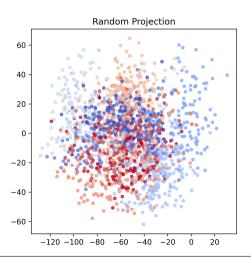


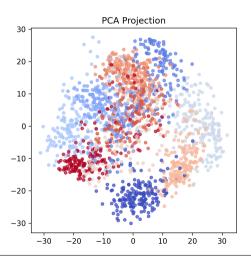
Algorithm: Find a set of orthonormal vectors v_1, v_2, \ldots, v_k .

- ▶ The first principal component PCA1 is the direction of largest variance v_1 .
- ▶ The first principal component PCA2 is the direction v_2 of the second maximum variance, that is orthogonal to v_1 .

Dimensionality reduction

47 / 59

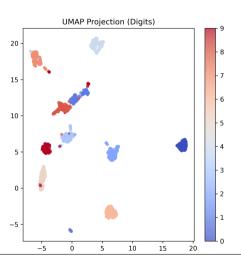




Uniform Manifold Approximation and Projection (UMAP):

- Graph-based manifold learning.
- Preserves local neighborhoods.
- Scales well to large datasets.

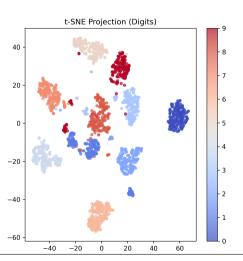
Manifold Learning: UMAP



t-Distributed Stochastic Neighbor Embedding (t-SNE):

- ▶ Preserves local similarities using probabilistic neighborhoods.
- ► Effective for 2D/3D visualization.
- ► Can distort global structure; not ideal for quantitative analysis.

Manifold Learning: t-SNE



Spectral clustering

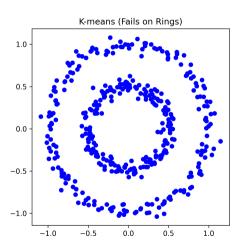
Spectral clustering is similar to combining a dimensionality reduction method, such as PCA, and then perform Kmeans.

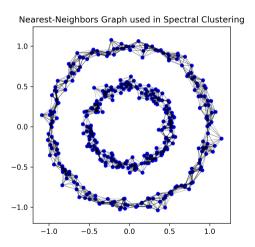
Spectral clustering algorithm:

► Construct a graph from the data using a similarity measure:

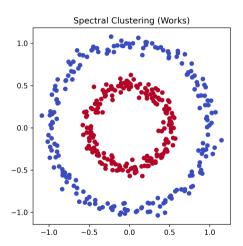
$$s_{i,j} = \exp(-|x_i - x_j|^2/\sigma)$$

- \blacktriangleright Generate the K-nearest neighbors subgraph, based on similarity $s_{i,j}$
- ▶ The weights of the edges is $s_{i,j}$
- ▶ Use the graph to partition the dataset into clusters, based on the laplcian.





Spectral Clustering



Closing Remarks

Unsupervised classification uses the input data \mathcal{X} and their respective distances to generate clusters that minimize the distances of the data **within** a class and maximize the distance **between** classes.

- ► K-means is an efficient algorithm to solve simple clustering problems.
- ► However, K-means converges to a local minimum, it is not always fast and assumes spherical distribution of the data.
- ▶ Effective alternatives are density based algorithms and spectral algorithms.
- Combining the clustering method with a dimensionality reduction method can optimize the computational cost and result in more accurate clustering.

Thank you! Questions?