Neural Networks: Structure, Learning and Biological Intuition

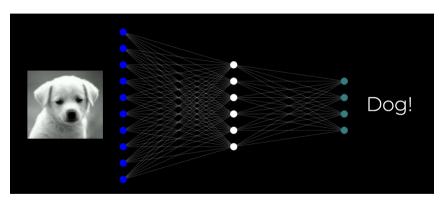
Lida Kanari

Mathematical Institute University of Oxford

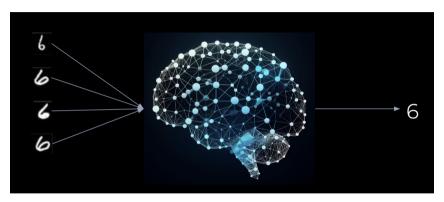
Introduction to Machine Learning, November 2025

Table of Contents

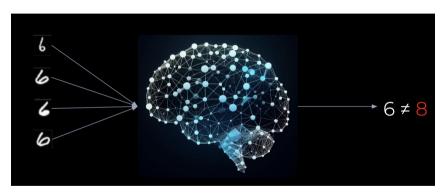
- MNIST dataset
- ► What is a Neural Network
- ► Activation and weights
- ► Learning and Cost function
- ► Backpropagation
- ► Hebbian learning



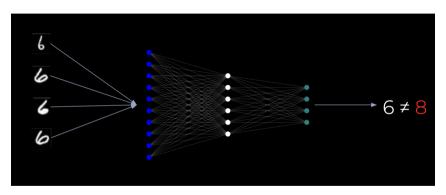
Objective of a neural network architecture.



For our brain this task is obvious.



For our brain this task is obvious.

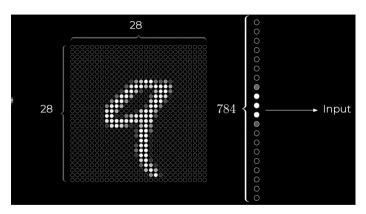


Can we reproduce this with an NN.

Dataset: MNIST Digits

- ► Images: handwritten digits 0,..., 9 with labels.
- ► Each image: 28×28 pixels \Rightarrow 784 features if flattened.
- Grayscale values (e.g. in [0,1]) representing intensity.
- ► Training set: 30000 digits
- ► Test set: 10000 digits

MNIST: dataset of handwritten digits.



MNIST: dataset of handwritten digits.

Multilayer perceptron is the simplest form of a neural network, that consist of multiple layers.

Each layer holds information about the input data and consists of multiple neurons.

Neurons hold one value, for example a value between (0,1).

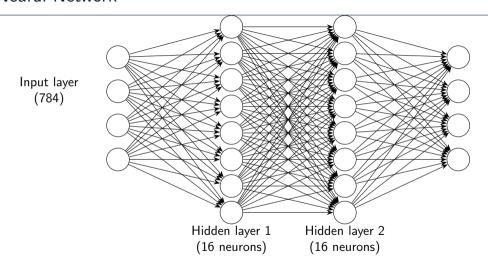
The **perceptron** has connections between all neurons in a layer to all neurons in the next layer. The information that are processed depend on the strength of the connections.

Definition: A feedforward neural network is a parametrized composition of affine maps and nonlinearities:

Parameters: $\theta = \{W^{(I)}, b^{(I)}\}_{I=1}^{L}$.

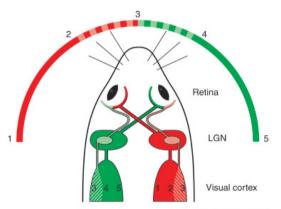
Goal: learn the θ so that the network approximates the mapping $\mathcal{X} \mapsto \dagger$.

