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Why Metrics Matter

Institute

Supervised learning:

» Goal: Predict Y € Y from X € X.

» Metrics quantify performance of f : X — ).

> Key: Balance between training accuracy and generalization.
Unsupervised learning:

» No ground truth labels Y.

» Metrics measure structure quality (e.g. cluster compactness, neighborhood
preservation).

» Evaluation is less straightforward, often requires heuristics.
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Accuracy

Mathematical
Institute

Accuracy is important to judge the results of a classification task.
» Counts the number of correct predictions of a classification model.
» Typically, it corresponds to the fraction of correct predictions.
» It is an indicative measure of the performance of a model.
>

It can help select the best model.
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Classification Metrics: Accuracy

Institute

Accuracy can be measured as:
1 n
ce(f) = 5 3 UFX) = )

by counting the number of correct predictions over the total number of predictions.
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Classification Metrics: Accuracy

Mathematical
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Classification Metrics: Accuracy
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Figure: Classification prediction with different classifiers.
Oxford . .
Mathematics Evaluation Metrics October 2025

7/81



Classification Metrics: Accuracy

Institute

Classification Accuracy

1.0 4 EEE Train accuracy

0.8 1

> 0.6 1
c
E
g
0.4 4
0.2 1
0.0 -
GaussianNB QDA
i Evaluation Metrics October 2025 8/81

Mathematics



Classification Metrics: Accuracy

Institute

Question: Can you observe any issues?
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Classification Metrics: Accuracy

Institute

Question: Can you observe any issues?

P There is no split between test and training data.
» As a result, all the algorithms perform perfectly well.

> We need to introduce a training set to train the algorithms, and then compute
accuracy on the test set.
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Classification Metrics: Accuracy

Institute

We split the data in train sets: [68,10,2] and test sets: [782,120, 18]

Classification Accuracy
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Classification Metrics:

Accuracy
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Figure: Classification prediction with different classifiers.
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Classification Metrics: Accuracy

Institute

Question: Can you observe any issues?
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Classification Metrics: Accuracy

Institute

Question: Can you observe any issues?

v

Small training set leads to classification problems.

» However, the accuracy metric seems to be quite high.

v

This is due to the imbalance in the classes. Most data belong to class 0, so a
wrong classifier can perform quite well.

P Alternative accuracy metrics are more appropriate for imbalanced datasets.
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Classification Metrics: Confusion Matrix

For a binary classification

YV={P=1N=-1}

Pred. P | Pred. N
True P TP FN
True N FP TN

The datasetis D=P+ N
The true negative is N = TN + FP
The true positive is P = TP + FN
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Classification Metrics: Confusion Matrix
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(FN) false negatives (TN) true negatives
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Classification Metrics: Confusion Matrix

Positive Negative

Positive

FP

Negative
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Classification Metrics: Accuracy

Accuracy measures the correct values over all the values:

TP+ TN TP+ TN

Acc(f) = -
)= TP TN AN~ PN
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Classification Metrics: Precision

Institute

Precision measures the positive predictive value of a model, and can be computed as:

TP
~ TP+FP
Precision is the fraction of true positives over all the positive predictions.

Prec(f)
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Classification Metrics: Recall

M
Institute

Recall measures the sensitivity of a model and can be calculated by:

__r __Tr
~ TP+FN P

Sensitivity (true positive rate) is the probability of a positive test result, conditioned
on the individual being positive.

Rec(f)
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Classification Metrics: True negative rate

M
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TNR measures the sensitivity of a model and can be calculated by:

TN TN

CTIN+FP N

Specificity (true negative rate) is the probability of a negative test result, conditioned
on the individual being negative.

