
B1.1 Logic

Sheet 4 — MT25

Except where otherwise stated, L denotes an arbitrary countable first-order language.

Section A

1. Suppose (∃xiϕ→ ψ) ∈ Sent(L). Show

(∃xiϕ→ ψ) ⊢ ∀xi(ϕ→ ψ).

2. (a) Prove for any closed (i.e. variable-free) L-terms t1, t2, t3:

(i) ⊢ (t1
.
= t2 → t2

.
= t1).

(ii) {t1
.
= t2, t2

.
= t3} ⊢ t1

.
= t3.

(b) Prove that if Σ ⊆ Sent(L), and if ti, t
′
i are closed L-terms1 such that Σ ⊢ ti

.
= t′i

for i = 1, . . . , k, then:

(i) If P is a k-ary relation symbol and Σ ⊢ P (t1, . . . , tk), then Σ ⊢ P (t′1, . . . , t′k).

(ii) If f is a k-ary function symbol, then Σ ⊢ f(t1, . . . , tk)
.
= f(t′1, . . . , t

′
k).

1A term is closed if no variable appears in it.
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Section B

3. Suppose P ∈ L is a binary relation. Find an L-formula which is in prenex normal form

and is logically equivalent to

∀x0(∀x1P (x0, x1) → ∀x1∃x0P (x0, x1)).

4. Do not use the Completeness Theorem for first-order logic when answering this ques-

tion. You may use the Deduction Theorem and the fact that ⊢ ϕ if ϕ is a tautology.

(a) Let σ ∈ Sent(L) and ϕ ∈ Form(L), and suppose Free(ϕ) ⊆ {xi}. Show:

(i) ⊢ (∃xi(σ → ϕ) → (σ → ∃xiϕ)).

(ii) ⊢ ((σ → ∃xiϕ) → ∃xi(σ → ϕ)).

(b) Let i, j ∈ N.

(i) Suppose ϕ, ψ ∈ Form(L) and Free(ϕ) ⊆ {xi} and Free(ψ) ⊆ {xi}.
Show that ⊢ (∀xi(ϕ→ ψ) → (∀xiϕ→ ∀xiψ)).

(ii) Show that ⊢ (∀xi(ϕ→ ψ) → (∀xiϕ→ ∀xiψ)) for any ϕ, ψ ∈ Form(L).
[Hint: use Lemma 9.12]

(iii) Show ⊢ (∃xi∀xjϕ→ ∀xj∃xiϕ) for any ϕ ∈ Form(L).

5. (a) Prove the Compactness Theorem directly from the statements of the Complete-

ness and Soundness Theorems and the fact that a proof in S(L) uses only finitely

many hypotheses.

(b) For n ∈ N with n ≥ 2, give a sentence τn such that for any L, an L-structure
satisfies τn if and only if it has at least n elements.

(c) Show that if a set of sentences Σ has no infinite model, then there is some n ∈ N
such that every model of Σ has at most n elements.

6. Let L := {+, ·, 0, 1} be the language of rings, and recall from Sheet 3 that there exists

a set of L-formulas Φ0 whose models are precisely the fields of characteristic 0. Using

the Compactness theorem, prove that no single sentence σ0 has this property.
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7. (a) Let σfield be a sentence in the language L := {+, ·, 0, 1} whose models are precisely

the fields. Recall that an ordered field is a field together with a linear order which

is preserved by addition and by multiplication by positive elements. Write down a

sentence τ in the language L := {+, ·, <, 0, 1} such that σ := (σfield∧τ) axiomatises

being an ordered field, i.e. such that the models of σ are precisely the ordered fields.

(b) Consider the ordered fields Q and R. Is {σ} consistent? Is it complete?

(c) Recall that the ordering on R is Archimedean, meaning that for every x ∈ R there

is some n ∈ N with −n < x < n. Use the Compactness Theorem to prove that

Archimedeanity is not a first-order property: that is, there is no set of L-sentences
Σ whose models are precisely the Archimedean ordered fields.

[Hint: introduce a new constant symbol c.]
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Section C

8. Find a {+, ·, 0, 1}-sentence τ such that σfield∪ τ is consistent, and every model is a field

of characteristic 0. [Hint: Use the fact that in a finite field, every element is a sum of

two squares.]
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