Neural Network



Output layer (10 classes)

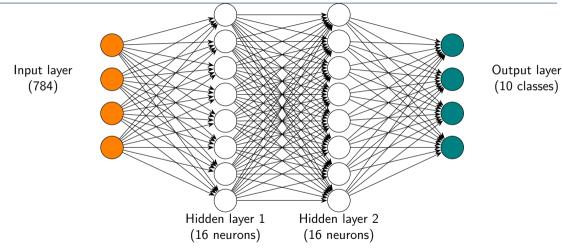
- Artificial neurons mimic (loosely) biological neurons: integrate inputs, apply nonlinearity, send outputs.
- Biological learning: synaptic plasticity.
- Artificial learning: adjust weights via gradients from a loss function.
- ▶ Not a literal model of the brain, but a functional inspiration.

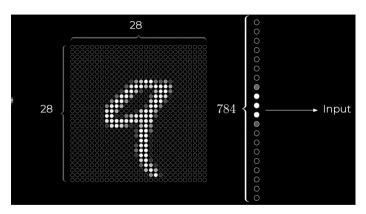


Current Opinion in Neurobiology

Processing images in the rodent brain (Hübener et al. 2003)

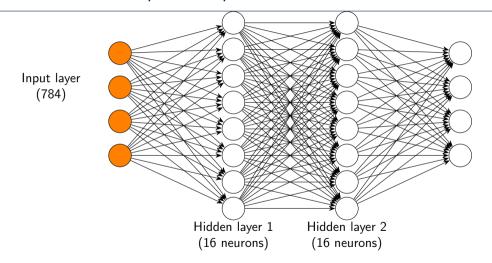
Neural Network: Input - Output





MNIST: dataset of handwritten digits.

Neural Network: Input - Output



Output layer (10 classes)

Output layer: 10 nodes, one per digit class (0–9).

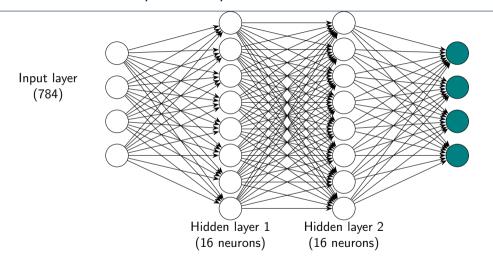
Network raw output (logits): $z^{(L)} \in \mathbb{R}^{10}$.

Conversion to probabilities via softmax:

$$\hat{p}_k = \frac{e^{z_k}}{\sum_{j=0}^9 e^{z_j}}, \quad k = 0, \dots, 9.$$

Prediction: $\hat{y} = \arg \max_k \hat{p}_k$.

Neural Network: Input - Output

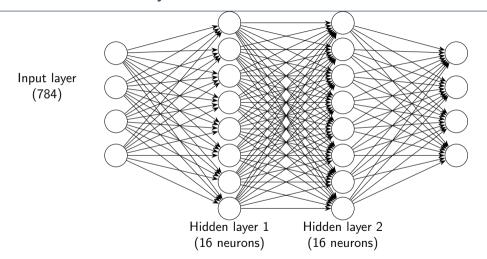


Output layer (10 classes)

Output Activations

Predicted class = $\arg \max \hat{p}_k$

Neural Network: 2-layer architecture



Output layer (10 classes)

Input \rightarrow NN (layer-1) \rightarrow NN (layer-2) \rightarrow Output

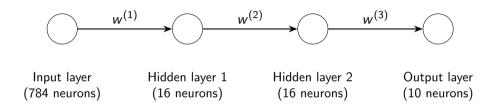
$$x \in \mathbb{R}^{784} \xrightarrow{W^{(1)},b^{(1)}} a^{(1)} \in \mathbb{R}^{n_1} \xrightarrow{W^{(2)},b^{(2)}} a^{(2)} \in \mathbb{R}^{n_2} \to y \in \mathbb{R}^{10}$$

Concrete sizes:

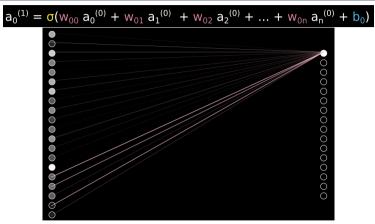
$$n_0 = 784$$
, $n_1 = 16$, $n_2 = 16$, $n_3 = 10$.

