B1.1 Logic

Sheet 3 — MT25

Section A

- 1. State and prove the unique readability theorem for predicate calculus
 - (a) for terms,
 - (b) for atomic formulas,
 - (c) and for all formulas.
- 2. Let $\mathcal{L} := \{+, \cdot, <, 0, 1\}$ where $+, \cdot$ are binary function symbols, < is a binary relation symbol, and 0, 1 are constant symbols.

Consider the ordered field of real numbers \mathcal{R} as an \mathcal{L} -structure.

Let $\mathcal{L}' := \mathcal{L} \cup \{h\}$ where h is a unary function symbol, and let \mathcal{R}' be the \mathcal{L}' -structure obtained by expanding \mathcal{R} by an interpretation $h^{\mathcal{R}'} : \mathbb{R} \to \mathbb{R}$ of h. Find \mathcal{L}' -formulas ϕ and ψ such that:

- (a) $\mathcal{R}' \vDash \phi$ iff $h^{\mathcal{R}'}$ is continuous.
- (b) $\mathcal{R}' \vDash \psi$ iff $h^{\mathcal{R}'}$ is differentiable.
- 3. Let a be an assignment in an \mathcal{L} -structure \mathcal{M} , let t be an \mathcal{L} -term, and let $i \in \mathbb{N}$. Show:
 - (a) If u is an \mathcal{L} -term, then $a[t/x_i](u) = a(u[t/x_i])$.
 - (b) If ϕ is an atomic \mathcal{L} -formula, then $\mathcal{M} \vDash_a \phi[t/x_i] \Leftrightarrow \mathcal{M} \vDash_{a[t/x_i]} \phi$.

Section B

4. Let \mathcal{L} be a language, and let $\alpha, \beta \in \text{Form}(\mathcal{L})$. Assume the variable x_i has no free occurrence in α (i.e. $x_i \notin \text{Free}(\alpha)$).

In this question, you may cite Lemma 7.15 on the irrelevance of assignment of bound variables, but should otherwise argue directly from the definition of $\mathcal{M} \vDash_a \forall x_j \phi$ and the corresponding characterisation of $\mathcal{M} \vDash_a \exists x_j \phi$.

(a) Prove

$$\vDash (\forall x_i(\alpha \to \beta) \leftrightarrow (\alpha \to \forall x_i\beta));$$

(b) Use part (a) to show

$$\vDash ((\alpha \lor \forall x_i \beta) \leftrightarrow \forall x_i (\alpha \lor \beta)).$$

(c) Show that for any γ we have

$$\vDash ((\exists x_i \gamma \vee \exists x_i \beta) \leftrightarrow \exists x_i (\gamma \vee \beta)),$$

and deduce that for α as above we have

$$\vDash ((\alpha \lor \exists x_i \beta) \leftrightarrow \exists x_i (\alpha \lor \beta)).$$

- 5. Let $\mathcal{L} = \{P\}$ with P a binary relation symbol. By exhibiting three \mathcal{L} -structures, show that none of the following sentences is a logical consequence of the other two.
 - (i) $\forall x \forall y \forall z (P(x,y) \rightarrow (P(y,z) \rightarrow P(x,z))),$
 - (ii) $\forall x \forall y (P(x,y) \to (P(y,x) \to x \doteq y)),$
 - (iii) $(\forall x \exists y P(x, y) \rightarrow \exists y \forall x P(x, y)).$
- 6. Consider the language $\mathcal{L} = \{f\}$ where f is a unary function symbol.
 - (a) Write down sentences ϕ and ψ of \mathcal{L} such that for any \mathcal{L} -structure $\mathcal{A} = \langle A; f^{\mathcal{A}} \rangle$,
 - (i) $\mathcal{A} \models \phi$ if and only if $f^{\mathcal{A}}$ is one-one;
 - (ii) $A \vDash \psi$ if and only if f^A is onto.
 - (b) Write down an \mathcal{L} -sentence χ which is satisfied by some \mathcal{L} -structure with an infinite domain but is false in every \mathcal{L} -structure with a finite domain. What can you say about the sizes of the domains of the models of the sentence $\neg \chi$?
 - (c) Write down an \mathcal{L} -sentence ρ such that a non-empty finite set A is the domain of an \mathcal{L} -structure satisfying ρ if and only if |A| is even. What can you say about the sizes of the domains of the models of the sentence $\neg \rho$?

Mathematical Institute, University of Oxford Martin Bays: bays@maths.ox.ac.uk

- 7. Let \mathcal{M} and \mathcal{N} be isomorphic \mathcal{L} -structures, $\mathcal{M} \cong \mathcal{N}$. Let σ be an \mathcal{L} -sentence. Show that $\mathcal{M} \models \sigma$ if and only if $\mathcal{N} \models \sigma$.
 - Hint: prove by induction a more general statement about arbitrary \mathcal{L} -formulas.
- 8. Let $\mathcal{L} := \{+, \cdot, 0, 1\}$ be the language of rings (i.e. + and \cdot are binary function symbols, and 0 and 1 are constant symbols).
 - (a) Write down an \mathcal{L} -sentence σ_{field} whose models are exactly the fields.
 - (b) For p a prime and for p = 0, give a set of formulas Φ_p whose models are exactly the fields of characteristic p.

Section C

9. The basic open subsets (for the product topology) of the space of functions

$$2^{\mathbb{N}} = \{ f : \mathbb{N} \to \{0, 1\} \}$$

are the sets of functions which restrict to a given function on a finite subset, i.e. the sets

$$U_{A,g} := \{f : f|_A = g\} \subseteq 2^{\mathbb{N}}$$

where A is a finite subset of N and $g: A \to \{0, 1\}$, and where $f|_A$ denotes the restriction of f to A.

By associating each $U_{A,g}$ to a suitable propositional formula, use the Compactness Theorem for propositional logic to show that if \mathcal{U} is a set of basic open subsets of $2^{\mathbb{N}}$ such that $\bigcup \mathcal{U} = 2^{\mathbb{N}}$ (where $\bigcup \mathcal{U} = \{f \in 2^{\mathbb{N}} : \exists U \in \mathcal{U} \ f \in U\}$ denotes the union of the sets in \mathcal{U}), then there is a finite subset $\mathcal{U}_0 \subseteq \mathcal{U}$ such that $\bigcup \mathcal{U}_0 = 2^{\mathbb{N}}$.

In topological terminology, this precisely means that the product topology on $2^{\mathbb{N}}$ is compact. Show furthermore that, conversely, one can deduce propositional compactness from compactness of $2^{\mathbb{N}}$.

Mathematical Institute, University of Oxford Martin Bays: bays@maths.ox.ac.uk