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Introduction

Objective of a neural network architecture.
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Introduction

For our brain this task is obvious.
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Introduction

For our brain this task is obvious.
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Introduction

Can we reproduce this with an NN.
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Dataset: MNIST Digits

▶ Images: handwritten digits 0, . . . , 9 with labels.

▶ Each image: 28× 28 pixels ⇒ 784 features if flattened.

▶ Grayscale values (e.g. in [0, 1]) representing intensity.

▶ Training set: 30000 digits

▶ Test set: 10000 digits
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MNIST Gallery

MNIST: dataset of handwritten digits.
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MNIST Gallery

MNIST: dataset of handwritten digits.
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What is a Neural Network?

Multilayer perceptron is the simplest form of a neural network, that consist of
multiple layers.
Each layer holds information about the input data and consists of multiple neurons.
Neurons hold one value, for example a value between (0, 1).
The perceptron has connections between all neurons in a layer to all neurons in the
next layer. The information that are processed depend on the strength of the
connections.
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What is a Neural Network?

Definition: A feedforward neural network is a parametrized composition of affine maps
and nonlinearities:
Parameters: θ = {W (l), b(l)}Ll=1.
Goal: learn the θ so that the network approximates the mapping X 7→ †.
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Neural Network

Input layer
(784)

Hidden layer 1
(16 neurons)

Hidden layer 2
(16 neurons)

Output layer
(10 classes)
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Neural Networks Inspired by the Brain

▶ Artificial neurons mimic (loosely) biological neurons: integrate inputs, apply
nonlinearity, send outputs.

▶ Biological learning: synaptic plasticity.

▶ Artificial learning: adjust weights via gradients from a loss function.

▶ Not a literal model of the brain, but a functional inspiration.
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Neural Network inspiration

Processing images in the rodent brain (Hübener et al. 2003)
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Neural Network: Input - Output

Input layer
(784)

Hidden layer 1
(16 neurons)

Hidden layer 2
(16 neurons)

Output layer
(10 classes)
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Input: MNIST data

MNIST: dataset of handwritten digits.
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Neural Network: Input - Output

Input layer
(784)

Hidden layer 1
(16 neurons)

Hidden layer 2
(16 neurons)

Output layer
(10 classes)
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Output: digit labels

Output layer: 10 nodes, one per digit class (0–9).
Network raw output (logits): z(L) ∈ R10.
Conversion to probabilities via softmax:

p̂k =
ezk∑9
j=0 e

zj
, k = 0, . . . , 9.

Prediction: ŷ = argmaxk p̂k .
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Neural Network: Input - Output

Input layer
(784)

Hidden layer 1
(16 neurons)

Hidden layer 2
(16 neurons)

Output layer
(10 classes)
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Output Activations

Input
(784) Logitsz (L) ∈ R10 Softmaxp̂ ∈ ∆9

Predicted class = argmax p̂k
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Neural Network: 2-layer architecture

Input layer
(784)

Hidden layer 1
(16 neurons)

Hidden layer 2
(16 neurons)

Output layer
(10 classes)
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Example architecture

Input → NN (layer-1) → NN (layer-2) → Output

x ∈ R784 W (1),b(1)−−−−−−→ a(1) ∈ Rn1 W (2),b(2)−−−−−−→ a(2) ∈ Rn2 −→ y ∈ R10
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Two hidden layers with 16 neurons

Concrete sizes:
n0 = 784, n1 = 16, n2 = 16, n3 = 10.

Number of parameters (approx):

params ≈ 784 · 16 + 16 + 16 · 16 + 16 + 16 · 10 + 10 ≈ 13,000.
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Schematic of Neural Network

Input layer
(784 neurons)

Hidden layer 1
(16 neurons)

Hidden layer 2
(16 neurons)

Output layer
(10 neurons)

w (1) w (2) w (3)

For the MNIST example: 784 → 16 → 16 → 10 (13 k parameters).
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Neural Networks: notation and linear algebra

The activation of the first neuron a
(1)
0 is a combination of the activations of the input layer a

(0)
i , multiplied by

the respective weights.
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Neural Networks: notation and linear algebra

The activation of the second neuron a
(1)
1 is a combination of the activations of the input layer a

(0)
i , multiplied by

the respective weights.
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Neural Networks: Notation and linear algebra

The activation of the last neuron a
(1)
n is a combination of the activations of the input layer a

(0)
i , multiplied by

the respective weights.