Number of parameters (approx):

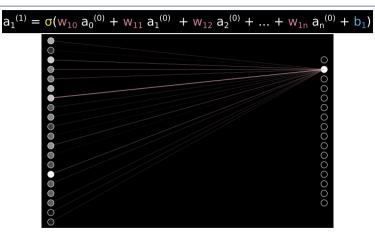
params
$$\approx 784 \cdot 16 + 16 + 16 \cdot 16 + 16 + 16 \cdot 10 + 10 \approx 13{,}000$$
.



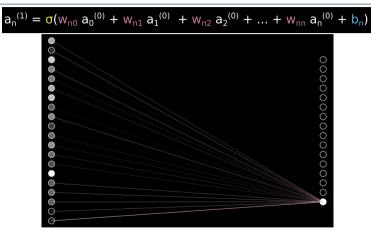
For the MNIST example: $\textbf{784} \rightarrow \textbf{16} \rightarrow \textbf{16} \rightarrow \textbf{10}$ (13 k parameters).



The activation of the first neuron $a_0^{(1)}$ is a combination of the activations of the input layer $a_i^{(0)}$, multiplied by the respective weights.



The activation of the second neuron $a_1^{(1)}$ is a combination of the activations of the input layer $a_i^{(0)}$, multiplied by the respective weights.



The activation of the last neuron $a_n^{(1)}$ is a combination of the activations of the input layer $a_i^{(0)}$, multiplied by the respective weights.

$$a_0^{(1)} = \sigma(w_{00} a_0^{(0)} + w_{01} a_1^{(0)} + w_{02} a_2^{(0)} + \dots + w_{0n} a_n^{(0)} + b_0)$$

$$a_1^{(1)} = \sigma(w_{10} a_0^{(0)} + w_{11} a_1^{(0)} + w_{12} a_2^{(0)} + \dots + w_{1n} a_n^{(0)} + b_1)$$

$$a_2^{(1)} = \sigma(w_{20} a_0^{(0)} + w_{21} a_1^{(0)} + w_{22} a_2^{(0)} + \dots + w_{2n} a_n^{(0)} + b_2)$$

$$\dots$$

$$a_n^{(1)} = \sigma(w_{n0} a_0^{(0)} + w_{n1} a_1^{(0)} + w_{n2} a_2^{(0)} + \dots + w_{nn} a_n^{(0)} + b_n)$$

Putting all the equations together.

$$\begin{bmatrix} a_0^{(1)} \\ a_1^{(1)} \\ a_2^{(1)} \\ \dots \\ a_n^{(1)} \end{bmatrix} = \begin{bmatrix} w_{00} & w_{01} & w_{00} & \dots & w_{0n} \\ w_{10} & w_{11} & w_{10} & \dots & w_{1n} \\ w_{20} & w_{21} & w_{20} & \dots & w_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ w_{n0} & w_{n1} & w_{n0} & \dots & w_{nn} \end{bmatrix} \begin{bmatrix} a_0^{(0)} \\ a_1^{(0)} \\ a_2^{(0)} \\ \dots \\ a_n^{(0)} \end{bmatrix}$$

Using matrices we have from all the equations.

Oxford Neural Networks November 2025 29 / 92 Mathematics

$$\begin{bmatrix} a_0^{(1)} \\ a_1^{(1)} \\ a_2^{(1)} \\ \dots \\ a_n^{(1)} \end{bmatrix} = \begin{bmatrix} w_{00} & w_{01} & w_{00} & \dots & w_{0n} \\ w_{10} & w_{11} & w_{10} & \dots & w_{1n} \\ w_{20} & w_{21} & w_{20} & \dots & w_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ w_{n0} & w_{n1} & w_{n0} & \dots & w_{nn} \end{bmatrix} \begin{bmatrix} a_0^{(0)} \\ a_1^{(0)} \\ a_2^{(0)} \\ \dots \\ a_n^{(0)} \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}$$

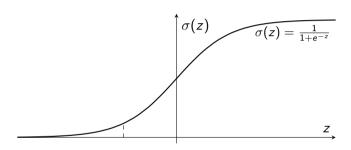
Using matrices we have from all the equations.