TNR(f)
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Classification Metrics: F1-score

F1 can be measured as:

I:1(f)_2-Prec-Rec_ 2TP
"~ Prec+Rec TP+ FP+ TP+ FN

F1 is 1 when all predictions are correct (TR = 1, FP = FN = 0) and 0 when there are
no true positives.
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Classification Metrics: Balanced Accuracy

M
Institute

Balanced Accuracy can be measured as:

BAcc(f) = (Sensitivity 4 Specificity) /2 = E (

TP TN
2

_|_
P N
For unbalanced datasets, the balanced accuracy gives a better estimate of the correct
predictions.
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Classification Metrics

Institute

Classification Accuracy

Accuracy

Train accuracy
Test accuracy
Balanced accuracy
F1 score

Precision
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Classification Metrics: Confusion Matrix

Positive Negative

Positive

FP

Negative
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Classification Metrics: Confusion matrix
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Confusion matrix
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Figure: Confusion matrix for GNB.
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Classification Metrics: Confusion matrix
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Confusion matrix
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Classification Metrics: Confusion matrix

Mathematical
Institute

Confusion matrix
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Figure: Confusion matrix for QDA.
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Classification Metrics: Comparison
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model

GaussianNB

LDA

QDA
LogisticRegression
RandomForest

kNN

accuracy balanced_accuracy precision_macro

0.980435
0.998913
0.850000
1.000000
0.991304

0.980435

0.666667
0.997222
0.333333
1.000000
0.851852

0.666667

0.635720
0.982456
0.283333
1.000000
0.981202

0.623188

recall_macro

0.666667
0.997222
0.333333
1.000000
0.851852

0.666667

f1_macro

0.650573
0.989596
0.306306
1.000000
0.895102

0.64341
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Classification with Balanced Train - Test

Effect of very small training set (QDA)
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Classification with Balanced Train - Test
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GaussianNB preds (trained on 70%)

Predictions on test set when training set is large (70%)

LDA preds (trained on 70%)

QDA preds (trained on 70%)
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Classification with Balanced Train - Test

Institute

Classification Accuracy
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Classification with Balanced Train - Test

Mathematical
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accuracy balanced_accuracy precision_macro recall_macro f{1_macro

model
GaussianNB 1.00 1.000000 1.000000 1.000000 1.000000
LDA 1.00 1.000000 1.000000 1.000000 1.000000
QDA 0.98 0.666667 0.622222 0.666667 0.642857
LogisticRegression 1.00 1.000000 1.000000 1.000000 1.000000
RandomForest 1.00 1.000000 1.000000 1.000000 1.000000
kNN 1.00 1.000000 1.000000 1.000000 1.000000
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Classification with Balanced Train - Test
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Confusion matrix
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Feature dependence
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pPCc2

PCA 2D: True Labels
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Feature dependence

Institute

» ML algorithms work better for independent features (see example of Naive Bayes
Classifier)

» However, in practice, features are never independent.

Oxford Evaluation Metrics October 2025 36/81
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Feature dependence

Mathematical
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» ML algorithms work better for independent features (see example of Naive Bayes

Classifier)

» In practice, features are never independent.

1. How can we check feature dependence?

2. Can we resolve dependencies?

Oxford Evaluation Metrics October 2025
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Feature dependence through correlation

Institute

Pearson correlation measures the linear correlation between two variables.

COV(Xl, Xz)

0102

PC(X1,AX,) =

Pearson correlation can be computed between each pair of features in a classification
problem, to judge interdependence.
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Feature dependence: pairwise correlation
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Feature Pearson correlation matrix
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Feature dependence: correlated features

X1 vs X2 (corr=0.71)
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Strongly correlated features

Institute
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What is feature importance?

» Feature importance is a quantitative measure of how much each feature
contributes to a model's predictive performance.

» Permutation approach: randomly shuffle a single feature’s values and measure
the performance drop; large drop = high importance.

%\)A%rord _ Evaluation Metrics October 2025 42/81
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Feature Importance based on permutations

Institute

1.

For a trained classification model and on the dataset (X,)) choose an accuracy
metric m for example, accuracy, F1).

Compute the reference score on the original dataset s = m(X,)).

3. For each feature &} generate a modified dataset )~<J by randomly permuting the

entries of feature j. Repeat K times to get an average.

. Compute the score on the modified data :

K
Z X'w
k:

The feature importance for feature j is the average performance decrease:

lj =5 —5;j.
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Feature importance: LDA
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Permutation importance (LDA)
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Feature importance :QDA e

Institute

Permutation importance (QDA)
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+
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Feature importance

Institute

What did you notice between the feature importance of LDA and QDA?
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Feature importance

Institute

» Feature importance depends on the algorithm.

