
The Mathematics of Transformers: The
Architecture Behind LLMs

Lida Kanari

Mathematical Institute
University of Oxford

Introduction to Machine Learning, November 2025

Table of Contents

▶ What is an LLM?

▶ Examples of LLM tasks

▶ Key elements: embedding, key, query, value, output

▶ Predicting the next word

▶ Tokenization and vocabulary

▶ Embeddings and vector semantics

▶ Softmax and temperature

Transformers November 2025 2 / 102

What is a Large Language Model (LLM)?

Definition. A Large Language Model (LLM) is a transformer-based neural network
trained on large text to predict the next token in a sequence.

P(wt | w1, . . . ,wt−1)

It learns language structure and meaning by optimizing this conditional probability.

Transformers November 2025 3 / 102

Transformer Applications

▶ Audio → Text: speech recognition (Whisper)

▶ Text → Image: generative models (DALL·E)
▶ Translation: sequence-to-sequence models (T5)

▶ Chat / Completion: GPT family of models

Transformers November 2025 4 / 102

Transformer Applications

Transformer: Text to image.

Transformers November 2025 5 / 102

Transformer Applications

Transformer: Text to text.

Transformers November 2025 6 / 102

Transformer Applications

Transformer: Sound to text.

Transformers November 2025 7 / 102

Key Elements of a Transformer

▶ Embedding: map tokens to vectors.

▶ Query (Q), Key (K), Value (V): derive attention weights.

▶ Attention output: context-aware representation.

▶ MultiLayer Perceptron (MLP): encodes memories.

▶ Unembedding: map back to vocabulary logits.

Transformers November 2025 8 / 102

Predicting the Next Word

Goal. Given a partial sentence, predict the most likely next word.

P(wt | w1, . . . ,wt−1)

Example: “The quick brown fox jumps over the lazy dog ” → model predicts “dog”.

Transformers November 2025 9 / 102

Tokenizing a Sentence

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

Transformers November 2025 10 / 102

Next-word Probability prediction

The next word in the sentence is ...

predicted 0.42

from a 0.32

sequence 0.28

LLM 0.15

model 0.10

output 0.06

sampled 0.04

Transformers November 2025 11 / 102

Embedding of words

Transformers November 2025 12 / 102

Tokenizing and Embedding a Sentence

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.


0.42

−0.88
0.13
0.77

−0.55




−0.31
0.92

−0.44
−0.05
0.61




0.73
−0.22
0.48

−0.66
0.19




−0.57
0.11

−0.94
0.28
0.36




0.15
0.84

−0.07
−0.72
0.53




−0.62
0.39

−0.12
0.91

−0.27




0.58
−0.49
0.33
0.12

−0.81




−0.04
0.67

−0.73
0.45
0.29




0.91
−0.35
0.26

−0.58
0.72



Transformers November 2025 13 / 102

Tokenizing and Embedding a Sentence

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

v1 v2 v3 v4 v5 v6 v7 v8 v9

Transformers November 2025 14 / 102

Illustrative 3D Sketch of Token Vectors

3D view of the token vectors

x

y

z

Transformers November 2025 15 / 102

Vocabulary and Token Indices

The vocabulary is a predefined list of tokens (words or sub-words). For example for
GPT-3, the vocabulary is of size ≈ 50000.

Vocabulary: V = {w1, . . . ,w50000}

Each token wi is assigned an integer ID i .

Transformers November 2025 16 / 102

Embedding: Mapping Tokens to Vectors

Each token index i is mapped to a vector Ei ∈ Rd :

E ∈ Rd×V ,

where d is the embedding dimension.

Transformers November 2025 17 / 102

Semantic Structure in Embeddings

During training, the model discovers an embedding space where directions have
semantic meaning. Example:

king−man + woman ≈ queen.

Such vector arithmetic encodes linguistic relationships.

Transformers November 2025 18 / 102

Direction Matters

The direction between male/female words is similar to that between uncle/aunt.

vmale → female ≈ vuncle → aunt

This property arises naturally from training objectives.

