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What is a Large Language Model (LLM)?

Institute

Definition. A Large Language Model (LLM) is a transformer-based neural network
trained on large text to predict the next token in a sequence.

'D(Wt | Wla'--,Wt—l)

It learns language structure and meaning by optimizing this conditional probability.
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Transformer Applications

M
Institute

Audio — Text: speech recognition (Whisper)
Text — Image: generative models (DALL-E)
Translation: sequence-to-sequence models ( T5)
Chat / Completion: GPT family of models
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Transformer Applications

Institute

Transformer: Text to image.
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Transformer Applications

e
Institute

TEXT - TEXT
— .:.';5;'__-_.' =

Transformer: Text to text.
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Transformer Applications

Institute

Transformer: Sound to text.
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Key Elements of a Transformer

Institute

» Embedding: map tokens to vectors.

» Query (Q), Key (K), Value (V): derive attention weights.
> Attention output: context-aware representation.

» MultiLayer Perceptron (MLP): encodes memories.

>

Unembedding: map back to vocabulary logits.
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Predicting the Next Word

Institute

Goal. Given a partial sentence, predict the most likely next word.

P(Wt | Wl,--th—l)

Example: “The quick brown fox jumps over the lazy dog __" — model predicts “dog”.
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Tokenizing a Sentence

Institute

The quick brown fox jumps over the lazy dog.
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Next-word Probability prediction

The next word in the sentence is ...
predicted 0.42

_hI

rom a 0.32

E sequence 0.28

015

Transformer

Oxford
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Embedding of words
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Tokenizing and Embedding a Sentence

Institute

The quick brown fox jumps over the lazy dog.

[The [quick} [brownj
1 1 1

~—

0.42 —0.31 0.73 —0.57 0.15 —0.62 0.58 [7004} 0.91
~0.88 0.92 —0.22 0.11 0.84 039 || —049 | 067 || —0.35
0.13 —0.44 0.48 —0.94 —0.07 —0.12 033 || —0.73 || 026
0.77 —0.05 —0.66 0.28 —0.72 0.91 0.12 || 045 || —0.58
—0.55 0.61 0.19 0.36 0.53 —0.27 || —o0.81 [ 0A29J 0.72
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Tokenizing and Embedding a Sentence

The quick brown fox jumps over the lazy dog.

[The: [quickj [brown} [E} dog.
1 1 1

1 1

%1 Vo V3 Va4 V5 Ve %4 Vo
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[llustrative 3D Sketch of Token Vectors

Institute

3D view of the token vectors

z
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Vocabulary and Token Indices

M
Institute

The vocabulary is a predefined list of tokens (words or sub-words). For example for
GPT-3, the vocabulary is of size ~ 50000.

Vocabulary: V = {w1, ..., wso00}

Each token w; is assigned an integer ID i.
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Embedding: Mapping Tokens to Vectors

Mathematical

Institute

Each token index i is mapped to a vector E; € RY:
E e ROV

where d is the embedding dimension.
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Semantic Structure in Embeddings

Mathematical
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During training, the model discovers an embedding space where directions have
semantic meaning. Example:

king — man 4+ woman & queen.

Such vector arithmetic encodes linguistic relationships.
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Direction Matters

Mathematical

Institute

The direction between male/female words is similar to that between uncle/aunt.

~
Vmale — female =~ VYuncle — aunt

This property arises naturally from training objectives.
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Dot Product is Measuring Similarity

Mathematical
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For two embedding vectors u, v € RY:

d
u-v = E u;vi
i=1

Interpretation:
large — vectors aligned (similar meaning)
small — unrelated.
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Vocabulary Size in GPT-3

Mathematical

Institute

GPT-3 uses a byte-pair encoding (BPE) vocabulary of about 50 000 tokens.
V|~ 5 x 10*

Each token has a learned embedding vector of dimension d = 12288.
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Embedding matrix

Mathematical
Institute

Vocabulary words: 50000

Vector embedding: 12000
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Embedding matrix

Embedding matrix parameters

» Dimensions:
vocabulary size V = 50,000,
embedding dimension d ~ 12,000.

» Total parameters:
Pemp =V X d ~ 600,000,000 parameters.
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Un-embedding of words
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Embedding matrix
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Vocabulary words: 50000

Vector embedding: 12000
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Un-embedding matrix

3
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Vector embedding: 12000
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Un-embedding matrix

M
Institute

Un-embedding matrix parameters

» Dimensions:
vocabulary size V = 50,000,
embedding dimension d ~ 12,000.