» There is no universal feature selection process.

» Correlation can be used to identify feature dependencies.

> However, removing correlation does not guarantee independence.

» Another way to deal with inter-dependencies is dimensionality reduction.
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Overfitting and Underfitting

Mathematical
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Underfitting;:

» Model too simple — poor training and test performance.
Overfitting:

» Model too complex — low training error, high test error.

Goal: Find a model that generalizes well.

Oxford

Mathematics Evaluation Metrics October 2025

48 /81



Overfitting

Institute

Intuition: A model that is too complex can “memorize” the training data, including
noise, instead of learning patterns that generalize well to new data.
Mathematical view:

R(f) small, R(f) — R(f) large.

Detection:
» Training error | but validation /test error 1.
> Large gap between R(f) (training) and R(f) (test).

» Learning curves show divergence between training and validation errors.

s Evaluation Metrics October 2025 49/81
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Underfitting

Institute

Intuition: A model that is too simple fails to capture the underlying structure in the
data.
Mathematical view: .
R(f) high, R(f) high.
Examples:
P Linear regression on nonlinear data.
» Very shallow decision tree.

Problem: Model has high bias and cannot achieve a low error even with more data.

Oxford Evaluation Metrics October 2025 50 /81
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Overfitting and Underfitting

Mathematical
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» Overfitting and underfitting can be better understood by comparing the
performance of a classifier on the training and test data.

» It is not sufficient to compute accuracy measurements to judge the performance
of a classifier.
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athematics



Regression

Institute

P Regression problem as an example.
» The inputs are n pairs (x;, y;) generated from an unknown function f
» The objective is to approximate the function f

» Practically this can be achieved by minimizing a loss function £.
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Regression Metrics

Mean Squared Error (MSE):

n

MSE(F) = >~ — F(x)
i=1

i yl 1)1

Coefficient of determination (R?):

R2 -1 Zi(yi

(xi))?
2l '

_f
yi—y)?
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Regression
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Polynomial regression dataset (degree 5 true function)
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Regression
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Polynomial regression dataset (degree 5 true function)
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Regression
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100 + Noisy samples

Regression
801 9
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Regression

Institute

What is the problem here?
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Regression - Underfitting

Institute
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Regression - Underfitting

Institute

Problem
» The proposed model is too simple.
» Cannot capture the complexity of the data
» It is not possible to approximate f with this model
>

Increase of the input dataset cannot improve the result
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Regression
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Noisy samples
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Regression

Institute

What is the problem here?
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Regression - Overfitting with polynomial degree 20
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Regression - Overfitting
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Problem

» The proposed model is too complex.

» There are not sufficient data.

» It is not possible to approximate f with this model
Solutions

» Increase the input dataset

> Modify the model

Oxford
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Model Selection Based on Metrics

Institute

Principle: Choose the model with the best performance.

Cautions:
» Metric choice depends on application (accuracy vs recall vs F1).

» It is better to use multiple metrics for robustness.
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Regression - Model selection

Institute

mse_train mse_test mae_train mae_test r2_train r2_test

model
Linear 487.3688 374.7133 17.7379 15.2274 05170 0.5084
Poly(deg=3)+Linear 1141698 158.1634 9.0454 10.0361 0.8869 0.7925
Poly(deg=5)+Linear 94.4406 143.6254 8.2439 9.3838 0.9064 0.8116
Poly(deg=10)+Linear 49.9045 792.4995 5.9728 141337 0.9505 -0.0396
Poly(deg=20)+Linear 49.9045 792.4995 5.9728 141337 0.9505 -0.0396
Ridge(deg5,alpha=1.0)  94.4497 143.3460 8.2494 9.3745 0.9064 0.8120
Lasso(deg5,alpha=0.1) 94.5023 142.2112 8.2667 9.3516 0.9063 0.8134
RandomForest 40.6753 210.7079 5.0096 111607 09597 0.7236

kNN(k=5) 345.4941 322.3642 13.1055  12.6565 0.6576 0.5771
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Regression - Model Selection: Polynomial degree 3
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Regression - Model Selection: Polynomial degree 5
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Regression - Input Data - Polynomial degree 10
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Regression - Input Data - Polynomial degree 3