Two important points!!!

- ▶ The sigmoid function σ
- ightharpoonup The significance of the bias b_i

The sigmoid function is defined as:

$$\sigma(z) = \frac{1}{1 + e^{-z}}.$$



The sigmoid function is defined as:

$$\sigma(z)=\frac{1}{1+e^{-z}}.$$

The sigmoid function maps the real numbers to the (0,1) interval. Therefore it is important to control the activity of each neuron so that the output is always between (0,1).

The bias is important to control when a neuron is active.

$$a_n^{(1)} = \sigma(w_{n0} a_0^{(0)} + w_{n1} a_1^{(0)} + w_{n2} a_2^{(0)} + ... + w_{nn} a_n^{(0)} + b_n)$$

The bias is important to control when a neuron is active.

$$a_n^{(1)} = \sigma(w_{n0} a_0^{(0)} + w_{n1} a_1^{(0)} + w_{n2} a_2^{(0)} + ... + w_{nn} a_n^{(0)} + b_n)$$

For a bias = 0 the neuron is only active for a positive weighted sum.

The bias is important to control when a neuron is active.

$$a_n^{(1)} = \sigma(w_{n0} a_0^{(0)} + w_{n1} a_1^{(0)} + w_{n2} a_2^{(0)} + ... + w_{nn} a_n^{(0)} + b_n)$$

For a bias = 0 the neuron is only active for a positive weighted sum.

But maybe we need the neuron to be active above a certain value.

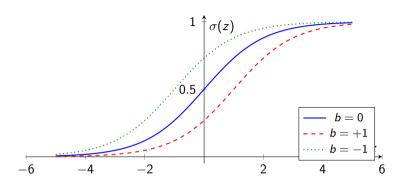
The bias is added to control when the neuron is active

Bias *b* translates the pre-activation:

$$z = w^{T}x + b$$
.

Changing *b* shifts the sigmoid horizontally:

- ▶ a positive *b* makes neuron activate more easily
- ► a negative *b* requires larger input for activation



Increasing the bias b shifts the sigmoid curve to the left (neuron activates more easily); decreasing b shifts it to the right (requires stronger input).

For neuron j in layer l:

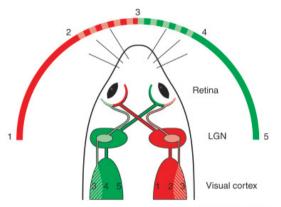
$$z_j^{(I)} = \sum_i w_{ji}^{(I)} a_i^{(I-1)} + b_j^{(I)}.$$

Activation:

$$a_j^{(I)} = \sigma(z_j^{(I)}).$$

Why we need layers

- ▶ Layers capture hierarchical structure: from simple features to complex features.
- ► In vision: low-level layers detect edges; higher layers detect curves, loops; final layers detect digits.
- ► Layers enable compositional representation.



Current Opinion in Neurobiology

Processing images in the rodent brain (Hübener et al. 2003)

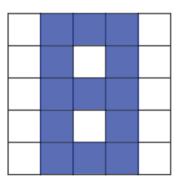
Layer Functionality

Hidden layers can respond to particular features: loop detection, line detection etc.

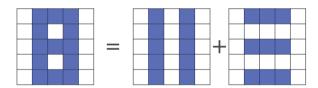
▶ Digit '8': two loops or a combination of line features.

▶ Digit '6': loop + vertical stroke + horizontal line.

