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Introduction

institute

Objective of a neural network architecture.
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Introduction

institute

For our brain this task is obvious.
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Introduction

institute

For our brain this task is obvious.
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Introduction

institute

Can we reproduce this with an NN.
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Dataset: MNIST Digits

Institute

» Images: handwritten digits O,...,9 with labels.

» Each image: 28 x 28 pixels = 784 features if flattened.
» Grayscale values (e.g. in [0, 1]) representing intensity.
» Training set: 30000 digits

> Test set: 10000 digits
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MNIST Gallery
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MNIST: dataset of handwritten digits.
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MNIST Gallery

Institute

MNIST: dataset of handwritten digits.
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What is a Neural Network?

Institute

Multilayer perceptron is the simplest form of a neural network, that consist of
multiple layers.

Each layer holds information about the input data and consists of multiple neurons.
Neurons hold one value, for example a value between (0, 1).

The perceptron has connections between all neurons in a layer to all neurons in the
next layer. The information that are processed depend on the strength of the
connections.
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What is a Neural Network?

Institute

Definition: A feedforward neural network is a parametrized composition of affine maps
and nonlinearities:

Parameters: § = {W() b(D}F_ .

Goal: learn the 0 so that the network approximates the mapping X — 7.
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Neural Network

Institute

Input layer Output layer
(784) (10 classes)
Hidden layer 1 Hidden layer 2
(16 neurons) (16 neurons)
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Neural Networks Inspired by the Brain

Mathematical
Institute

Artificial neurons mimic (loosely) biological neurons: integrate inputs, apply
nonlinearity, send outputs.

Biological learning: synaptic plasticity.
Artificial learning: adjust weights via gradients from a loss function.
Not a literal model of the brain, but a functional inspiration.
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Neural Network inspiration

Institute
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Visual cortex

Current Opinion in Meurobiology

Processing images in the rodent brain (Hiibener et al. 2003)
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Neural Network: Input - Output

Institute

Input layer
(784)

Output layer
(10 classes)

Hidden layer 1
(16 neurons)

idden layer 2
16 neurons)
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Input: MNIST data

Institute

MNIST: dataset of handwritten digits.
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Neural Network: Input - Output

Institute
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Hidden layer 1
(16 neurons)
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Output: digit labels

Mathematical
Institute

Output layer: 10 nodes, one per digit class (0-9).
Network raw output (logits): z(t) € R0,
Conversion to probabilities via softmax:

ek

b= —— k=0,...,0,
g ch'):oezj

Prediction: y = arg maxy p.
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Neural Network: Input - Output

Institute

Input layer
(784)

Output layer
(10 classes)

Hidden layer 1
(16 neurons)

idden layer 2
16 neurons)

—~ L

Mtnematios Neural Networks November 2025 19/92



Output Activations

Mathematical
Institute

Input
(784)

L (L) c R10

ogitsz

Softmaxp € A°

Predicted class = arg max pi
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Neural Network: 2-layer architecture

Institute
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Example architecture

Institute

Input — NN (layer-1) — NN (layer-2) — Output

w) p) w@ p(2)
xeR™® T2, JMerm T2 ;@ eRrm 5y RO
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Two hidden layers with 16 neurons

Institute

Concrete sizes:
ng = 784, n = 16, ny = 16, n3 = 10.

Number of parameters (approx):

params =~ 784 - 16 + 164+ 16 - 16 + 16 + 16 - 10 4+ 10 =~ 13,000.
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Schematic of Neural Network

Institute

Input layer Hidden layer 1 Hidden layer 2 Output layer
(784 neurons) (16 neurons) (16 neurons) (10 neurons)

For the MNIST example: 784 — 16 — 16 — 10 (13 k parameters).
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Neural Networks: notation and linear algebra

institute
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The activation of the first neuron aél) is a combination of the activations of the input layer 81(0)

the respective weights.

, multiplied by
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Neural Networks: notation and linear algebra

institute
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The activation of the second neuron agl) is a combination of the activations of the input layer ago), multiplied by
the respective weights.
s Neural Networks November 2025 26 /92
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Neural Networks: Notation and linear algebra
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(1)

The activation of the last neuron a,’ is a combination of the activations of the input layer a,(
the respective weights.

