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Let's look for a travelling wave solution so we can find a ware traveling down the axon

V = v (g) , w =W(z) , j = Ct- X,O waves we'll draw at the end will go from right to left

① ECV' = f(v)-l+EU"
phase plane w/ V , W , v,

② CW' =Y - w

NB the primes are derivatives cort]
with v,

w + o as 3-0 Isolitary waves in which the solution returns to the rest state

at each end
It is harder to do phase plane analysis now because the phase plane is

three-dimensional rather than two : V
,

w
,
v

However
, <1 so this allows us to make progress without having to consider the

three-dimensional phase space.

There are four different regions of behaviour :

(i) To begin with , if we aren't on the curve w = f(v) then we quickly more there

because of

① ECV' = f(v) -w + E2V" Just like before
-

(
=0

& higher order Cignoring the higher order

fast motion correction 32 term)

In this region , things happen over a fast 5 scole. This suggests rescaling j : z]

# = c = f) - w+ ⑪

and in this region , considering the otherequation ,
CW' = -V - w (2 from above)

=> CW(V
=>

w = constant .

We choose coordinates such that the resting state corresponds to 1v , w) = 10
,0) .

Thus W = const = Wresti = 0
. This is not sayin that an const w must be zero

n
but starting from rest, the slow variable w hasn't moved yet , so it equals its

resting value (which is O in the shifted words)
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Now setd = n .

Then we can write Cd = fIv +=cu =f
where 'denotes
derivativeThen our phase plane system is

S
V1 = U

Phase plane system wrt now

u = cu - f(v)
stripped down equs ou -

pg 26 to phase plane in v,
v

= v(V -a)(I -V), oa <

which wecalled u (2D Slice of 3D space)
Fixed points of this problem are u = 0 ,

V = 0
, a,

-

ua the 3 equilibria
are the zeros of f(u)

-
.

with u = 0

> V
IFa fars nulkalinea

can see this through linearization

Linear stability analysis shows that V = 0 ,
1 are saddles and v=a is an unstablemode.

So we are interested in the trajectory in the phase plane that goes from v =0 to v =/

fixed points (to replicate the action potential we had in the space-clamped case

where we had the fast behaviour jumping out of the nullcline
.
)

ua

simotoroa
fast
I

There is only one value ofc that achieves this now :

==r =- at Vo
,

so gradient of trajectorystone
at

because f(v = d) = 0
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un

7 s
if we are"too high"

we will "fly off
"

-v =
0

> v
=I saddle- we are after the purple one

d >

V
that takes us from v =0 to v=/

v =a / start by drawing
unstable

if we
the trajectories close

mode
are too to v = o , a , 1 given
low we'll their known nature
alsofly off & fill in the trajectories after

~wave speed
L

Like a shooting problem. This is how c is selected - this means there is a

unique wave speed for the travelling wave.

recall we set x= v

(ii) . Thus , once we land on the u nulkline (n:, i . e .
v= ) we

~ lowly more on this
. Specifically , on this we have

= (v" = f(v)

&CV' = f(r) -w + 22 V"
x/ 3 Cw' = jV -w ② from before

& f(v) = f(v) - w +2 r"

to leading order in

=> w = f(v) @

This takes us up the curve z=) until we reach w = JV (the eq of2)

W # (v , w) phase plane now rather
M

than (v , 2) phase plane

we know will looks like this because v=f(r)= vir-al(l-V)

a different slice now

Wa
~I don't go all the

in the purely time-dependent................ rayup , wegite
-

In
A

system , the action potential
A B

> v dimensim goes all the way upXa initiatefor mullcline

> V

!
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21

W
W

a
2D version

from2HS for atraveling wave ,

A

·ow

slanted version

i
-
.......g the action potential

& - w reaches a valueWe
& B V

v

Note that c is not the maximum of w = f(U) unlike in the space-damped model.

Now c is where w =Jr. We need to find what this value We is
,
which we

will find out in the next stage

(iii) Once we have reached this point we enter another fast phase.Again rescale

- 2] to capture this, but this time w:w
, (a nonzero constant ,

which we need

to find out what value it is). Then the system is

(v = f(u) - w
=

+ r" where ·=
The advantage of this now is we can again turn it into a phase plane

, by writing it as

a first-order system .

Phase plane system E
v 1U

& from before ,
becomes now

H = cu - f(r)

=> v= U

u = cu - f(r) + wa

Going back into the /U .v) plane again we end up w/ something quite similar

ua

unstable
node

↑ eampt same curve as beforeU
.

a > j but shifted down
D C f(r)

-

Wa by this amount

equ pt [ T T



so
C & D are saddles and this time we have a trajectory that takes us

from C to
D
.

This time it isWe that we need to choose correctly (just like we had to choose

the wave speed, correctly in part (il) .

21
W

DoSeton

&
& 'B V

A [

(iv) Finally a slow phase takes us back to A again on the ( . w) phase plane.

21
wa W

↳t

Vision
i &

3

I
&

V
> A S

B
A

A + B
, B + c , C+ D , D +A

fast slow fast slow

The overall picture is a travelling wave that moves down the axon and looks like this

2 I

The trajectories
vn · B+C (if you look at the plot · A+B

A-B
on the right , above,

B v goes from 0 to

B+ C
doesn't change much

& it happens quickly
C-+ D I - .