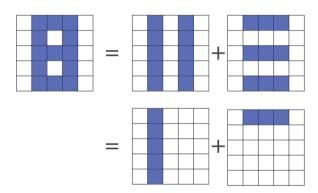
Layer Functionality



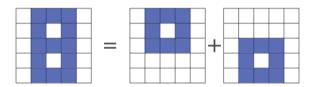
Layer Functionality: line decomposition



Layer Functionality: line decomposition



Layer Functionality: loop decomposition



Layers of Abstraction

▶ Vision: pixels \rightarrow edges \rightarrow shapes \rightarrow objects.

▶ Speech: waveform \rightarrow phonemes \rightarrow words \rightarrow meaning.

▶ Text: characters \rightarrow tokens \rightarrow phrases \rightarrow semantics.

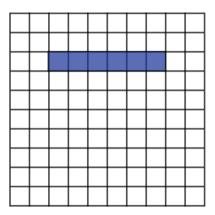
- ▶ Each connection has weight $w_{ji}^{(I)}$ from neuron i in layer I-1 to neuron j in layer I.
- ▶ Bias $b_j^{(l)}$ adjusts threshold of neuron j.

- ▶ Each connection has weight $w_{ii}^{(l)}$ from neuron i in layer l-1 to neuron j in layer l.
- ▶ Bias $b_j^{(I)}$ adjusts threshold of neuron j.
- ▶ All parameters $\theta = \{W^{(I)}, b^{(I)}\}$ are learned from data.

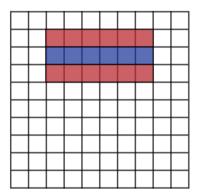
Imagine a weight pattern that emphasizes a column of pixels:

$$w_{ji}pprox egin{cases} +1 & ext{if pixel } i ext{ is in the central column,} \ 0 & ext{otherwise.} \end{cases}$$

Then z_j will be large when that vertical column has large values in the correct pixels, and $a_j = \sigma(z_j)$ will indicate presence of the vertical line.



Weights can be chosen for line detection.



Weights can be chosen for line detection.

Imagine a weight pattern that emphasizes a column of pixels:

$$w_{ji} pprox egin{cases} +1 & ext{if pixel i is in the central column,} \ 0 & ext{otherwise,} \ -1 & ext{if pixel i above or below the central column.} \end{cases}$$

Then z_j will be large when that vertical column has large values in the correct pixels, negative values in adjacent pixels, and $a_j = \sigma(z_j)$ will identify the presence of the vertical line.

Learning in Neural Networks

How can we use the weights and biases to learn the different patterns?

For a single training example (x, y) and squared error:

$$C = \frac{1}{2} ||\hat{y} - y||^2 = \frac{1}{2} \sum_{k} (\hat{y}_k - y_k)^2.$$

Where \hat{y} is network output.

MSE over dataset of size N:

$$C_{\mathsf{MSE}} = \frac{1}{2N} \sum_{n=1}^{N} \|\hat{y}^{(n)} - y^{(n)}\|^2.$$

We define a cost (loss) function $C(\theta)$ measuring how well the network predicts. Gradient descent updates parameters θ by moving opposite to the gradient:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} C(\theta),$$

where $\eta > 0$ is the learning rate.

Small η : slow but stable.

Large η : faster but may diverge.

For weight $w_{ii}^{(I)}$:

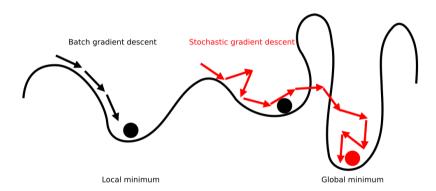
$$w_{ji}^{(I)} \leftarrow w_{ji}^{(I)} - \eta \frac{\partial C}{\partial w_{ji}^{(I)}}.$$

We compute $\frac{\partial C}{\partial w_{ii}^{(l)}}$ via backpropagation.

Convergence: Local vs Global Minima

- Cost surfaces in neural networks are non-convex.
- ► Gradient descent finds a local minimum or stationary point (or saddle).
- ▶ Initialization and learning dynamics influence the final solution.

