
B8.4 Information Theory

Sheet 1 — MT25

Section A

1. (Polling inequalities) Let a ≥ 0, b ≥ 0 are given with a+ b > 0. Show that

−(a+ b) log(a+ b) ≤ −a log(a)− b log(b) ≤ −(a+ b) log(
a+ b

2
)

and that the first inequality becomes an equality iff ab = 0, the second inequality

becomes an equality iff a = b.

Solution: Let p = a
a+b

. Divide by a+ b and then add log(a+ b) to all three terms. The

inequalities are thus equivalent to

0 ≤ −p log(p)− (1− p) log(1− p)) ≤ − log(
1

2
),

which is obvious according to the first basic property of entropy.

2. (Recap of the weak law of large numbers) Let X be a real-valued random variable.

(a) Assuming additionally that X is non-negative, show that for every x > 0, we have

P(X ≥ x) ≤ E[X]

x
.

(b) Let X be a random variable of mean µ and variance σ2. Show that

P(|X − µ| > ε) ≤ σ2

ϵ2
.

(c) Let (Xn)n≥1 be a sequence of i.i.d random variables with mean µ and variance σ2.

Show that 1
m

∑m
n=1Xn converges to µ in probability, i.e. for every ε > 0,

lim
m→+∞

P

(∣∣∣∣∣ 1m
m∑

n=1

Xn − µ

∣∣∣∣∣ ≤ ϵ

)
= 1.

Remark: In B8.1 it will be shown that the strong law of large numbers also holds, that

is if (Xn)n≥1 is an i.i.d. sequence of random variables with E|X| < ∞ and E(X) = µ,

then

P

(
lim

m→+∞

1

m

m∑
n=1

Xn = µ

)
= 1.
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Solution:

(a) E[X] = E[X1X≥x] +E[X1X<x] ≥ E[X1X≥x] ≥ E[x1X≥x] = xP(X ≥ x), so we have

the inequality.

(b) For any random variable Y and constant ε > 0, P(|Y | > ε) = P(|Y |2 > ε2) ≤ E[Y 2]
ε2

using part (a). Now apply this inequality when Y = X − µ to get the result.

(c) For any integer m, let Ym = 1
m

∑m
n=1 Xn − µ. Then E[Ym] = 0,Var(Ym) = σ2

m
.

Hence, using (b), P(|Ym| > ε) ≤ σ2

mε
→ 0 as m → ∞.

3. Prove Jensen’s inequality for discrete random variables: If f is a convex function and

X a random variable taking values in X , such that EX and Ef(X) exist, then

f

(∑
x∈X

pX(x)x

)
≤
∑
x∈X

pX(x)f(x).

If f is strictly convex, then equality holds if and only if X is constant.

Solution: This is proved firstly for a two point pmf where it is just the definition of

convexity.

Now assume that the result holds for any pmf (p1, . . . , pn) on n points (x1, . . . , xn).

Let (p1, . . . , pn+1) be a pmf on the n + 1 points (x1, . . . , xn+1). For i = 1, .., n let

p′i = pi/(1− pn+1). Then

f

(
n+1∑
i=1

pixi

)
= f

(
pn+1xn+1 + (1− pn+1)

n∑
i=1

p′ixi

)

≤ pn+1f(xn+1) + (1− pn+1)f

(
n∑

i=1

p′ixi

)
(convexity)

≤ pn+1f(xn+1) + (1− pn+1)
n∑

i=1

p′if(xi) (induction)

=
n+1∑
i=1

pif(xi)

as required.
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Section B

4. Let X, Y, Z be discrete random variables. Prove or provide a counterexample to the

following statements:

(a) H(X) = H(−42X);

(b) H(X) = H(X2);

(c) H(X|Y ) ≥ H(X|Y, Z);

(d) H(X, Y ) = H(X) +H(Y ).

5. Does there exist a discrete random variable X with a distribution such that H(X) =

+∞? If so, describe it as explicitly as possible.

6. An urn contains r red, w white and b black balls (where r, w, b are strictly positive

integers). Compute the entropy of the outcome of drawing two balls from this urn with

replacement, and determine whether this entropy is higher or lower than when the balls

are drawn without replacement.