Transformers November 2025 19 / 102

Dot Product is Measuring Similarity

For two embedding vectors u, v ∈ Rd :

u · v =
d∑

i=1

uivi

Interpretation:
large → vectors aligned (similar meaning)
small → unrelated.

Transformers November 2025 20 / 102

Vocabulary Size in GPT-3

GPT-3 uses a byte-pair encoding (BPE) vocabulary of about 50 000 tokens.

|V| ≈ 5× 104

Each token has a learned embedding vector of dimension d = 12288.

Transformers November 2025 21 / 102

Embedding matrix

Transformers November 2025 22 / 102

Embedding matrix

Embedding matrix parameters

▶ Dimensions:
vocabulary size V ≈ 50,000,
embedding dimension d ≈ 12,000.

▶ Total parameters:
Pemb = V × d ≈ 600,000,000 parameters.

Transformers November 2025 23 / 102

Un-embedding of words

Transformers November 2025 24 / 102

Embedding matrix

Transformers November 2025 25 / 102

Un-embedding matrix

Transformers November 2025 26 / 102

Un-embedding matrix

Un-embedding matrix parameters

▶ Dimensions:
vocabulary size V ≈ 50,000,
embedding dimension d ≈ 12,000.

▶ Total parameters:
Punemb = V × d ≈ 600,000,000 parameters.

Transformers November 2025 27 / 102

Unembedding Matrix WU

To convert hidden states back to vocabulary logits:

z = WU ht , WU ∈ RV×d .

Each row of WU corresponds to a word in the vocabulary. It is approximately the
transpose of the embedding matrix.

Transformers November 2025 28 / 102

Softmax transformation

Transformers November 2025 29 / 102

Softmax

Turning arbitrary real scores into a probability distribution

▶ Why we need softmax: model outputs (logits / scores) are real numbers
that must be converted into probabilities to make decisions.

▶ Desired properties of the output:
▶ each probability is between 0 and 1,
▶ the probabilities sum to 1 (a proper probability distribution).

▶ Softmax guarantees both properties while preserving relative ordering of
scores (monotonic with respect to score differences).

Transformers November 2025 30 / 102

Softmax

From scores to probabilities

Softmax(x)j =
exj∑n
i=1 e

xi
for x = (x1, . . . , xn).

Notes:

▶ Exponentiation makes all outputs positive.

▶ Division by the sum normalizes them to sum to 1.

▶ Numerically stable implementation

Transformers November 2025 31 / 102

How softmax works

Flow: scores → exp → sum → normalize

scores (logits)1.002.00
0.50


exponentiateex1ex2

ex3

 sum

S =
∑

i e
xi

probabilities

1
S

ex1ex2

ex3



Transformers November 2025 32 / 102

How softmax works

Input: x = (1.00, 2.00, 0.50)

Exponentials: ex ≈

2.71837.3891

1.6487


Sum: S ≈ 11.7561

Final probabilities: softmax(x) ≈

0.23120.6285

0.1402



Transformers November 2025 33 / 102

How softmax works

Given logits z = (z1, . . . , z|V|), the softmax produces probabilities:

pi =
ezi∑
j e

zj
.

Properties:

▶ pi > 0,
∑

i pi = 1.

▶ Amplifies differences between logits.

Transformers November 2025 34 / 102

Softmax – Schematic

logits zi exponentiate ezi normalize / sum

Output: probabilities pi

Transformers November 2025 35 / 102

Softmax Intuition

▶ Small logits → probabilities 0.

▶ Large logits → probabilities 1 (dominant token).

▶ Converts scores into a categorical distribution.

Transformers November 2025 36 / 102

Softmax with Temperature T

Introduce a temperature T > 0 to control output randomness:

pi (T) =
ezi/T∑
j e

zj/T
.

Behaviour:

▶ T > 1 → flatter distribution (more random).

▶ T < 1 → sharper distribution (more deterministic).

Transformers November 2025 37 / 102

Softmax Temperature Effects

−4 −3 −2 −1 1 2 3 4

0.2

0.4

0.6

0.8

1

x (logit parameter)

Probability of class 1

T = 1 (baseline)

T = 0.5 (sharper)

T = 2 (flatter)

Same logits, different temperatures T in pi (T) = ezi/T∑
j e

zj/T
.

