Fridays@n, n=11 or 2

WEEK 3 @11

What does a good maths solution look like?

WEEK 4 @ 2

Looking and applying for jobs

WEEK 5 @ 11

How to make the most of your tutorials and lectures

WEEK 6 @ 2

What's it like doing a PhD in maths?

WEEK 7 @ 11

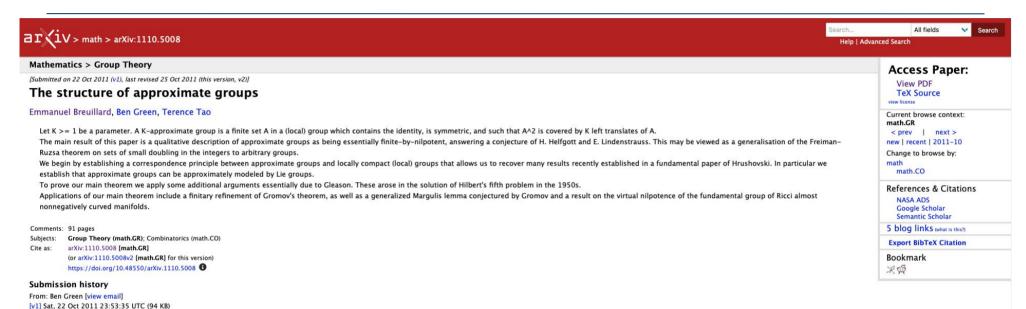
How to manage your time effectively

Oxford Mathematics


Mathematical Institute

What does a good maths solution look like?

31 October 2025


Today

- We'll share the slides with you afterwards.
- You might like to have a pen/pencil ready anyway.

Writing maths

ibliographic Tools	Code, Data, Media	Demos	Related Papers	About arXivLabs
Bibliographic and	Citation Tools			
Bibliographic Ex	plorer (What is the Explore	r?)		
Connected Pape	ers (What is Connected Pape	ers?)		
Litmaps (What is				
scite Smart Cita	tions (What are Smart Citat	ions?)		

Oxford Mathematics

[v2] Tue, 25 Oct 2011 07:48:12 UTC (94 KB)

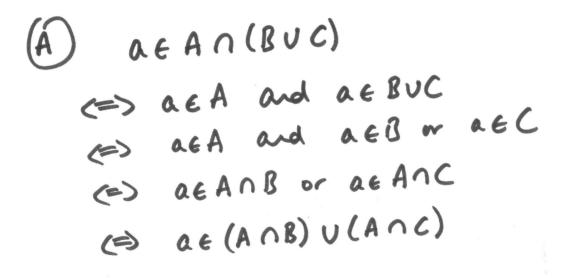
Questions...

1. Let A, B, C be subsets of a set X. Write out a proof that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

2. Find the square roots of -7 + 24i.

Solutions...

We're going to look at some sample solutions.


They are not based on any individual student's work.

For each attempt, please think about what feedback you would give the student.

- What have they done well?
- What could they improve?
- What features would you copy for your own work?

Student A

Student B

(B) An (BUC) = (An B) U (Anc).

Suppose XEAN (BUC). Then XEA and XEBUC, so X is an element of A and X is an element of B w X is an element of C. So XEANB OF XE ANC or both. So XE (ANB) U (ANC). So AN (BUC) & (ANB) U (ANC). Then either (onversely, let XE (ANB) U (ANC). Then either XEANB OF XEANC or both.

XEANB OF XEANC or both.

XEANB OF XEANC or both.

XEANB OF XEANC OF BOTH.

XEANB OF XEANC OF BOTH.

So X is in A and X is in B OF X is in C. So XEAN (BUC).

So each is a subset of the other, so AN (BUC) = (ANB) U (ANC).

Student C

E) If a E LHS then a is in A and in BUC so is in A, and B or C so is in And or An C so is in RHS.

