

B1.1 Logic

Sheet 4 — MT25

Except where otherwise stated, \mathcal{L} denotes an arbitrary countable first-order language.

Section A

1. Suppose $(\exists x_i \phi \rightarrow \psi) \in \text{Sent}(\mathcal{L})$. Show

$$(\exists x_i \phi \rightarrow \psi) \vdash \forall x_i (\phi \rightarrow \psi).$$

2. (a) Prove for any closed (i.e. variable-free) \mathcal{L} -terms t_1, t_2, t_3 :

- (i) $\vdash (t_1 \dot{=} t_2 \rightarrow t_2 \dot{=} t_1)$.
- (ii) $\{t_1 \dot{=} t_2, t_2 \dot{=} t_3\} \vdash t_1 \dot{=} t_3$.

2. (b) Prove that if $\Sigma \subseteq \text{Sent}(\mathcal{L})$, and if t_i, t'_i are closed \mathcal{L} -terms¹ such that $\Sigma \vdash t_i \dot{=} t'_i$ for $i = 1, \dots, k$, then:

- (i) If P is a k -ary relation symbol and $\Sigma \vdash P(t_1, \dots, t_k)$, then $\Sigma \vdash P(t'_1, \dots, t'_k)$.
- (ii) If f is a k -ary function symbol, then $\Sigma \vdash f(t_1, \dots, t_k) \dot{=} f(t'_1, \dots, t'_k)$.

¹A term is *closed* if no variable appears in it.

Section B

3. Suppose $P \in \mathcal{L}$ is a binary relation. Find an \mathcal{L} -formula which is in prenex normal form and is logically equivalent to

$$\forall x_0(\forall x_1 P(x_0, x_1) \rightarrow \forall x_1 \exists x_0 P(x_0, x_1)).$$

4. Do not use the Completeness Theorem for first-order logic when answering this question. You may use the Deduction Theorem and the fact that $\vdash \phi$ if ϕ is a tautology.

(a) Let $\sigma \in \text{Sent}(\mathcal{L})$ and $\phi \in \text{Form}(\mathcal{L})$, and suppose $\text{Free}(\phi) \subseteq \{x_i\}$. Show:

- (i) $\vdash (\exists x_i(\sigma \rightarrow \phi) \rightarrow (\sigma \rightarrow \exists x_i \phi))$.
- (ii) $\vdash ((\sigma \rightarrow \exists x_i \phi) \rightarrow \exists x_i(\sigma \rightarrow \phi))$.

(b) Let $i, j \in \mathbb{N}$.

(i) Suppose $\phi, \psi \in \text{Form}(\mathcal{L})$ and $\text{Free}(\phi) \subseteq \{x_i\}$ and $\text{Free}(\psi) \subseteq \{x_i\}$.

Show that $\vdash (\forall x_i(\phi \rightarrow \psi) \rightarrow (\forall x_i \phi \rightarrow \forall x_i \psi))$.

(ii) Show that $\vdash (\forall x_i(\phi \rightarrow \psi) \rightarrow (\forall x_i \phi \rightarrow \forall x_i \psi))$ for any $\phi, \psi \in \text{Form}(\mathcal{L})$.

[Hint: use Lemma 9.12]

(iii) Show $\vdash (\exists x_i \forall x_j \phi \rightarrow \forall x_j \exists x_i \phi)$ for any $\phi \in \text{Form}(\mathcal{L})$.

5. (a) Prove the Compactness Theorem directly from the statements of the Completeness and Soundness Theorems and the fact that a proof in $S(\mathcal{L})$ uses only finitely many hypotheses.

(b) For $n \in \mathbb{N}$ with $n \geq 2$, give a sentence τ_n such that for any \mathcal{L} , an \mathcal{L} -structure satisfies τ_n if and only if it has at least n elements.

(c) Show that if a set of sentences Σ has no infinite model, then there is some $n \in \mathbb{N}$ such that every model of Σ has at most n elements.

6. Let $\mathcal{L} := \{+, \cdot, 0, 1\}$ be the language of rings, and recall from Sheet 3 that there exists a set of \mathcal{L} -formulas Φ_0 whose models are precisely the fields of characteristic 0. Using the Compactness theorem, prove that no single sentence σ_0 has this property.

7. (a) Let σ_{field} be a sentence in the language $\mathcal{L} := \{+, \cdot, 0, 1\}$ whose models are precisely the fields. Recall that an ordered field is a field together with a linear order which is preserved by addition and by multiplication by positive elements. Write down a sentence τ in the language $\mathcal{L} := \{+, \cdot, <, 0, 1\}$ such that $\sigma := (\sigma_{\text{field}} \wedge \tau)$ axiomatises being an ordered field, i.e. such that the models of σ are precisely the ordered fields.

(b) Consider the ordered fields \mathbb{Q} and \mathbb{R} . Is $\{\sigma\}$ consistent? Is it complete?

(c) Recall that the ordering on \mathbb{R} is *Archimedean*, meaning that for every $x \in \mathbb{R}$ there is some $n \in \mathbb{N}$ with $-n < x < n$. Use the Compactness Theorem to prove that Archimedeanity is not a first-order property: that is, there is no set of \mathcal{L} -sentences Σ whose models are precisely the Archimedean ordered fields.

[Hint: introduce a new constant symbol c .]

Section C

8. Find a $\{+, \cdot, 0, 1\}$ -sentence τ such that $\sigma_{\text{field}} \cup \tau$ is consistent, and every model is a field of characteristic 0. [Hint: Use the fact that in a finite field, every element is a sum of two squares.]