» Total parameters:
Punemb = V X d ~ 600,000,000 parameters.
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Unembedding Matrix Wy

Mathematical

Institute

To convert hidden states back to vocabulary logits:
z=Wyh,, WyeRY¥,

Each row of Wy corresponds to a word in the vocabulary. It is approximately the
transpose of the embedding matrix.
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Softmax transformation
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Softmax

Turning arbitrary real scores into a probability distribution

» Why we need softmax: model outputs (logits / scores) are real numbers
that must be converted into probabilities to make decisions.
» Desired properties of the output:
» each probability is between 0 and 1,
» the probabilities sum to 1 (a proper probability distribution).
» Softmax guarantees both properties while preserving relative ordering of
scores (monotonic with respect to score differences).
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Softmax

Mathematical
Institute

From scores to probabilities

e’
- for x = (x1,..., Xp).

Softmax(x); = ST e
i=1
Notes:
» Exponentiation makes all outputs positive.
» Division by the sum normalizes them to sum to 1.
» Numerically stable implementation
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How softmax works

Mathematical
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scores (logits)

1.00
2.00
0.50

Flow: scores — exp — sum — normalize

exponentiate

probabilities

e
e

e™
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How softmax works

M
Institute

Input: x = (1.00, 2.00, 0.50)

2.7183
Exponentials: ¥ ~ |7.3891
1.6487

Sum: S ~ 11.7561

0.2312
Final probabilities: softmax(x) ~ |0.6285
0.1402
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How softmax works

Mathematical
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Given logits z = (z1, ..., 7)), the softmax produces probabilities:

e%
pi = —.
. J
>je

Properties:

> pf>01 Z,plzl
» Amplifies differences between logits.
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Softmax — Schematic
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| sn |

( ex i @i W
ponentiate e
\ J

Output: probabilities p;

>
>

{ normalize / sum }
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Softmax Intuition

Mathematical
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» Small logits — probabilities 0.
» Large logits — probabilities 1 (dominant token).

» Converts scores into a categorical distribution.
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Softmax with Temperature T

Mathematical
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Introduce a temperature T > 0 to control output randomness:
eZ,‘/T

i(T) = ===

Behaviour:
» T > 1 — flatter distribution (more random).
» T <1 — sharper distribution (more deterministic).
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Softmax Temperature Effects
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—— T =1 (baseline)
--- T = 0.5 (sharper)
....... T = 2 (flatter)

i

1 2 3 4

. . . 2T
Same logits, different temperatures T in p;(T) = ==
i Z /T
> el
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Softmax Temperature Scaling

Mathematical
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» High T — probabilities spread across many tokens — creative but unstable.
» Low 7 — probabilities concentrated on a few — predictable, repetitive.
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Temperature Practical Range

Mathematical
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» T =0: output becomes argmax (no randomness).
» Typical range in LLMs: T € [0, 2].

» Lower T constrains output; higher T increases diversity.
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Attention
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Attention

Institute

The concept of attention demonstrates how the model integrates information from
different parts of the text. It ranges from attention within a sentence to attention in
previous parts of the text. Attention is quite expensive, so most models limit the
attention context window.
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Attention Local - vs - Global

Mathema
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Alice started to her feet, for it flashed

Local attention
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Attention Local - vs - Global
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Global attention

CHAPTER I: Down the Rabbit-Hole

Alice was beginning to get very tired of sitting by her
sister on the bank, and of having nothing to do: once or
twice she had peeped into the book her sister was reading,
but it had no pictures or conversations in it, ‘and what is
the use of a bodk,” thought Alice “without pictures or

conversation?”

So she was considering in her own mind (as well as she

could, for the hot dd made her feel very sleepy and
stupid), whether the p
would be wokh the touble\gf getting up and picking the

daisies, when su

sure of making a daisy-chain

nly a WhithRabbit with pink eyes ran
close by her.

There was nothing so ble in that; nor did

Alice o way to hear the
Rabbit say to™s hall be late!”
(when she thought it ove ed to her
that she ought time it
all seemed quite natural); but when the ually

then hurried on,[Alice started to_her feet, for it flashed |

across her mind that she had never before seen a rabbit

with either a w -pocket, or a watch to take out of
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Attention Focus
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Attention Context Window
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Attention Context Window
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Attention Context Window
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Attention transformation
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X

(Tre] (i) (o] [

)
-

E, E, Es E, Es Es E, Ee Eo
T
E] E} E} E, [ E} E, E} E}

i Transformers November 2025 49/102

Mathematics



c
.9
4
(q0]
£
—
L
(0]
c
T
—
)
c
.9
4
c
(]
4+
)
<

og.