Transformers November 2025 38 / 102

Softmax Temperature Scaling

▶ High T → probabilities spread across many tokens → creative but unstable.

▶ Low T → probabilities concentrated on a few → predictable, repetitive.

Transformers November 2025 39 / 102

Temperature Practical Range

▶ T = 0: output becomes argmax (no randomness).

▶ Typical range in LLMs: T ∈ [0, 2].

▶ Lower T constrains output; higher T increases diversity.

Transformers November 2025 40 / 102

Attention

Transformers November 2025 41 / 102

Attention

The concept of attention demonstrates how the model integrates information from
different parts of the text. It ranges from attention within a sentence to attention in
previous parts of the text. Attention is quite expensive, so most models limit the
attention context window.

Transformers November 2025 42 / 102

Attention Local - vs - Global

Local attention

Transformers November 2025 43 / 102

Attention Local - vs - Global

Global attention

Transformers November 2025 44 / 102

Attention Focus

Transformers November 2025 45 / 102

Attention Context Window

Transformers November 2025 46 / 102

Attention Context Window

Transformers November 2025 47 / 102

Attention Context Window

Transformers November 2025 48 / 102

Attention transformation

The quick brown fox jumps over the lazy dog.

E1 E2 E3 E4 E5 E6 E7 E8 E9

E ′
1 E ′

2 E ′
3 E ′

4 E ′
5 E ′

6 E ′
7 E ′

8 E ′
9

Transformers November 2025 49 / 102

Attention transformation

The quick brown fox jumps over the lazy dog.

E1 E2 E3 E4 E5 E6 E7 E8 E9

E ′
1 E ′

2 E ′
3 E ′

4 E ′
5 E ′

6 E ′
7 E ′

8 E ′
9

Transformers November 2025 50 / 102

Attention Query

The same matrix WQ is used to perform the query transformations on all
embedding vectors Ei which are transformed into the respective Qi

The quick brown fox jumps over the lazy dog.

E1 E2 E3 E4 E5 E6 E7 E8 E9

WQ WQ WQ WQ WQ WQ WQ WQ WQ

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Transformers November 2025 51 / 102

Attention Query (Q)

Let Et ∈ Rd be the token representation at position t. We compute a query via a
learned map:

Qt = WQ Et , WQ ∈ Rdk×d .

Interpretation:

▶ Qt encodes what information position t seeks from the context.

▶ dk is the query/key dimension (commonly dk = d/heads).

Transformers November 2025 52 / 102

Attention Query (Q)

Example query: “Which adjectives describe the noun ’cat’ in this sentence?” When Et

corresponds to the token “cat”, Qt will ask for tokens that are adjective-like and
nearby. The attention mechanism uses this Qt to score all keys and retrieve useful
values.

Transformers November 2025 53 / 102

Attention Key

The same matrix WK is used to perform the key transformations on all
embedding vectors Ei which are transformed into the respective Ki

The quick brown fox jumps over the lazy dog.

E1 E2 E3 E4 E5 E6 E7 E8 E9

WK WK WK WK WK WK WK WK WK

K1 K2 K3 K4 K5 K6 K7 K8 K9

Transformers November 2025 54 / 102

Attention Key

The

quick

brown

fox

jumps

over

the

lazy

dog.

E1

E2

E3

E4

E5

E6

E7

E8

E9

K1

K2

K3

K4

K5

K6

K7

K8

K9

WK

WK

WK

WK

WK

WK

WK

WK

WK

Vertical layout: tokens (left), embeddings Ei (center), keys Ki (right). Spacing

increased for clarity.

Transformers November 2025 55 / 102

Attention Key (K): How Well Items Match the Query

Key vectors:
Ki = WKEi , WK ∈ Rdk×d .

Role: Each key describes what information a token can provide. The similarity
between a query Qt and a key Ki measures how relevant token i is to token’s request.

Transformers November 2025 56 / 102

Matching Query to Keys

Qt K1

K2

K3

Q⊤K1

Q⊤K2

Q⊤K3

Compute compatibility scores Q⊤Ki followed by scaling and softmax.

