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The Super Weight in LLMs

The Super Weight in Large Language Models

Mengxia Yu, De Wang, Qi Shan, Colorado J Reed, Alvin Wan
(2025)

Link to the paper.
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https://arxiv.org/abs/2411.07191

Summary

Mathematical
Institute

This paper studies the importance of the model parameters for the performance of
the LLM.

The authors discover that a tiny set of extremely important scalar weights in
LLMs (super weights) are important for the performance of the model. Pruning
a single super weight can catastrophically harm generation quality.

They provide a data-free, single-forward-pass method to identify super weights
and release an index for common open LLMs.

Super weights cause super activations that propagate through layers and are
linked to skip connections.

Practical implication: preserving super weights dramatically improves accuracy of
the model.
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1) Super Weights

» Reminder: For GPT3 we estimated about 175B parameters needed to be tunned.

» Finding: Models contain a tiny number of weights, “super weights”, that are
disproportionately important. Pruning one such weight can raise perplexity by
orders of magnitude and collapse zero-shot accuracy.
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Figure 1 — Qualitative effect of pruning a super weight
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Figure: example model output before (left) and after

pruning a super weight (right).

» Visual demonstration: pruning a
single super weight can produce
near-gibberish output.

P> Use this to motivate why average
metrics hide extreme sensitivities.

» Which downstream modules
(Attention head, MLP) could
amplify a local perturbation?
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1) Super Weights

Institute

Reminder: For GPT3 we estimated about 175B parameters needed to be tunned.
Finding: Models contain a tiny number of weights, “super weights”, that are
disproportionately important. Pruning one such weight can raise perplexity by
orders of magnitude and collapse zero-shot accuracy.

Where they appear: Frequently in MLP matrices, typically in early layers;
numbers are consistent across model family and size.
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Quantitative importance (Table 1)
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Llama-7B | Arc-c

Arc-e

Hella.

Lamb. PIQA

SciQ

Wino. | AVG | C4  Wiki-2

Original 41.81
Prune SW 19.80
Prune Non-SW | 41.47

75.29
39.60
74.83

56.93
30.68
56.35

73.51 78.67
0.52 59.90
69.88  78.51

94.60
39.40
94.40

70.01 | 70.11 7.08 5.67
56.12 | 35.14 | 763.65 1211.11
69.14 | 69.22 7.57 6.08

Prune SW, +SA | 26.60

54.63

56.93

1279 61.95

61.70

70.01 | 50.09 | 476.23  720.57

Table: performance

VS

metrics for original vs prune-SW

prune-non-SW.

Table shows that pruning super
weights severely degrades
performance, reducing accuracy.

Pruning 7000 other weights only
marginally affects quality.

By preserving the activation (SA)
but pruning super weights only
partly improves performance.

Oxford
Mathematics

Applications

November 2025 8/67



2) ldentifying Super Weights

Institute

» The authors propose a data-free, single-forward-pass identification algorithm to
locate super weights (no calibration dataset required).

» They provide an index of coordinates for several open LLMs.

Oxford Applications November 2025 9/67

Mathematics



Figure — ldentification / Index of Super Weights
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Shows where super weights occur
across layers and model sizes.

The authors also publish
coordinates for many open models
— useful for replication and lab
assignments.

Does the distribution suggest a
training-time origin or
architecture-induced phenomenon?
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3) Super Activation Mechanism
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Observation: Super weights induce super activations — massive activations at
a fixed channel/position that persist across layers and prompts.

Mechanism: The super weight amplifies an otherwise ordinary activation into an
outlier.

By pruning super weights, the super activations disappears. Therefore, SW can
be identified by identifying SA in the network.
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Figure — impact of superweights on

activations
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Figure: activations related to super weights.

» Demonstrates that preserving a
tiny set of weights yields much
better activation outcomes.
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Figure — impact of superweights on output probabilities
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Mistral 7B Token Probabilities

Probabilities

Figure: output tokens related to super weights.

» Super weights affect output token
probability distributions.

» Pruning of super weights leads to
non-sensical outputs.
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Figure — impact of superweights on accuracy
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Figure: amplifying super-weights increases accuracy.

How variations in the magnitude of
super weights impact the model's
quality?