N
J

the

-
N

Jumps

fox

o]

]

The

-
N

50 /102

November 2025

Transformers

Oxford
Mathematics



Attention Query

The same matrix Wy is used to perform the query transformations on all
embedding vectors E; which are transformed into the respective Q;

‘iThe:‘ [quick] [brown] "EE: dog.
E; E; E; E, Es Es E Eg
Lwe we |we [we [we [we | we |we [ we

o @ @3 Qs Qs Qe Q7 Qo
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Attention Query (Q)

Institute

Let E; € R? be the token representation at position t. We compute a query via a
learned map:
Qr = Wo E, Wq € RIxd
Interpretation:
» @ encodes what information position t seeks from the context.

» dj is the query/key dimension (commonly dx = d/heads).

Oxford Transformers November 2025 52/102
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Attention Query (Q)

Example query: “Which adjectives describe the noun 'cat’ in this sentence?” When E;
corresponds to the token “cat”, Q: will ask for tokens that are adjective-like and
nearby. The attention mechanism uses this Q; to score all keys and retrieve useful

values.
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Attention Key

The same matrix Wy is used to perform the key transformations on all
embedding vectors E; which are transformed into the respective K;

) (owt] o) ) (o) [
E E, E; E, Es Es E E
Do Do L Dwe Lo [ [ Lo [

K1 K> Ks Ka Ks Ke K7 Ky
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Attention Key
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— WK
El > Kl
Wi
E; > Ko
Wi
Es > K3
Wi
Ey4 > Ka
Wi
Es > Ks
Wi
Es > Ks
Wi
E7 > K7
Wi
> Ks
Wi
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Attention Key (K): How Well Items Match the Query

M
Institute

Key vectors:
K = WkE;, Wiy € RH*>9,

Role: Each key describes what information a token can provide. The similarity
between a query Q; and a key K; measures how relevant token i/ is to token's request.
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Matching Query to Keys

Mathematical
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QT K1
Q: Ki
TK2
K>
QT K3
K3

Compute compatibility scores Q" K; followed by scaling and softmax.
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Attention Key (K)

Institute

If Q¢ asks “Is this token an adjective describing the nearby noun?” then a matching
key K; from a token like “fluffy” will yield a high dot product QtTK,-, causing attention
to pick up the value of that token.
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Attention: Query and Key concepts

[The} [quick] [brown] jumps over the lazy
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Attention: Query and Key concepts

[The} [quick] [brown] jumps over the lazy
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Attention: Query and Key concepts
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(@] Q2 Q3 Q4 Qs Qs

Ki Ki @ Ki-Q Ki-Q Ki-Qs Ki-Q Ki-Q Ki-Q
Ko Ko @1 Ko @2 Koo Q3 Ko-Qu K2 Qs Koo Qe Ko @y
K Kzs-@1 K3 -Q K3 Q3 K3-Qs K3 @ K3 Qe K3-Q
Ky Ko Q1 Ko Q Ki- Q3 Ki-Qs Ki-Q Ki-Qo Ki-Qr
Ks Ks- @ Ko Q2 Ko Q3 Ks-Qu Ks-Q Ks-Qe Ks-Q
Ko Ko-@1 Ko Q2 Ko Q3 Ko Qs Ko Q@ Ko Qe Ko~ Qr

Ki-@Q1 Kr-Q K7-Q Kri-Qs Ki-Q K7-Qe K7-Q
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Attention: Query and Key concepts — circle heatmap
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Attention masking

Institute

For autoregressive generation we must prevent peeking at future tokens. Implement
mask:
Q/ Ki/Vdk, i<t,

—00, P>t

score =

After softmax this yields a lower-triangular attention matrix (causal mask).
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Attention masking

institute

Due to the iterative nature of the prediction algorithm, we want the model to only
have access to the previous words. Therefore we need to only keep the upper triangular
matrix. For correct normalization, we set the values to —oc before applying the
softmax algorithm.