Institute
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Regression - Input Data - Polynomial degree 5

Institute
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Regression - Model selection

Mathematical
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mse_train mse_test mae_train mae_test r2_train r2_test

model
Linear 350.4465 369.1024 14.4748 14.5177 0.4924 05305
Poly(deg=3)+Linear 131.7244 155.4680 9.4793 9.8002 0.8092 0.8023
Poly(deg=5)+Linear 109.2966 141.1239 8.4416 9.2281 0.8417 0.8205
Poly(deg=10)+Linear 105.8086 143.2886 8.4460 9.3723 0.8467 0.8177
Poly(deg=20)+Linear 105.8086 143.2886 8.4460 9.3723 0.8467 0.8177
Ridge(deg5,alpha=1.0) 109.2971 141.0927 8.4416 9.2270 0.8417 0.8205
Lasso(deg5,alpha=0.1) 109.4377 140.7534 8.4576 9.2181 0.8415 0.8210
RandomForest 23.4670 204.1351 3.9201 11.2747 0.9660 0.7403

kNN (k=5) 93.7886 163.3131 7.8771 10.0347 0.8641 0.7923
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Regression - Model selection

Institute

Poly(deg=5)+Linear residuals (test) Linear residuals (test)

N
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Regression - Model selection
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Learning-curve-like MSE vs training size

500 A
—— Linear train MSE
450 —m— Linear test MSE
-®- Poly(deg5)+Ridge train MSE
400 1 -m- Poly(deg5)+Ridge test MSE
- ———
350 4
4300 A
=
250 1
200 A
150 A -
| PRSP PR - -~ -
---a--%--g--n--% "__:_,;t::l---l:-..st’-—-o
P R il iy Seiniad
100{ o=~ e
T T T T T
0 200 400 600 800
Training set size (samples)
Oferd s Evaluation Metrics October 2025 73/81



General Considerations: Bias—Variance

Institute

Expected error decomposition:
E[(Y — f(X))?] = Bias® + Variance + Irreducible error.

Bias—variance tradeoff:
» High bias — underfitting.
» High variance — overfitting.

» Reducing bias often increases variance and vice versa.
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General Considerations: Bias

Institute

Bias measures the systematic error of an estimator.
For an estimator f(x) of the true function f(x):

Bias[f(x)] = E[f(x)] — f(x)
where E[f(x)] is the expected prediction over training sets.
Interpretation:
» Captures how far the average prediction is from the true function.

» High bias = the model is too simple, cannot capture structure.
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General Considerations: Variance

M
Institute

Variance measures the sensitivity of an estimator to data fluctuations.
For the estimator f(x):

Var[f(x)] = E|(F(x) - E[f(x)])?

where f(x) is the predicted value by the model and E[f(x)] the expected prediction
over training sets.
Interpretation:

» Quantifies how much f(x) changes with different training sets.

» High variance = model overfits, capturing noise in data.
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Bias - Variance tradeoff

Institute

Total error

Variance

Optimal Model Complexity

Error

>

Model Complexity
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Model Capacity and Generalization Gap

Mathematical
Institute

Model capacity: Size/expressiveness of the hypothesis class.
» Low capacity — underfitting (high bias).
» High capacity — overfitting (high variance).

Generalization gap: A
Gap(f) = R(f) — R(f).
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Training, Validation, Test Sets

Mathematical
Institute

Splitting data:
» Training set: learn parameters.
» Validation set: tune hyperparameters.
» Test set: final evaluation of generalization.

Warning: Do not use the test set during model selection.

Oxford

B Evaluation Metrics October 2025
Mathematics

79/81



Cross-Validation

Institute

k-fold cross-validation:
P Partition data into k subsets.
» Train on k — 1, validate on the remaining one.
> Repeat and average errors.
Advantages:
» Efficient use of limited data.

» Reduces variance in performance estimates.
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Thank you! Questions?



