Section 2.3 . FitzHugh-Nagumo model [approximate asymptotic reduction of the]

Hodgkin-Huxley model

Assumptions: 1) T_m is small so $m \approx m_{\infty}(V)$ ($T_m \ll T_n, T_h$) Recall eqn 3 (m rapidly reaches its quasistable value, using 3) $\frac{dm}{dt} = \frac{m_{\infty} - m}{T_m}$

- 2) In = Th (not perfect, see graph 2, but a decent approximation)
- 3) $n_{\infty} + h_{\infty} = \text{const}$, \overline{h} (motivated by graph 1) \Rightarrow $n + h = \overline{h}$ (using 2) and 4)

$$\frac{d}{dt}(n+h) = \overline{h} - (n+h)$$

$$\Rightarrow (n+h) = \overline{h} + ce^{-t}$$

This system is true for all time so it eventually settles to $n+h=\overline{h}$

This reduces the Hodgkin-Huxley model (four odes for V, n, m,h) to the two-dimensional system for V and n: (see problem sheet a for this)

$$C_{m} \frac{dV}{dt} = I_{app} \left(g_{k}(V - V_{k}) n^{4} + g_{N_{a}}(V - V_{N_{a}}) m_{\infty}^{3}(V)(\bar{h} - n) + g_{h}(V - V_{h})\right)$$

$$T_{n}(V) \frac{dn}{dt} = n_{\infty}(V) - n$$

We'll see if some of these parameters are small & negligible

let's non-dimensionalise the system:

voltage
$$V = \frac{V - V_{eq}}{V_{N_a} - V_{eq}}$$
 and $t = T_n(V_{eq}) t'$

(rather than V_{eq} .

resting potential for Nat

This leads to the dimensionless system

$$\frac{dn}{dt} = n_{\omega}(v) - n \quad \mathcal{O}$$

$$\varepsilon \frac{dv}{dt} = I^* - g(v_i n) \quad \mathcal{O}$$

Dimensionless parameters

$$I^{*} = \frac{I_{app}}{g_{N_{a}}(V_{N_{a}}-V_{eq})} V_{k}^{*} = -\frac{(V_{N}-V_{eq})}{V_{N_{a}}-V_{eq}}$$

$$Y_{K} = \frac{g_{K}}{g_{N_{a}}} V_{L}^{*} = \frac{V_{L}-V_{eq}}{V_{N_{a}}-V_{eq}}$$

$$Y_{L}^{*} = \frac{g_{L}}{g_{N_{a}}} \qquad \varepsilon = \frac{C_{m}}{g_{N_{q}}\tau_{n}}$$

where $g(v,n) = \gamma_k (v + v_k^*) n^4 + \gamma_L (v - v_L^*) - (1-v)(h^- - n) m^3(v)$ with

where
$$\varepsilon = \frac{C_m}{g_{N_a} c_n}$$

This is why we non-dimensionalize — to see the relative parameter sizes.

Key point: E<<1, so V quickly reaches a quasisteady equilibrium in @ and x1<<), you can see this through 2 so q(v,n) simplifies:

$$g(v,n) = V_{K}(v+v_{K}^{*})n^{4} - (i-v)[\bar{h}-n)m_{\infty}^{3}(v)$$
 $\frac{dv}{dt} = \frac{I^{*}-g(v,n)}{\varepsilon}$

$$\frac{dv}{dt} = \frac{I^* - g(v, n)}{\varepsilon}$$

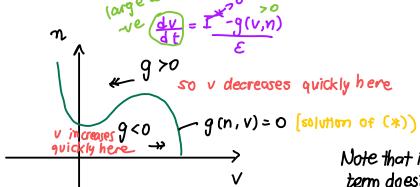
PHASE PLANE ANALYS IS

Start by considering the case [1 = 0] (i.e. no applied current, from 2), v is given by q = 0)