Unnormalized Normalized
Attention Pattern Attention Pattern

+3.53|+0.80| +1.96 | +4.48|+3.74| -1.95 1.00 | 0.75 | 069 | 0.92 | 0.46
—00 | -0.30 | —0.21 | +0.82 | +0.29| +2.91

—00 | —00 |+0.89|+0.67|+299 | -041| softmax

—00 | =00 | —00 | +1.31 | +1.73 | -1.48

—00 | —00 | —00 | —00 |+3.07 |+2.94

—00 | —00 | —00 | —00 | —00 |+0.31
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Attention queries and keys
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The attention matrix

allows us to define which words are relevant to influence other words.

K'Q
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Attention queries and keys
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The attention matrix

allows us to define which words are relevant to influence other words.
But how can we update our embeddings accordingly to which words influence the
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Attention value matrix

Institute

The value matrix
Wy

is multiplied by the vector of the context word and added to our initial embedding.
For example the embedding E4 of the fox is updated by adding the value of the
adjectives that describe it Wy, E3 for which the K3Q3 attention value is high.

E‘; ~ Ey+ Softmax(K3 Q3) V3
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Embedding update
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How to update the initial embedding?

z

y
/\ El
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Attention value matrix

Institute

Adding all the values from the attention context we get the overall difference to be
added to the embedding vector:

Ki Q;
AE, = softmax | — | V;
* Z <¢Hk>
And the new embedding is updated to reflect the context

E, ~ Es + AE,

Oxford Transformers November 2025 70/102
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Attention Value (V): What is Returned

Mathematical

Institute

Values are computed as
V; = Wy E;, Wy e RW<9,

Role: V; contains the information to aggregate (a content vector). The attention
weights «a; select and mix these values into a context vector for each query.
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How Attention Updates the Embedding

Mathematical

Institute

The attention output for position t is

n
ds = E QitiVi.
i=1

This a; is combined (often via residual connection and layer norm) with the original E;
to produce an updated representation that encodes contextual information —
effectively moving E; in embedding space toward context-relevant directions.
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How to update the initial embedding?
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How to update the initial embedding?

Mathematical

Institute

d Ei + AE
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How to update the initial embedding?
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Attention Context Window

Institute

The attention matrix
K'Q
depends on the context size cont and it is in fact ~ (cont)?. This is why it's important
to choose context size appropriately.
For GPT-3:
Context window = 2048 tokens.

This defines how much prior text the model can “see” when predicting the next word.
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Computational Complexity

Mathematical
Institute

Attention computes an n X n matrix of pairwise scores (for n tokens) — required
memory / compute grows as O(n?).

Implication: large context windows (e.g. 2048 tokens) can be expensive; many
research efforts focus on reducing this bottleneck.
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Attention Overview

Institute

Next, we study how transformers use attention to focus on relevant words in context.

. K'Q
Attention(Q, K, V) = softmax %
Vd

Idea: each token attends to others based on similarity between queries and keys.

s Transformers November 2025 78 /102

Mathematics



Attention

Given

queries @ = [q1, ..., qnl,
keys K = [ki,..., kn],
values V = [vq,..., vp]:

, K'Q
Attention(Q, K, V) = softmax| —— | V.
vV dk

Equivalently for single query g:

tt(q, K, V) i ft (KTq>
att(q, K, V) = ;v o = softmax| —— | .
i=1 V di
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Attention Single Head

Institute

What is attention?
A mechanism that lets each token dynamically re-weight (attend to) other tokens in
the context according to relevance.

High-level idea:
» For each token we compute a query vector that asks “what am | looking for?”
» For each token we compute a key vector that answers “what do | have?”

» A compatibility score between query and key determines how much information
(value) to read.

» The resulting weighted sum of values produces a context-aware representation.
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Self-Attention versus Cross-Attention

Mathematical
Institute

When the model conditions on another sequence (e.g., encoder—decoder, translation),
we use cross-attention:
Attention( Qdec; Kencs Venc)'

The difference here, is that the key and query maps act on different datasets. There is
typically no masking and the keys and queries map which elements of one dataset
correspond to elements of the other dataset. For example, in translation this will
correspond to matching between words in the two languages.

Use cases: translation, text-to-image, text-to-sound.
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Single-Head Attention

Institute

Attention head

Overall, one attention layer transforms each embedding (of a token) to incorporate one
aspect of the context. For example, give me all adjectives descripbing a noun.
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Multi-Head Attention

M
Institute

Rather than a single attention, we compute H parallel attention heads:
head; = Attention(QWS), KW, vw ),
then concatenate heads and project:

MultiHead(Q, K, V) = Wp[heads; .. .; heady].