Transformers November 2025 57 / 102

Attention Key (K)

If Qt asks “Is this token an adjective describing the nearby noun?” then a matching
key Ki from a token like “fluffy” will yield a high dot product Q⊤

t Ki , causing attention
to pick up the value of that token.

Transformers November 2025 58 / 102

Attention: Query and Key concepts

The quick brown fox jumps over the lazy

The

quick

brown

fox

jumps

over

the

lazy
Transformers November 2025 59 / 102

Attention: Query and Key concepts

The quick brown fox jumps over the lazy

The

quick

brown

fox

jumps

over

the

lazy

.

.

.

.

.

.

.

.

K1 K2 K3 K4 K5 K6 K7 K8

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Transformers November 2025 60 / 102

Attention: Query and Key concepts

K1 · Q1 K1 · Q2 K1 · Q3 K1 · Q4 K1 · Q5 K1 · Q6 K1 · Q7

K2 · Q1 K2 · Q2 K2 · Q3 K2 · Q4 K2 · Q5 K2 · Q6 K2 · Q7

K3 · Q1 K3 · Q2 K3 · Q3 K3 · Q4 K3 · Q5 K3 · Q6 K3 · Q7

K4 · Q1 K4 · Q2 K4 · Q3 K4 · Q4 K4 · Q5 K4 · Q6 K4 · Q7

K5 · Q1 K5 · Q2 K5 · Q3 K5 · Q4 K5 · Q5 K5 · Q6 K5 · Q7

K6 · Q1 K6 · Q2 K6 · Q3 K6 · Q4 K6 · Q5 K6 · Q6 K6 · Q7

K7 · Q1 K7 · Q2 K7 · Q3 K7 · Q4 K7 · Q5 K7 · Q6 K7 · Q7

Q1 Q2 Q3 Q4 Q5 Q6 Q7

K1

K2

K3

K4

K5

K6

K7

Transformers November 2025 61 / 102

Attention: Query and Key concepts — circle heatmap

Q1 Q2 Q3 Q4 Q5 Q6 Q7

K1

K2

K3

K4

K5

K6

K7

Transformers November 2025 62 / 102

Attention transformation

The quick brown ...

The quick brown fox ...

The quick brown fox jumps ...

The quick brown fox jumps over ...

The quick brown fox jumps over the ...

The quick brown fox jumps over the lazy ...

Transformers November 2025 63 / 102

Attention masking

For autoregressive generation we must prevent peeking at future tokens. Implement
mask:

score =

{
Q⊤

t Ki/
√
dk , i ≤ t,

−∞, i > t

After softmax this yields a lower-triangular attention matrix (causal mask).

Transformers November 2025 64 / 102

Attention masking

Due to the iterative nature of the prediction algorithm, we want the model to only
have access to the previous words. Therefore we need to only keep the upper triangular
matrix. For correct normalization, we set the values to −∞ before applying the
softmax algorithm.

Transformers November 2025 65 / 102

Attention queries and keys

The attention matrix
K⊤Q

allows us to define which words are relevant to influence other words.

Transformers November 2025 66 / 102

Attention queries and keys

The attention matrix
K⊤Q

allows us to define which words are relevant to influence other words.
But how can we update our embeddings accordingly to which words influence the
context?

Transformers November 2025 67 / 102

Attention value matrix

The value matrix
WV

is multiplied by the vector of the context word and added to our initial embedding.
For example the embedding E4 of the fox is updated by adding the value of the
adjectives that describe it WVE3 for which the K3Q3 attention value is high.

E ′
4 ≈ E4 + softmax(K3Q3)V3

Transformers November 2025 68 / 102

Embedding update

How to update the initial embedding?

x

y

z

E1

Transformers November 2025 69 / 102

Attention value matrix

Adding all the values from the attention context we get the overall difference to be
added to the embedding vector:

∆E ′
4 =

∑
i

softmax

(
KiQi√
dk

)
Vi

And the new embedding is updated to reflect the context

E ′
4 ≈ E4 +∆E4

Transformers November 2025 70 / 102

Attention Value (V): What is Returned

Values are computed as

Vi = WVEi , WV ∈ Rdv×d .