) multiplied by
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Neural Networks: notation and linear algebra

o(Wop 2@ + wor a1'? + wps @, + L.+ w,
o(Wip a0® + wip a1 + wys @ + .+ wy,

0 (0] 0
0(Ws0 @' ? + wo; a9 + wys 3,9 + L+ wy,

0 0 0
O(Wno aO( '+ Wn1 al( b+ Wh2 az( Y+ Wpn

Putting all the equations together.
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Neural Networks: notation and linear algebra

- (1) B 7 'a(O)‘
Qg Wop W1 Woo .- Won (()0)
1
ag ) wip W11 W10 ... Win aq
— 0
agl) — |W20 W21 W20 ... W2n ag )
_an(zl)_ _wnO Wnp1 Wnpo .- wnn_ _aglo)_

Using matrices we have from all the equations.
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Neural Networks: notation and linear algebra

Mathematical
Institute

Woo
w10

w20

Wn0

Using matrices we have from all the equations.
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Neural Networks: notation and linear algebra

Institute

Two important points!!!

» The sigmoid function o
» The significance of the bias b;
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Sigmoid Activation

Institute

The sigmoid function is defined as:
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Sigmoid Activation

Institute
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Sigmoid Activation

Mathematical
Institute

The sigmoid function is defined as:

1
o(z) = ——.
(2) 14 e 2
The sigmoid function maps the real numbers to the (0, 1) interval. Therefore it is
important to control the activity of each neuron so that the output is always between

0,1).
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Neural Network Bias

The bias is important to control when a neuron is active.

an(l) = O(Wno aO(O) + W1 al(O) + Wh2 aZ(O) + ...+ Whn an(O) + bn)
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Neural Network Bias

The bias is important to control when a neuron is active.

an(l) = O(Wno aO(O) + Wh1 al(O) + Wh2 aZ(O) + ..+ Whn an(O) + bn)

For a bias = 0 the neuron is only active for a positive weighted sum.
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Neural Network Bias

The bias is important to control when a neuron is active.

an(l) = O(W|10 aO(O) + Wy al(O) + Wy aZ(O) + ...+ Wy, an(O) + bn)

For a bias = 0 the neuron is only active for a positive weighted sum.
But maybe we need the neuron to be active above a certain value.
The bias is added to control when the neuron is active
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Bias effect on Sigmoid Activation

Mathematical
Institute

Bias b translates the pre-activation:
z=w'x+b.

Changing b shifts the sigmoid horizontally:
» a positive b makes neuron activate more easily

P> a negative b requires larger input for activation

Oxford
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Sigmoid with Different Biases

Institute

>

Increasing the bias b shifts the sigmoid curve to the left (neuron activates more easily); decreasing b shifts it to
the right (requires stronger input).
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Activation and Weighted Sum

Institute

For neuron j in layer [

Activation:

ZJ-(I) _ Z V‘/J'(,'I)a,('l_l) + b}/)‘

i

3t = o(z").
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Why we need layers

Institute

» Layers capture hierarchical structure: from simple features to complex features.

» In vision: low-level layers detect edges; higher layers detect curves, loops; final
layers detect digits.

» Layers enable compositional representation.

Oxford
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Why we need layers

Institute

[Eye (retina)HVl: edge detectorsHV2; combinations]—»[lT: object representations}
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Why we need layers

Institute

LGN 5

Visual cortex

Current Opinion in Meurobiology

Processing images in the rodent brain (Hiibener et al. 2003)
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Layer Functionality

Institute

Hidden layers can respond to particular features: loop detection, line detection etc.

» Digit '8": two loops or a combination of line features.

» Digit '6": loop + vertical stroke + horizontal line.
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Layer Functionality

Institute
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Layer Functionality: line decomposition
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Layer Functionality: line decomposition

l
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Layer Functionality: loop decomposition

"

Oxford
Mathematics

Neural Networks

November 2025

48 /92



Layers of Abstraction

Institute

» Vision: pixels — edges — shapes — objects.
» Speech: waveform — phonemes — words — meaning.

> Text: characters — tokens — phrases — semantics.
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Weights and Bias

Institute

» Each connection has weight Wj(l-I) from neuron i in layer / — 1 to neuron j in layer /.