7. Let X be a finite set, f a real-valued function f : X 7→ R and fix α ∈ R. We want to

maximise the entropy H(X) of a random variable X taking values in X subject to the

constraint

E[f(X)] ≤ α. (1)

Denote by U a uniformly distributed random variable over X . Prove the following

optimal solutions for the maximisation.

(a) If α ∈ [E[f(U)], maxx∈X f(x) ], then the entropy is maximised subject to (1) by

the uniformly distributed random variable U .

(b) If f is non-constant and α ∈ [minx∈X f(x), E[f(U)] ], then the entropy is maximised

subject to (1) by the random variable Z given by

P(Z = x) =
eλf(x)∑
y∈X eλf(y)

for x ∈ X .

where λ ≤ 0 is chosen such that E[f(Z)] = α.

(c) Prove that, under the assumptions of (b), the choice for λ is unique and we have

λ ≤ 0.
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8. The attached file letter counts.zip contains the counts of how many times every

combination of up to four letters (from an alphabet of A-Z and an underscore for space)

occurs in a small corpus of writing (the collected works of Shakespeare, Michel de

Montaigne (translated), Mark Twain and Walt Whitman, almost all in English), with

all punctuation removed. (For interest, the file corpus.zip contains the original files

and the python script used to extract the counts.)

Suppose X1, X2, X3, X4 are four consecutive letters chosen at random in an English

text. Using this count data, estimate the conditional entropies H(X1), H(X2|X1),

H(X3|X2, X1), H(X4|X3, X2, X1) along with the entropy if letters were uniformly chosen

from the 27-letter alphabet.

[You do not need to provide the details of your computation, the numerical answer is

sufficient]
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Section C

9. Consider the space of random variables X on a discrete space.

(a) Show that the function ρ : X × X → R defined by (X, Y ) 7→ H(X|Y ) +H(Y |X)

is a pseudo-metric (that is, it is positive, symmetric and satisfies the triangle in-

equality).

(b) Show that ρ(X, Y ) = 0 if and only if there exists a bijection f such that f(X) = Y

with probability one, and hence ρ is a metric on the corresponding equivalence

class (where X ∼ Y iff f(X) = Y for some f)

Solution:

(a) Clearly ρ(X, Y ) ≥ 0 and ρ(X, Y ) = ρ(Y,X). For any three random variables, we

have

H(X|Y ) +H(Y |Z) ≥ H(X|Y, Z) +H(Y |Z)

= H(X, Y |Z)

= H(X|Z) +H(Y |X,Z)

≥ H(X|Z)

Therefore,

ρ(X, Y ) + ρ(Y, Z) = H(X|Y ) +H(Y |X) +H(Y |Z) +H(Z|Y )

≥ H(X|Z) +H(Z|X) = ρ(X,Z).

(b) If such an f exists, then it is easy to see that H(X|Y ) = H(Y |X) = 0, as the

conditional probabilities are trivial. Conversely, by positivity if ρ(X, Y ) = 0 then

H(Y |X) = 0, and so the conditional probability must be trivial. We can then

define the map f to be the selector: f(x) = y if P(Y = y|X = x) = 1. The result

follows.

10. Partition the interval [0, 1] into n disjoint sub-intervals of length p1, · · · , pn. LetX1, X2, · · ·
be i.i.d. random variables, uniformly distributed on [0, 1], and Zm(i) be the number of

the X1, · · · , Xm that lie in the ith interval of the partition. Show that the random

variables

Rm = Πn
i=1p

Zm(i)
i satisfy

1

m
log(Rm)

m→+∞−→
n∑

i=1

pi log(pi) with probability 1.
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Solution: Denote by Ii the i
th subinterval. By the definition of Zm(i), we have Zm(i) =∑m

j=1 1Xj∈Ii , and by the strong law of large numbers,

P

(
lim

m→+∞

∑m
j=1 1Xj∈Ii

m
= pi

)
= 1.

It is easy to see that, with probability one,

1

m
log(Rm) =

1

m

n∑
i=1

Zm(i) log(pi) =
n∑

i=1

log(pi)

∑m
j=1 1Xj∈Ii

m

m→+∞−→
n∑

i=1

pi log(pi).
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