Role: Vi contains the information to aggregate (a content vector). The attention
weights αi select and mix these values into a context vector for each query.

Transformers November 2025 71 / 102

How Attention Updates the Embedding

The attention output for position t is

at =
n∑

i=1

αtivi .

This at is combined (often via residual connection and layer norm) with the original Et

to produce an updated representation that encodes contextual information —
effectively moving Et in embedding space toward context-relevant directions.

Transformers November 2025 72 / 102

How to update the initial embedding?

x

y

z

E1

Transformers November 2025 73 / 102

How to update the initial embedding?

x

y

z

E1

E1 +∆E

Transformers November 2025 74 / 102

How to update the initial embedding?

x

y

z

E1
E ′
1

Transformers November 2025 75 / 102

Attention Context Window

The attention matrix
K⊤Q

depends on the context size cont and it is in fact ≈ (cont)2. This is why it’s important
to choose context size appropriately.
For GPT-3:

Context window = 2048 tokens.

This defines how much prior text the model can “see” when predicting the next word.

Transformers November 2025 76 / 102

Computational Complexity

Attention computes an n × n matrix of pairwise scores (for n tokens) → required
memory / compute grows as O(n2).

Implication: large context windows (e.g. 2048 tokens) can be expensive; many
research efforts focus on reducing this bottleneck.

Transformers November 2025 77 / 102

Attention Overview

Next, we study how transformers use attention to focus on relevant words in context.

Attention(Q,K ,V) = softmax

(
K⊤Q√

dk

)
V

Idea: each token attends to others based on similarity between queries and keys.

Transformers November 2025 78 / 102

Attention

Given
queries Q = [q1, . . . , qn],
keys K = [k1, . . . , kn],
values V = [v1, . . . , vn]:

Attention(Q,K ,V) = softmax

(
K⊤Q√

dk

)
V .

Equivalently for single query q:

att(q,K ,V) =
n∑

i=1

αivi , α = softmax

(
K⊤q√
dk

)
.

Transformers November 2025 79 / 102

Attention Single Head

What is attention?
A mechanism that lets each token dynamically re-weight (attend to) other tokens in
the context according to relevance.

High-level idea:

▶ For each token we compute a query vector that asks “what am I looking for?”

▶ For each token we compute a key vector that answers “what do I have?”

▶ A compatibility score between query and key determines how much information
(value) to read.

▶ The resulting weighted sum of values produces a context-aware representation.

Transformers November 2025 80 / 102

Self-Attention versus Cross-Attention

When the model conditions on another sequence (e.g., encoder–decoder, translation),
we use cross-attention:

Attention(Qdec,Kenc,Venc).

The difference here, is that the key and query maps act on different datasets. There is
typically no masking and the keys and queries map which elements of one dataset
correspond to elements of the other dataset. For example, in translation this will
correspond to matching between words in the two languages.
Use cases: translation, text-to-image, text-to-sound.

Transformers November 2025 81 / 102

Single-Head Attention

Overall, one attention layer transforms each embedding (of a token) to incorporate one
aspect of the context. For example, give me all adjectives descripbing a noun.

Transformers November 2025 82 / 102

Multi-Head Attention

Rather than a single attention, we compute H parallel attention heads:

headj = Attention(QW
(j)
Q ,KW

(j)
K ,VW

(j)
V),

then concatenate heads and project:

MultiHead(Q,K ,V) = WO [head1; . . . ; headH].

Benefit: different heads can attend to different relations / subspaces simultaneously.

Transformers November 2025 83 / 102

Schematic: Multi-Head Attention

Input
H × d

Split into
heads

Parallel
Attention Heads

Concatenate
and Project

Heads compute complementary attention patterns in different subspaces.

Transformers November 2025 84 / 102

Multi-Head Attention

Putting multiple attention layers together transforms each embedding (of a token) to
incorporate the full context.