Neural Networks November 2025 27 / 92



Neural Networks: notation and linear algebra

Putting all the equations together.
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Neural Networks: notation and linear algebra

Using matrices we have from all the equations.
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Neural Networks: notation and linear algebra

Using matrices we have from all the equations.
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Neural Networks: notation and linear algebra

Two important points!!!

▶ The sigmoid function σ

▶ The significance of the bias bi
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Sigmoid Activation

The sigmoid function is defined as:

σ(z) =
1

1 + e−z
.
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Sigmoid Activation

σ(z) = 1
1+e−z

z

σ(z)
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Sigmoid Activation

The sigmoid function is defined as:

σ(z) =
1

1 + e−z
.

The sigmoid function maps the real numbers to the (0, 1) interval. Therefore it is
important to control the activity of each neuron so that the output is always between
(0, 1).
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Neural Network Bias

The bias is important to control when a neuron is active.
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Neural Network Bias

The bias is important to control when a neuron is active.

For a bias = 0 the neuron is only active for a positive weighted sum.
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Neural Network Bias

The bias is important to control when a neuron is active.

For a bias = 0 the neuron is only active for a positive weighted sum.
But maybe we need the neuron to be active above a certain value.
The bias is added to control when the neuron is active
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Bias effect on Sigmoid Activation

Bias b translates the pre-activation:

z = w⊤x + b.

Changing b shifts the sigmoid horizontally:

▶ a positive b makes neuron activate more easily

▶ a negative b requires larger input for activation
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Sigmoid with Different Biases

−6 −4 −2 2 4 6

0.5

1

z

σ(z)

b = 0

b = +1

b = −1

Increasing the bias b shifts the sigmoid curve to the left (neuron activates more easily); decreasing b shifts it to
the right (requires stronger input).
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Activation and Weighted Sum

For neuron j in layer l :

z
(l)
j =

∑
i

w
(l)
ji a

(l−1)
i + b

(l)
j .

Activation:
a
(l)
j = σ

(
z
(l)
j

)
.
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Why we need layers

▶ Layers capture hierarchical structure: from simple features to complex features.

▶ In vision: low-level layers detect edges; higher layers detect curves, loops; final
layers detect digits.

▶ Layers enable compositional representation.
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Why we need layers

Eye (retina) V1: edge detectors V2: combinations IT: object representations
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Why we need layers

Processing images in the rodent brain (Hübener et al. 2003)
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Layer Functionality

Hidden layers can respond to particular features: loop detection, line detection etc.

▶ Digit ’8’: two loops or a combination of line features.

▶ Digit ’6’: loop + vertical stroke + horizontal line.
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Layer Functionality
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Layer Functionality: line decomposition
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Layer Functionality: line decomposition
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Layer Functionality: loop decomposition
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Layers of Abstraction

▶ Vision: pixels → edges → shapes → objects.

▶ Speech: waveform → phonemes → words → meaning.

▶ Text: characters → tokens → phrases → semantics.
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Weights and Bias

▶ Each connection has weight w
(l)
ji from neuron i in layer l − 1 to neuron j in layer l .

▶ Bias b
(l)
j adjusts threshold of neuron j .
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Weights and Bias

▶ Each connection has weight w
(l)
ji from neuron i in layer l − 1 to neuron j in layer l .

▶ Bias b
(l)
j adjusts threshold of neuron j .

▶ All parameters θ = {W (l), b(l)} are learned from data.
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Vertical-Line Detector via Weights

Imagine a weight pattern that emphasizes a column of pixels:

wji ≈

{
+1 if pixel i is in the central column,

0 otherwise.