Setting
$$\varepsilon = Y_L = 0$$
 In ② gives $\frac{n^4}{\overline{h}} = \frac{(I-V) m_{\infty}^3(V)}{Y_K (V+V_K^*)}$ an algebraic relationship as small)

$$\frac{n^4}{\overline{h}} = \frac{(I-V) m_{\infty}^3(V)}{Y_K (V+V_K^*)}$$
between n and V

$$\frac{n^4}{\sqrt{dt}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{$$



since E<<1 we know that the system quickly jumps onto this nullcline

Note that including this &L term doesn't thange these qualitative features

Now we just need to add the n=0 nullcline $(n = n_{\infty}(v))$

(mullclines in general are when you set the d to zero) nullcline (n=how(v)) n-hullcline when $\frac{dn}{dt} = 0 \Rightarrow n = n_{\infty}(v)$ by eqn (1) lunh(dn >0 so we move up we go below the n-nullcline, PHA SE PLANE back to ANALYSIS recall by of do = no-n equilibrium (recall that egns is when v=0) $v = 0 \Rightarrow V = V_{eq}$ Start here V nulldine (g=0) (when both v=n=0) V-nullatine when $\frac{dv}{dt} \Rightarrow g(v_1n) = I^* = 0$ by eqn (2)

Perturbing around the fixed point we see that trajectories spiral around so the fixed point is a spiral.

STABILITY

linearize near the fixed point, n=no, v=0

and odes become
$$\frac{d}{dt} \left(\frac{N}{V} \right) = \begin{pmatrix} -1 & \frac{d\eta_{\infty}}{dV} \\ -\frac{12q}{\epsilon \partial n} & -\frac{1}{\epsilon} \frac{\partial q}{\partial V} \end{pmatrix} \left(\frac{N}{V} \right)$$

Stability is given by
$$\det(\underline{M})$$
 and $\operatorname{tr}(\underline{M}) \Rightarrow \det(\underline{M}) < 0 \Rightarrow saddle$

trace $\det(\underline{M}) > 0$ and $\det(\underline{M}) < 0$
 \Rightarrow node or spiral

trace and determinant method

Figenvalues can be written as

$$A = \frac{\text{Tr}(\underline{M}) \pm \sqrt{(\text{Tr}\underline{M})^2 - 4\text{det}(\underline{M})}}{2}$$

We have
$$\det(\underline{M}) = \frac{1}{\varepsilon} \left(\frac{\partial g}{\partial V} \Big|_{v=v_0} + \frac{\partial g}{\partial v} \Big|_{v=v_0} \frac{\partial h_{v_0}}{\partial V} \right)$$

Now det (M)>0

Proof Now slope of n nullcline = dno

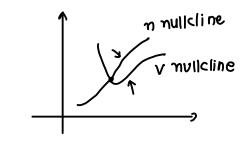
Slope of
$$V$$
 mullcline = $-\frac{\partial q}{\partial V}$ since $g(V, n)=0$

$$\frac{\partial Q}{\partial v} = \frac{\partial Q}{\partial v}$$

$$\frac{\partial q}{\partial n} \frac{\partial n}{\partial v} + \frac{\partial q}{\partial v} = 0$$
, $\frac{\partial n}{\partial v} = \frac{-\frac{\partial q}{\partial v}}{\frac{\partial q}{\partial n}}$.

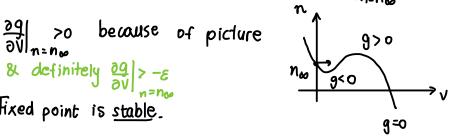
slope of > slope of and from graph: n nullcline V mullcline

$$\frac{dn_{\infty}}{dv} > -\frac{29}{20}$$
. This implies that



Fixed point is stable if tr(M) <0

fixed point is stable.



change of g in the volinection white keeping in fixed (stort on Q=0, or v nulldine)

Although the fixed point is stable, a small increase in v will lead to a large excursionthis is the action potential again. If we plotted v versus t we would obtain the graph we drew earlier.

Limit Lycles

If we apply a current then this will push us off the equilibrium point and send us round the trajectory before starting the process all over again —we only need a bit of energy to achieve this.

Slightly different to a conventional limit cycle because in this case you need to give a bit of energy to kick it round the yele (i.e. it doesn't continue on the loop w/o energy input)

The FitzHugh-Nagumo model is the reduction of the four-dimensional Hodgkin-Huxley model to a two-dimensional system.

The Fitz Hugh-Nagumo equations are an analytically similar pair of equations that have the same behaviour.