Convergence: Local vs Global Minima



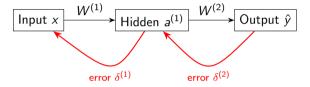
All weights and biases form a high-dimensional vector $\theta \in \mathbb{R}^P$ where P is total parameters. Training searches for θ^* minimizing $C(\theta)$:

$$\theta^* \in \arg\min_{\theta} C(\theta).$$

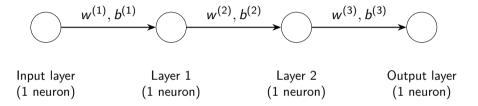
Backprop provides $\nabla_{\theta} C$ efficiently across layers.

Backpropagation: High-Level Idea

Compute gradients of cost w.r.t. parameters by propagating error from the output layer and back through each layer using the chain rule.



Backprop propagates gradients from output to input layers



Oxford
MathematicsNeural NetworksNovember 202566 / 92

We start backwards, from the output layer. The cost is defined as:

$$C=(\hat{y}-y)^2$$

We start backwards, from the output layer. The cost is defined as:

$$C = (\hat{y} - y)^2$$

But \hat{y} is the activation of the last layer $a^{(L)}$ which is defined as:

$$a^{(L)} = \sigma(w^{(L)}a^{(L-1)} + b^{(L)})$$

$$z^{(L)} = w^{(L)}a^{(L-1)} + b^{(L)}$$

Therefore, the cost is:

$$C = (a^{(L)} - y)^2$$

Where:

$$a^{(L)} = \sigma(z^{(L)})$$

$$z^{(L)} = w^{(L)}a^{(L-1)} + b^{(L)}$$

Therefore, the cost is:

$$C = (a^{(L)} - y)^2$$

Where:

$$a^{(L)} = \sigma(z^{(L)}), \quad z^{(L)} = w^{(L)}a^{(L-1)} + b^{(L)}$$

And similarly:

$$a^{(L-1)} = \sigma(z^{(L-1)}), \quad z^{(L-1)} = w^{(L-1)}a^{(L-2)} + b^{(L-1)}$$

Therefore, the cost is:

$$C=(a^{(3)}-y)^2$$

Where:

$$a^{(3)} = \sigma(z^{(3)}), \quad z^{(3)} = w^{(3)}a^{(2)} + b^{(3)}$$

And:

$$a^{(2)} = \sigma(z^{(2)}), \quad z^{(2)} = w^{(2)}a^{(1)} + b^{(2)}$$

Backpropagation with one neuron layers

Therefore, the cost is:

$$C = (a^{(3)} - y)^2$$

Where:

$$a^{(3)} = \sigma(z^{(3)}), \quad z^{(3)} = w^{(3)}a^{(2)} + b^{(3)}$$

And:

$$a^{(2)} = \sigma(z^{(2)}), \quad z^{(2)} = w^{(2)}a^{(1)} + b^{(2)}$$

And:

$$a^{(1)} = \sigma(z^{(1)}), \quad z^{(1)} = w^{(1)}a^{(0)} + b^{(1)}$$

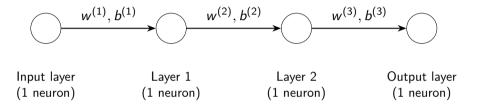
 $a^{(0)}$ is the input layer.

Therefore from the cost

$$C = (a^{(3)} - y)^2$$

We need to learn:

$$\theta = (w^{(3)}, b^{(3)}, w^{(2)}, b^{(2)}, w^{(1)}, b^{(1)})$$



Oxford
MathematicsNeural NetworksNovember 202574/92

Chain Rule

For the cost C:

$$\frac{\partial C}{\partial w^{(L)}} = \frac{\partial z^{(L)}}{\partial w^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C}{\partial a^{(L)}}$$

For

$$C = (a^{(L)} - y)^2$$

$$\frac{\partial C}{\partial a^{(L)}} = 2(a^{(L)} - y)$$

So differences between the output and the expected value have a significant impact.