Then zj will be large when that vertical column has large values in the correct pixels,
and aj = σ(zj) will indicate presence of the vertical line.
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Vertical Line Detector

Weights can be chosen for line detection.
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Vertical Line Detector

Weights can be chosen for line detection.
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Vertical-Line Detector via Weights

Imagine a weight pattern that emphasizes a column of pixels:

wji ≈


+1 if pixel i is in the central column,

0 otherwise,

−1 if pixel i above or below the central column.

Then zj will be large when that vertical column has large values in the correct pixels,
negative values in adjacent pixels, and aj = σ(zj) will identify the presence of the
vertical line.
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Learning in Neural Networks

How can we use the weights and biases to learn the different patterns?
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Learning Cost Function

For a single training example (x , y) and squared error:

C =
1

2
∥ŷ − y∥2 = 1

2

∑
k

(ŷk − yk)
2.

Where ŷ is network output.
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Cost over the Dataset (MSE)

MSE over dataset of size N:

CMSE =
1

2N

N∑
n=1

∥ŷ (n) − y (n)∥2.
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Gradient Descent

We define a cost (loss) function C (θ) measuring how well the network predicts.
Gradient descent updates parameters θ by moving opposite to the gradient:

θ ← θ − η∇θC (θ),

where η > 0 is the learning rate.
Small η: slow but stable.
Large η: faster but may diverge.
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Gradient Descent

For weight w
(l)
ji :

w
(l)
ji ← w

(l)
ji − η

∂C

∂w
(l)
ji

.

We compute ∂C

∂w
(l)
ji

via backpropagation.
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Convergence: Local vs Global Minima

▶ Cost surfaces in neural networks are non-convex.

▶ Gradient descent finds a local minimum or stationary point (or saddle).

▶ Initialization and learning dynamics influence the final solution.
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Convergence: Local vs Global Minima
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Parameter Space

All weights and biases form a high-dimensional vector θ ∈ RP where P is total
parameters. Training searches for θ∗ minimizing C (θ):

θ∗ ∈ argmin
θ

C (θ).

Backprop provides ∇θC efficiently across layers.
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Backpropagation: High-Level Idea

Compute gradients of cost w.r.t. parameters by propagating error from the output
layer and back through each layer using the chain rule.
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Backpropagation Schematic

Input x Hidden a(1) Output ŷ
W (1) W (2)

error δ(2)error δ(1)

Backprop propagates gradients from output to input layers
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Backpropagation in one neuron layers

Input layer
(1 neuron)

Layer 1
(1 neuron)

Layer 2
(1 neuron)

Output layer
(1 neuron)

w (1), b(1) w (2), b(2) w (3), b(3)
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Backpropagation with one neuron layers

We start backwards, from the output layer. The cost is defined as:

C = (ŷ − y)2
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Backpropagation with one neuron layers

We start backwards, from the output layer. The cost is defined as:

C = (ŷ − y)2

But ŷ is the activation of the last layer a(L) which is defined as:

a(L) = σ(w (L)a(L−1) + b(L))

z(L) = w (L)a(L−1) + b(L)
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Backpropagation with one neuron layers

Therefore, the cost is:

C = (a(L) − y)2

Where:

a(L) = σ(z(L))

z(L) = w (L)a(L−1) + b(L)

Neural Networks November 2025 69 / 92



Backpropagation with one neuron layers

Therefore, the cost is:

C = (a(L) − y)2

Where:

a(L) = σ(z(L)), z(L) = w (L)a(L−1) + b(L)

And similarly:

a(L−1) = σ(z(L−1)), z(L−1) = w (L−1)a(L−2) + b(L−1)
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Backpropagation with one neuron layers

Therefore, the cost is:

C = (a(3) − y)2

Where:

a(3) = σ(z(3)), z(3) = w (3)a(2) + b(3)

And:

a(2) = σ(z(2)), z(2) = w (2)a(1) + b(2)
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Backpropagation with one neuron layers

Therefore, the cost is:

C = (a(3) − y)2

Where:

a(3) = σ(z(3)), z(3) = w (3)a(2) + b(3)

And:

a(2) = σ(z(2)), z(2) = w (2)a(1) + b(2)

And:

a(1) = σ(z(1)), z(1) = w (1)a(0) + b(1)

a(0) is the input layer.
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Backpropagation with one neuron layers

Therefore from the cost

C = (a(3) − y)2

We need to learn:

θ = (w (3), b(3),w (2), b(2),w (1), b(1))
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Backpropagation with one neuron layers

Input layer
(1 neuron)

Layer 1
(1 neuron)

Layer 2
(1 neuron)

Output layer
(1 neuron)

w (1), b(1) w (2), b(2) w (3), b(3)
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Chain Rule

For the cost C :

∂C

∂w (L)
=

∂z(L)

∂w (L)

∂a(L)

∂z(L)
∂C

∂a(L)
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Understanding ∂C / ∂a(L)

For

C = (a(L) − y)2

∂C

∂a(L)
= 2(a(L) − y)

So differences between the output and the expected value have a significant impact.
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Understanding ∂a(L) / ∂z (L)

For

a(L) = σ(z(L))

∂a(L)

∂z(L)
= σ′(z(L))

The sigmoid function controls the impact that changes in z(L) will have to a(L).
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Understanding ∂z (L) / ∂w (L)

For

z(L) = w (L)a(L−1) + b(L)

∂z(L)

∂w (L)
= a(L−1)

The amount that the weight influences the last layer, depends on how strong the
previous layer is.
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Chain Rule: all together

For the cost C :

∂C

∂w (L)
= a(L−1) σ′(z(L)) 2(a(L) − y)

And of course this needs to be averaged over all training examples.
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Learning: How to Reduce the Cost

Given a high cost for a sample, we can:

▶ Increase/decrease bias b (shift activation).

▶ Increase/decrease weights connected to the activated features.

▶ Change previous-layer activations through weight updates upstream.

Backpropagation computes the needed adjustments iteratively.
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Link to Hebbian learning

Hebbian learning comes from the idea that neurons that ”fire” together ”wire”
together.
Therefore, linking back to the backpropagation error, we can see that:

∂z(L)

∂w (L)
= a(L−1)

Indicates that the weights will change if both values for a(L) and a(L−1) are activated
together, reminiscent of Hebbian co-activation.
However, backpropagation uses a global supervised error whereas Hebbian rules are
local and unsupervised.
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Intuition vs Real Neurons

Hidden-layer patterns may not resemble simple features humans expect — they can
appear noisy yet produce high performance. Biological neurons and networks
implement distinct learning rules; ANNs use global supervised error signals.
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Neural Network hidden layers

Processing images in a neural network.
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Processing images in the brain

Processing images in the rodent brain (Hübener et al. 2003)
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Why Patterns Look Noisy

▶ High-dimensional optimization yields many minima and solutions.

▶ Networks with ∼ 13k parameters can represent many functions; learned features
are distributed.
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Random Input Behaviour

Networks can output high-confidence predictions on noise, such as a random input,
because parameters map inputs into confident regions. Confidence of the neural
network output does not imply semantic meaning.
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Alternative network architectures

Multi-layer neural networks can get much more complicated if we modify the
architectures. Two common examples are recurrent and convolutional neural networks.
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Alternative architectures: RNN

Recurrent Neural Network.
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Alternative architectures: CNN

Convolutional Neural Network.
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Summary and Recap

▶ Neural networks consist of layers that are connected through weights.

▶ Weights and biases are the main parameters that are learned by minimizing a cost
via gradient descent learning.

▶ Backpropagation uses the chain rule to compute gradients efficiently.

▶ Hidden layers provide hierarchical ”feature” extraction.
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Summary and Recap

▶ Features are not learned like in biological networks due to local minima.

▶ Hidden layer patterns can be non-intuitive.

▶ Random inputs can be interpreted with high confidence.

▶ There are links to biological Hebbian co-activation but also important differences.
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Thank you — Questions?