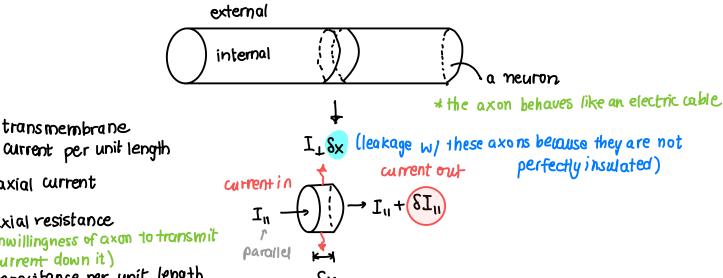
easier to handle this mathematically

FitzHugh-Nayumo model

$$\hat{n} = \prod_{n=1}^{\infty} \frac{g(v, n)}{(v) - n}$$
 implicit function

Fun fact of the day: Nerve signals can travel at speeds of 270 mph. This allows 24 you to react quickly to various stimuli, such as pulling your hand away from a hot surface or reacting to a sudden loud noise Wave propagation in neurons

We now explore spatial dependence of the Hodgkin-Huxley model.



(unwillingness of axon to transmit current down it) C = capacitance per unit length (ability to store charge)

 I_1 = transmembrane

 $I_n = axial$ current

R = axial resistance

In a segment &x the total change is CV&x. this small segment is CV&x

if lapply to something w/ capacitonce C, a voitage V, then the total charge held by

Charge conservation:
$$\frac{CVSx}{3t}$$
 ($CVSx$) = $-I_{\perp}Sx + I_{||} - (I_{||} + SI_{||})$

Current out right

Charge conservation:

through walls teft (only this increases the lotal Charge CVEX)

Assuming C=const.

$$C \xrightarrow{9t} 6 \times = -I^{T} = -I^{T} - \overline{8I^{n}}$$

$$\Rightarrow C \xrightarrow{9t} = -I^{T} - \overline{8I^{n}} - 8I^{n}$$

Taking the limit as &x → 0

* the axon's internal electrical potential V is now a function of distance 2 along the couble and time t.

$$C_{3}\frac{9f}{\Lambda} = -I^{T} - \frac{3x}{3I^{H}} \qquad (*)$$

$$-\delta V = I_{11} R \delta x \qquad \text{Definition of resistance (i.e. } \Delta V = I_{11} R_{total})$$

$$\Rightarrow \frac{\partial V}{\partial x} = -I_{11} R \Rightarrow I_{11} = -\frac{L}{R} \frac{\partial V}{\partial x}$$

So in (*),
$$C \frac{\partial V}{\partial t} = -I_{\perp} + \frac{1}{R} \frac{\partial^2 V}{\partial x^{\perp}}$$
 (†)

This is called the telegraph equation (or the cable equation)

If the neuron perimeter is
$$p = \pi d$$
, then $(I_1 = p (I_1 - I_{app}))$ consectance f diameter f diameter f current per unit area between f and f and f outside as defined earlier f unit

=
$$\pi d$$
, then $(I_1 = p(I_1 - I_{app}))$

diameter need it per unit of inside and outside

length

Capacitance per unit area

If
$$R_c$$
 = resistivity of medium, then $R = \frac{R_c}{A}$ where $A = \frac{1}{4}\pi d^2$ is the neuron cross-sectional area. In (t) this gives $\pi d C_m \frac{\partial V}{\partial t} = -\pi d (I_i - I_{opp}) + \frac{\pi d^2}{4R_c} \frac{\partial^2 V}{\partial X^2}$

$$=) C_m \frac{\partial V}{\partial t} = I_{app} - I_i + \frac{d}{4R_c} \frac{\partial^2 V}{\partial X^2}$$

Non-dimensionalization

$$V = \frac{V - V_{eq}}{V_{Na} - V_{eq}}$$
, $I := g_{Na} (V_{Na} - V_{eq}) g(n, v)$, $x = (\hat{x}, t = T_n \hat{t})$

(same as earlier non-dimensionalization)

where L is to be chosen later

This gives

$$\begin{cases} \varepsilon \frac{\partial U}{\partial t} = I^{*} - g(n, v) + \varepsilon^{2} \frac{\partial^{2} V}{\partial x^{2}} \\ \frac{\partial n}{\partial t} = \eta_{o}(v) - n \end{cases}$$

See problem sheet 2 for derivation of this

This is the space dependent version of the FitzHugh-Nagumo model - it's the same but just with a 220 term. [spatial variation of V adds diffusion term]

let's analyze action potentials in this case. We would analyse the equations above but it is easier to analyse the space-dependent fitz Hugh-Nagumo equations (the equations that display the same qualitative behaviour but are easier to analyse)

$$\xi \frac{\partial v}{\partial t} = f(v) - \omega + \xi^2 \frac{\partial^2 v}{\partial x^2}$$

$$\frac{\partial \omega}{\partial t} = \partial v - \omega$$

and x large enough that (0,0) is the unique steady state.