.
=.... B

-

D + A

take a certain
recall that since we chose j=cf-X,o

amount of time - I we go from right to left
but we are interested

D

in the voltage A
X

this is our wave train which propagates
WI speed C
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3 D + D This takes us from v = 1 to v = 0 (but a bit negative)

* Same as the space-clamp version , but in that case the wave train above would be a time trace

Whereas the one above is moving down the axon.

/

The section above is about how a signal propagates from our brain to our muscles to

say "do something" . But the muscle then has to do something. This
is what we will

cover next.

Chapter 4 : CALCIUM DYNAMICS

Calcium (Cart) is important in muscle dynamics and cell signalling

Cast is stored in cells in bones & released by hormonal stimulation.The internal store is

Called the sarcoplasmic reticulum.

It releasesCa2+ via calcium induced release .

The intracellular fluid matrix is called the sarcoplasm .

-

ExtracellularCast concentrations are higher than intracellular concentrations so Ca2t

must be pumped out.

Muscle cells are bundles (fascicules) of muscle fibres (cells) each of which contains arrays of
filament structures (microfibrils) which contract under the action of Co2t

-
- ->E :

muscle

Contraction "biceps"

Under stimulation from a nerve cell , an action potential is triggered and propagates
along the fibre

.
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Nat floods in and this allows Ca2t in too

The release of Last is quite spiky a

Cart 11concent.

t

Can we derive a mathematical model for muscle contraction with a low Cast concentration
in steady state that is excitable under stimulus?

The two-pool model

We want to derive a model to explain howCa2+ moves between thesarcoplasmic
reticulum (the store) and the sarcoplasm .

~Sr [influx]Leakage
sarcoplasm C

sarcoplasmic Siactive uptakej

[activeimrelease] Cs

S
KsG (leakage]

Cit makes sense that the leakage is proportional to the conc .C
.If we double G , we'll have more leakage)

C = concentration of Cast in the sarcoplasm

C = 11 Sarcoplasmic reticulum (SR)
S

5 = rate of take up ofCart by the sarcoplasmic reticulum (by receptors)
[active uptake]

5

. = rate at which the SR releases its internal store (calcium induced calcium release

[active release]

v = influx of Ca2+ into the sarcoplasm from the outside world because of an applied
stimulus

.

ksC = rate of leakage of Cast from SR into the sarcoplasm [passive -proportion oa
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-↓C = rate of Leakage of Cost from sarcoplasm to outside world

(passive - proportional to

]concentration

& = J+
- j

-

-k * F

* = w - k - (5+
- j-ks)

= r -kc - F
constants

-
We choose J= (from experiments) Hill function again

# V, is not a voltage ,isa concentration rate.

-numbersthese
bits aren't importa

um

This is the important bit that causes the calcium induced

Calcium release .

Non-dimensionalisation

u , v, , fC= u
, C = Ev , t =+ ,

F = Nef
all dimensionless

counterparts

& = m - u - Ef(u , v)

implicit function of u and v that we can plot

& Esfiu , v) where + = Blun)-up) - Su

With M==K ,=
as our dimensionless parameters.
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This is a two-dimensional system (u .V) so we may use phase-plane analysis .

&) means that we quickly jump onto the v-nullline , flisiv) = 0

Va

M f(u , v) = 0 v-nulldine

>
u

How to plot this curve ?

① SKI so ignoring the S-term in flue , v) gives
o since 8

- =Bl)-↑
in the nulkline

-
A J(u)/k(u)

k(u)

-~ Mus

" u >
u

=> Um = (1+M) vm)-)=
Plus

a

-
um sus)=

> U v = [m =p
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vn

M flu ,
v) = 0 v-nullcline

% &

2

approximate this part, set v=I
For the rest of this ,

see problem sheet .

Now let's look at the daynamics . V rapidly approaches the v-null cline that we

have found , because of the d in the equation.

But now if we look atthede equation we have

& = k - x - Ef(u ,v

↑
an here

so we don't just have u = const unlike in the previous cases. This time we note that

since=fluv) ==--

=>+

On the fast timescale tiet We have E = flu , v) becomes find
giving the movement ofv to the v-nullcline and + U =( -u)

=> u + yV = const to leading order in a.

↑ these are not
So we more to the v-nulkline along the line v=- yu+
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M + and l are the points where the

·
gradient of the curve flu , vi =0 is -t

Nv=
- jutconst Recall from

!
a

Fitzhugh-Nagumo
M

- Mk+
u

Case (i) : (n -

<>k+ =
Thenu+yv) = -u . When ucl , we more to the right Env

= oWhen us In , we more to the left

this leads to self-sustained or relaxation oscillations. My= M -110 when UsM+ um

VN 30 When u <- um

un

u v
>

t 't

Case (ii) : Me <-

Then (utyv) = M-u <0 When 2 M(p) we more to the right

When uslu we move to the left
Va

·
M- u

M

We need a bit of energy/excitation to move away from the blue equilibrium point,
and then we get an excursion- a muscle contraction !
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Case (iii) : Ms M+

V n

.
M- |n+ u

M

utyv = M - U
. When up we more to the right

u = m we more to the left

The equilibrium lies at us +, which is high .
This leads to cramps and rigor mortis

↓
i. e. concentration of Cast stoys high always