Student D

Claim An (BUC) = (AnB) U (Anc). Proof C: Take XE An (BUC). Then XEA and XEBUC. So x & A and (x & B or x & C). If xee b, hen since also XEA hove XEANB so xE (ANB) U (Anc) If xeC, Then since also xEA hove xEANC so x & (AnB) U(Anc). So RE (AND) U(ANC). 2: Take RE (ANB) U (ANC). Then xEANS or XEANC. If xEADB Then xEA and xEB. SO REA and XEBUC, SO KEAN (BUC) If K & Anc Then similarly XEAN (BUC). Einer way, we see x & A n (BUC).

Student E


```
(E) Write -7+24i in modulus-argument frm:
have |-7+24i| = √7²+24² = 25
       and it og (-7+24i)=8 then ten 0 = -24.
       les u= Reif be a squere vool of -7+24i.
       Then u^2 = R^2 e^{2i\phi} = -7 + 24i = 25e^{i\theta} where \tan \theta = -\frac{24}{2}.
        So R=5 and - 24 = 1200 = 120 = 2kmp 1-1200 .
        Then withing t = h \cdot \phi have |2t^2 - 7t - 12 = 0,

so t = h \cdot \phi = \frac{7 \pm \sqrt{7^2 + 576}}{24} = \frac{7 \pm 75}{24}.
         So hu = 4 or hu = -3.
          Since also R=5, hore we |3+4i, -3-4i, 4-3i, -4+3i].
         But (4-3:) = 7-24: - no good,
           (-4+3i)
thereas [ + (3+4i)] = -7+24i, so he squere
           rob are ± (3+4i).
```

Student F

$$(re^{i\theta})^{2} = -7 + 24i$$

$$r^{2}e^{2i\theta} = -7 + 24i$$

$$r^{2} = |-7 + 24i| = \sqrt{49 + 576} = 25 = 7r = 5$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 7r = 5$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25 = 7r = 5$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25 = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25 = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25 = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25 = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25 = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25 = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25 = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25 = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25 = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 = |-7 + 24i| = \sqrt{49 + 576} = 25$$

$$2 =$$

Student G

(a)
$$|-7+24i| = \sqrt{7^2+24^2} = 25$$

arg $(-7+24i) = \arctan(-\frac{24}{3})$

The dulus - argument form = 25 . $e^{i\alpha rctan(-\frac{24}{3})}$

$$|-7+24i| = \sqrt{7^2+24^2} = 25$$

arg $(-7+24i) = \arctan(-\frac{24}{3})$

$$|-7+24i| = \sqrt{7^2+24^2} = 25$$

$$|-7+24i| = \sqrt{7^2+24^2} = 25$$

$$|-7+24i| = \arctan(-\frac{24}{3})$$

$$|-7+24i| = \sqrt{7^2+24^2} = 25$$

$$|-7+24i| = \arctan(-\frac{24}{3})$$

$$|-7+24i$$

Show the structure of your argument clearly

- Aspire to more than just "not false".
- Present a coherent logical argument.
- State what you're going to prove (and label it).
- If you're doing two directions, then label them.
- If you're checking properties, then label them.
- Be clear where one idea ends and the next begins.

Words and symbols

- Write in sentences with logical flow.
- Read your work out loud.
- Take care with commas, which can be ambiguous.
- "If ... then ..." is underrated.
- It's fine to reuse words ("so", "then").
- Be very careful with ⇒ etc. Read ⇒ as "implies".
- Introduce notation explicitly.

Look at your own work critically

- Don't spend ages rewriting in your best handwriting, but you might need to work in rough then write up your ideas
- If possible, then leave some time and look again
- Review what is on the page, not what you had in mind when you wrote it
- Have you proved what you set out to prove?
- Have you justified each step clearly?

Draw on feedback

- Use feedback from your tutors.
- Ask for advice if you're uncertain whether you're writing too much/too little/not in the best style.
- With practice, writing well is a habit.
- Everyone can write maths well.

More advice

- The book How to think like a mathematician by Kevin Houston has good advice. Chapters 3 and 4, which are about writing maths, are available at http://www.kevinhouston.net/pdf/htwm.pdf
- The book How to study for a Mathematics degree by Lara Alcock also has good advice, including a chapter on writing mathematics

https://ebookcentral.proquest.com/lib/oxford/detail.action?docID=1073506