For

$$a^{(L)} = \sigma(z^{(L)})$$

$$\frac{\partial a^{(L)}}{\partial z^{(L)}} = \sigma'(z^{(L)})$$

The sigmoid function controls the impact that changes in $z^{(L)}$ will have to $a^{(L)}$.

For

$$z^{(L)} = w^{(L)}a^{(L-1)} + b^{(L)}$$

$$\frac{\partial z^{(L)}}{\partial w^{(L)}} = a^{(L-1)}$$

The amount that the weight influences the last layer, depends on how strong the previous layer is.

For the cost *C*:

$$\frac{\partial C}{\partial w^{(L)}} = a^{(L-1)} \quad \sigma'(z^{(L)}) \quad 2(a^{(L)} - y)$$

And of course this needs to be averaged over all training examples.

Learning: How to Reduce the Cost

Given a high cost for a sample, we can:

- ► Increase/decrease bias *b* (shift activation).
- Increase/decrease weights connected to the activated features.
- Change previous-layer activations through weight updates upstream.

Backpropagation computes the needed adjustments iteratively.

Hebbian learning comes from the idea that neurons that "fire" together "wire" together.

Therefore, linking back to the backpropagation error, we can see that:

$$\frac{\partial z^{(L)}}{\partial w^{(L)}} = a^{(L-1)}$$

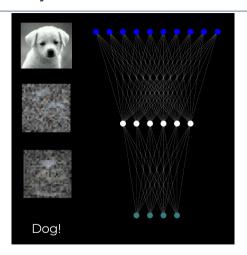
Indicates that the weights will change if both values for $a^{(L)}$ and $a^{(L-1)}$ are activated together, reminiscent of Hebbian co-activation.

However, backpropagation uses a global supervised error whereas Hebbian rules are local and unsupervised.

Intuition vs Real Neurons

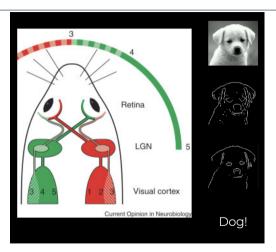
Hidden-layer patterns may not resemble simple features humans expect — they can appear noisy yet produce high performance. Biological neurons and networks implement distinct learning rules; ANNs use global supervised error signals.

Neural Network hidden layers



Processing images in a neural network.

Processing images in the brain



Processing images in the rodent brain (Hübener et al. 2003)

Why Patterns Look Noisy

- ► High-dimensional optimization yields many minima and solutions.
- ightharpoonup Networks with \sim 13k parameters can represent many functions; learned features are distributed.

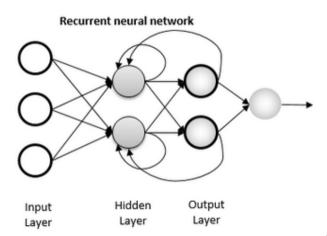
Random Input Behaviour

Networks can output high-confidence predictions on noise, such as a random input, because parameters map inputs into confident regions. Confidence of the neural network output does not imply semantic meaning.

Alternative network architectures

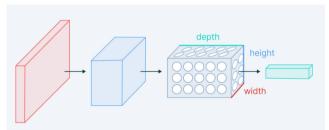
Multi-layer neural networks can get much more complicated if we modify the architectures. Two common examples are recurrent and convolutional neural networks.

Alternative architectures: RNN



Recurrent Neural Network.

Oxford
MathematicsNeural NetworksNovember 202588 / 92



Convolutional Neural Network.

Summary and Recap

- ▶ Neural networks consist of layers that are connected through weights.
- ▶ Weights and biases are the main parameters that are learned by minimizing a cost via gradient descent learning.
- ▶ Backpropagation uses the chain rule to compute gradients efficiently.
- ► Hidden layers provide hierarchical "feature" extraction.

Summary and Recap

- ► Features are not learned like in biological networks due to local minima.
- Hidden layer patterns can be non-intuitive.
- Random inputs can be interpreted with high confidence.
- ▶ There are links to biological Hebbian co-activation but also important differences.

Thank you — Questions?