Transformers November 2025 85 / 102

Attention Overview

Attention consists of three main components:

▶ Query: Defines a question

▶ Key: Responses to the question

▶ Value: Updates the embedding by a value if the query is positive to the key.

Attention(Q,K ,V) = softmax

(
K⊤Q√

dk

)
V

Each token attends to others based on similarity between queries and keys.
For each attention head the embedding is updated through a new query and at the end
of the process, the new embedding reflects all the previous context.

Transformers November 2025 86 / 102

Multi-Layer Perceptron

Transformers November 2025 87 / 102

MLP in Transformer

For each vector (embedding), an MLP consists of two linear layers and one nonlinear
ReLU:

MLP(x) = W2 σ(W1x + b1) + b2,

commonly σ = ReLU.

Transformers November 2025 88 / 102

MLP (Linear → ReLU → Linear)

Input x ∈ Rd W1x + b1
(linear)

σ(x ′)
(ReLU)

W2x ′+ b2
(linear)

Transformers November 2025 89 / 102

Multi-Layer Perceptron

MLP computes alignment between each vector and a stored ”memory” in the network.

Transformers November 2025 90 / 102

Multi-Layer Perceptron

Each vector (embedding of a token) is processed independently.

Transformers November 2025 91 / 102

Multi-Layer Perceptron

The vectors (embeddings tokens) are processed independently and in parallel through
the MLP.

Transformers November 2025 92 / 102

MultiLayer Perceptron principles



0.12
−0.45
0.30
0.78
−0.10
0.05
−0.22





−0.08
0.60
−0.09
0.12
0.44
−0.33
0.02





0.00
0.87
0.50
0.00
0.33
0.10
0.01





0.22
−0.11
0.04
0.66
0.03
−0.07
0.18


Linear ReLU Linear

Schematic illustration of an MLP architecture: linear layer → ReLU nonlinearity → linear layer.

Transformers November 2025 93 / 102

Rectified Linear Unit (ReLU)

ReLU(z) = max(0, z).

▶ Simple, computationally cheap nonlinearity.

▶ Introduces sparsity (negative pre-activations set to zero).

Transformers November 2025 94 / 102

Rectified Linear Unit (ReLU)

▶ ReLU acts as a gate: only strong positive inputs pass through.

▶ In MLPs, different linear combinations are tested and ReLU selects which ones are
active for the token.

▶ When active, a linear “feature detector” contributes to the next representation.

Transformers November 2025 95 / 102

Final Layer

After MLP output y = W2σ(W1x + b1) + b2, the transformer typically:

x ′ = LayerNorm(x + y).

Residual connections stabilize gradients and ease training of deep stacks.

Transformers November 2025 96 / 102

Putting It All Together: Transformer Block Schematic

Input E Multi-Head
Attention

Add & Norm MLP
Add & Norm

Output

Residual connections and normalization wrap both attention and MLP sub-layers.

Transformers November 2025 97 / 102

Putting It All Together

Figure: Example of LLM structure and counting parameters

Transformers November 2025 98 / 102

Putting It All Together: From Tokens to Probabilities

1. Token → Embedding

2. Stack of Transformer blocks: each block updates Et using attention + MLP.

3. Final hidden ET mapped to logits zT = WUET .

4. Softmax converts logits to probabilities softmax(z).

This pipeline is trained end-to-end to maximize next-token likelihood.

Transformers November 2025 99 / 102

Estimate of parameters in an LLM

Process Parameters

Embedding ≈ 600M
Query ≈ 14B
Key ≈ 14B
Value ≈ 14B
Output ≈ 14B

MLP (x96) ≈ 116B
Unembedding ≈ 600M

Total ≈ 175B

Transformers November 2025 100 / 102

Summary

▶ Transformers use attention (Q, K, V) to compute context-aware representations.

▶ Softmax (temperature-scaled) converts logits to probabilities.

▶ Multi-head attention captures multiple relations in parallel.

▶ MLP acts like a gated memory function to identify per-position features
(Linear–Nonlinearity–Linear).

▶ The full model maps tokens → embeddings → transformer layers → logits →
probabilities and is trained via next-token prediction.

Transformers November 2025 101 / 102

Thank you — Questions?