Benefit: different heads can attend to different relations / subspaces simultaneously.
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Schematic: Multi-Head Attention

Institute

Input Split into Parallel Concatenate
Hxd heads Attention Heads and Project

Heads compute complementary attention patterns in different subspaces.
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Multi-Head Attention

M;
Institute

Multi-head attention

Putting multiple attention layers together transforms each embedding (of a token) to
incorporate the full context.
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Attention Overview

Institute

Attention consists of three main components:
» Query: Defines a question
> Key: Responses to the question
» Value: Updates the embedding by a value if the query is positive to the key.

: K'Q
Attention(Q, K, V) = softmax| —— | V
Vdk
Each token attends to others based on similarity between queries and keys.
For each attention head the embedding is updated through a new query and at the end
of the process, the new embedding reflects all the previous context.
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Multi-Layer Perceptron
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MLP in Transformer

Institute

For each vector (embedding), an MLP consists of two linear layers and one nonlinear
RelLU:

MLP(X) = W5 U(Wlx + bl) + by,

commonly o0 = RelU.
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MLP (Linear — RelLU — Linear)

Wix + by O’(X/) Whox! + by
d—— " _—
Input x € R (linear) (ReLU) (linear)
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Multi-Layer Perceptron

Institute

MLP

MLP computes alignment between each vector and a stored "memory” in the network.
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Multi-Layer Perceptron

Mathematical
Institute

Each vector (embedding of a token) is processed independently.
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Multi-Layer Perceptron

Institute

The vectors (embeddings tokens) are processed independently and in parallel through
the MLP.
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MultiLayer Perceptron principles

Institute

[0.12 T [—0.08] [0.00] [ 0.22 T
—0.45 0.60 0.87 —0.11
0.30 Linear —0.09 RelLU 0.50 Linear 0.04
08| ——|012| —— (000] ——— | 0.66
—0.10 0.44 0.33 0.03
0.05 —0.33 0.10 —0.07
|—0.22] | 0.02 | 10.01] | 0.18 |

Schematic illustration of an MLP architecture: linear layer — ReLU nonlinearity — linear layer.
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Rectified Linear Unit (ReLU)

Mathematical
Institute

ReLU(z) = max(0, z).

» Simple, computationally cheap nonlinearity.

» Introduces sparsity (negative pre-activations set to zero).
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Rectified Linear Unit (ReLU)

» RelU acts as a gate: only strong positive inputs pass through.

» In MLPs, different linear combinations are tested and RelLU selects which ones are
active for the token.

» When active, a linear “feature detector” contributes to the next representation.
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Final Layer

Mathematical

Institute

After MLP output y = Who(Wix + by) + by, the transformer typically:
x" = LayerNorm(x + y).

Residual connections stabilize gradients and ease training of deep stacks.
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Putting It All Together: Transformer Block Schematic

Institute

Multi-Head Add & Norm
Input E ——  —
npu Attention Add & Norm MLP Output

Residual connections and normalization wrap both attention and MLP sub-layers.

i Transformers November 2025 97 /102

Mathematics



Putting It All Together

Institute

Attention Layer Norm

00008

604M Parameters 1.2B Parameters 49K Parameters

Figure: Example of LLM structure and counting parameters
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Putting It All Together: From Tokens to Probabilities

Mathematical
Institute

. Token — Embedding
. Stack of Transformer blocks: each block updates E; using attention + MLP.
. Final hidden E+ mapped to logits z+ = WyET.

A WD =

. Softmax converts logits to probabilities softmax(z).

This pipeline is trained end-to-end to maximize next-token likelihood.
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Estimate of parameters in an LLM

Process Parameters
Embedding ~ 600M
Query ~ 14B
Key ~ 14B
Value ~ 14B
Output ~ 14B
MLP (x96) ~ 1168
Unembedding | ~ 600M
Total ~ 175B
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Summary

Mathematical
Institute

vvyyypy

v

Transformers use attention (Q, K, V) to compute context-aware representations.
Softmax (temperature-scaled) converts logits to probabilities.
Multi-head attention captures multiple relations in parallel.

MLP acts like a gated memory function to identify per-position features
(Linear—-Nonlinearity—Linear).

The full model maps tokens — embeddings — transformer layers — logits —
probabilities and is trained via next-token prediction.
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Thank you — Questions?