» Bias b}l) adjusts threshold of neuron j.
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Weights and Bias

Institute

» Each connection has weight WJ-(’-I) from neuron i in layer / — 1 to neuron j in layer /.
» Bias bj(-l) adjusts threshold of neuron ;.

> All parameters § = {W{), b()} are learned from data.
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Vertical-Line Detector via Weights

Institute

Imagine a weight pattern that emphasizes a column of pixels:

+1 if pixel i is in the central column,
Wi ~ .
0 otherwise.

Then z; will be large when that vertical column has large values in the correct pixels,
and a; = o(z;) will indicate presence of the vertical line.
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Vertical Line Detector

Institute

Weights can be chosen for line detection.

Oferd s Neural Networks November 2025 53/02



Vertical Line Detector

Institute

Weights can be chosen for line detection.
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Vertical-Line Detector via Weights

Institute

Imagine a weight pattern that emphasizes a column of pixels:

+1 if pixel i is in the central column,
wji &= ¢ 0 otherwise,
—1 if pixel i above or below the central column.

Then z; will be large when that vertical column has large values in the correct pixels,
negative values in adjacent pixels, and a; = o(z;) will identify the presence of the
vertical line.
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Learning in Neural Networks

Institute

How can we use the weights and biases to learn the different patterns?
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Learning Cost Function

Institute

For a single training example (x, y) and squared error:
1 1
C = _|ly — 2 = — vV, — 2‘
S =yl =3 Ek (P = yi)

Where y is network output.
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Cost over the Dataset (MSE)

MSE over dataset of size N:

N
1

- = s(n) ()2

Cmse N E Iy yE.

n=1
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Gradient Descent

Mathematical
Institute

We define a cost (loss) function C(6) measuring how well the network predicts.
Gradient descent updates parameters 6 by moving opposite to the gradient:

0« 0 — nV,eC(6),

where i > 0 is the learning rate.
Small n: slow but stable.
Large 7: faster but may diverge.
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Gradient Descent

Mathematical
Institute

: (.
For weight Wy
oC
W(l) < wl —-n .
J! o (N
Wii
We compute 5 C() via backpropagation.
Wii
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Convergence: Local vs Global Minima

Institute

» Cost surfaces in neural networks are non-convex.
» Gradient descent finds a local minimum or stationary point (or saddle).

» Initialization and learning dynamics influence the final solution.
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Convergence: Local vs Global Minima

Institute

Batch gradient descent Stochastic gradient descent

Local minimum Global minimum
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Parameter Space

Institute

All weights and biases form a high-dimensional vector § € RP where P is total
parameters. Training searches for 6* minimizing C(6):

6% € arg mein C(0).

Backprop provides V C efficiently across layers.
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Backpropagation: High-Level ldea

Institute

Compute gradients of cost w.r.t. parameters by propagating error from the output
layer and back through each layer using the chain rule.
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Backpropagation Schematic

Institute

w® w®

Hidden a(V)

error §(1) error 5(2)

Backprop propagates gradients from output to input layers
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Backpropagation in one neuron layers

WD D) W@ p2) w® p3)
(L
\_/ \_/

Input layer Layer 1 Layer 2 Output layer
(1 neuron) (1 neuron) (1 neuron) (1 neuron)
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Backpropagation with one neuron layers

Institute

We start backwards, from the output layer. The cost is defined as:
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Backpropagation with one neuron layers

We start backwards, from the output layer. The cost is defined as:

C=@-y)?

But § is the activation of the last layer a(l) which is defined as:

A1) = o(wDa(t=1) 4 plb)y

A — (D51 o p(D)

Oxford
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Backpropagation with one neuron layers

Therefore, the cost is:

C =" —y)
Where:

alt) = o(z1)

A — (D51 o p(0)
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Backpropagation with one neuron layers

Therefore, the cost is:
C=(a"—yy
Where:
() — a(z(L)), 2(0) = (D) g(L=1) 4 p(L)
And similarly:

A7) = (AL, ) g (L1) 4(L-2) | p(t-1)

Oxford
Mathematics

Neural Networks November 2025 70/92



Backpropagation with one neuron layers

Therefore, the cost is:

C =% —y)y
Where:

23 — 0—(2(3))’ 23 — (352 + b3
And:

4 = 5(22), 72 = @0 4 @)
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; atics Neural Networks November 2025
Mathematics

71/92



Backpropagation with one neuron layers

Therefore, the cost is:

C=(a®%—yy
Where:
23 — 0—(2(3))’ 203 = 352 4 p3)
And:
2@ — 0—(2(2))’ 2(2) = (2 5(1) 4 p2)
And:

2 — a(z(l)), 20 = (1) 500) 4 p(1)
a(®) is the input layer.
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Backpropagation with one neuron layers

Therefore from the cost
C=(a®%—y)y
We need to learn:

0= (w®, b3, W@ p@ 1) H1)
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Backpropagation with one neuron layers

WD D) W@ p2) w® p3)
(L
\_/ \_/

Input layer Layer 1 Layer 2 Output layer
(1 neuron) (1 neuron) (1 neuron) (1 neuron)
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Chain Rule

Institute

For the cost C:

oc 9z 9ab) 9C
ow) — aw) §z(L) §a(L)
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Understanding 9C / da(t)

For
C =" —y)
aC .
920 — 2(aM — y)

So differences between the output and the expected value have a significant impact.
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Understanding da(t) / 9z(")

For

alt) = o(z1)

L
dalb) _ J’(Z(L)

oz(L)

The sigmoid function controls the impact that changes in z(1) will have to a(b).
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Understanding 9z(%) / ow(t)

For

AL — (D 5(L-1) | p(D)

9z(L)
ow(L)

The amount that the weight influences the last layer, depends on how strong the
previous layer is.
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Chain Rule: all together

Institute

For the cost C:

Fum =0 (@) 2 —y)

And of course this needs to be averaged over all training examples.
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Learning: How to Reduce the Cost

Institute

Given a high cost for a sample, we can:
» Increase/decrease bias b (shift activation).
» Increase/decrease weights connected to the activated features.
» Change previous-layer activations through weight updates upstream.

Backpropagation computes the needed adjustments iteratively.
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Link to Hebbian learning

Institute

Hebbian learning comes from the idea that neurons that " fire” together "wire"
together.
Therefore, linking back to the backpropagation error, we can see that:

9z(L)

ow(L)
Indicates that the weights will change if both values for a(t) and a(t=1) are activated
together, reminiscent of Hebbian co-activation.

However, backpropagation uses a global supervised error whereas Hebbian rules are
local and unsupervised.

_ 4(L-1)
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Intuition vs Real Neurons

Institute

Hidden-layer patterns may not resemble simple features humans expect — they can
appear noisy yet produce high performance. Biological neurons and networks
implement distinct learning rules; ANNs use global supervised error signals.
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Neural Network hidden layers

Institute

Processing images in a neural network.
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Processing images in the brain

Institute

Retina

Visual cortex

Current Opinion in Net

Processing images in the rodent brain (Hiibener et al. 2003)
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Why Patterns Look Noisy

Institute

» High-dimensional optimization yields many minima and solutions.

» Networks with ~ 13k parameters can represent many functions; learned features
are distributed.
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Random Input Behaviour

Institute

Networks can output high-confidence predictions on noise, such as a random input,
because parameters map inputs into confident regions. Confidence of the neural
network output does not imply semantic meaning.
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Alternative network architectures

Institute

Multi-layer neural networks can get much more complicated if we modify the
architectures. Two common examples are recurrent and convolutional neural networks.
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Alternative architectures: RNN

Institute

Recurrent neural network

Input Hidden Output
Layer Layer Layer
Recurrent Neural Network.
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Alternative architectures: CNN

Institute

Convolutional Neural Network.

Oxford
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Summary and Recap

Institute

» Neural networks consist of layers that are connected through weights.

v

Weights and biases are the main parameters that are learned by minimizing a cost
via gradient descent learning.

» Backpropagation uses the chain rule to compute gradients efficiently.

v

Hidden layers provide hierarchical " feature” extraction.
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Summary and Recap

Institute

P Features are not learned like in biological networks due to local minima.
» Hidden layer patterns can be non-intuitive.
» Random inputs can be interpreted with high confidence.

» There are links to biological Hebbian co-activation but also important differences.
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Thank you — Questions?