They multiply the super weights by
a scaling factor ranging from 0.0
to 3.0

Amplifying super weights can
improve model accuracy to some
extend.
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Breakthroughs

Mathematical
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» The paper pinpoints extreme single-scalar sensitivity in LLMs and provides a
practical, data-free identification method.

» It links weight outliers to activation outliers (mechanistic explanation) and shows
how preserving a tiny set of scalars can be more effective than expensive
mixed-precision schemes.

» Research impact: invites more fine-grained robustness/sensitivity analyses.

Oxford . .
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Why this paper is interesting?

Institute

» Shows that tiny, unexpected model elements can have large scale effects. What
does this tell us about interpretability and robustness in LLMS?

» What is the origin of super-weights?
» What could be the relation to training dynamics?

» Are there ways to train models without such single points of failure?

Oxford Applications November 2025 16 /67
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The art of using t-SNE

The art of using t-SNE for single-cell transcriptomics

Dmitry Kobak, Philipp Berens (2019)

Nature Communications

Link to the paper.
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https://www.nature.com/articles/s41467-019-13056-x

Background

Institute

Single-cell transcriptomics yields ever growing data sets containing RNA
expression levels for thousands of genes from up to millions of cells.

Common data analysis pipelines include a dimensionality reduction step for
visualising the data in two dimensions, most frequently performed using
t-distributed stochastic neighbour embedding (t-SNE).

Good for visualization, but naive applications often suffer from severe
shortcomings, such as the global structure of the data is not represented
accurately.

The authors propose an alternative approach for dimensionality reduction that
works well for RNA-seq data sets.

Oxford
Mathematics
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Highlights

Institute

Provides a practical t-SNE pipeline for large single-cell transcriptomic data that
better preserves global structure.

Recommends three main modifications: PCA initialisation, multi-scale similarities,
and a larger learning rate.

Quantifies embedding faithfulness with three metrics (KNN, KNC, CPD) and
demonstrates the pipeline on synthetic and several real scRNA-seq data sets.

Compares to alternatives (e.g., UMAP) and discusses reproducibility, mapping
new cells to references, and trade-offs.

Oxford
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1) PCA initialisation
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The authors use the first two principal components (after scaling) to initialise
t-SNE rather than random initialisation.

This approach injects information about global geometry early so t-SNE can focus
on local fine structure while preserving large-scale relationships; improves
reproducibility (reduces random seed dependence).

This demonstrates how PCA captures macroscopic structure and how PCA init
reduces arbitrary cluster placement on the projection space.

Applications November 2025 20/67



Figure 1 — Synthetic dataset: preserving global geometry
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2) Multi-scale similarities

Institute

» Combine multiple perplexity values (e.g., default 30 and a large perplexity like
n/100) to capture both local and more global neighbourhoods simultaneously.

» Multi-scale blends both and yields embeddings that balance micro/meso/macro
structure.

» Small perplexity favors local detail, large perplexity favors global structure.

Oxford Applications November 2025 22 /67
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3) Increased learning rate and exaggeration for large data

M
Institute

» They use a larger learning rate (rule of thumb 7 = n/12 whenever this exceeds
200) to improve convergence for large n; for very large data use early exaggeration
and downsampling-based initialisation.

» The default 7 = 200 is often too small for large data sets and may lead to poor
optimization or suboptimal local minima.

Oxford
Mathematics
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4) Embedding quality metrics

Institute

» KNN: fraction of original k-nearest neighbours preserved — measures
local /microscopic fidelity.

» KNC: fraction of nearest class means preserved — measures mesoscopic structure
(cluster relationships).

» CPD: Spearman correlation between pairwise distances in high dimensions vs
embedding — measures global /macroscopic geometry.

Oxford Applications November 2025 24 /67
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Figure 3 — Metrics and very large dataset strategy
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Figure 3 — Metrics and very large dataset strategy
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0 1000 2000 3000 0 100 200 300 400 500

KNC comparisons and example for extremely large

datasets.

» Shows numeric comparison of
embedding quality across
parameter choices and comparisons
with UMAP.

» When to prefer t-SNE pipeline vs
UMAP (consider tradeoffs: global
structure vs local tightness,
runtime, reproducibility).
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Figure 3 — Metrics and very large dataset strategy
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CPD comparisons and example for extremely large

datasets.

» Shows numeric comparison of
embedding quality across
parameter choices and comparisons
with UMAP.

» When to prefer t-SNE pipeline vs
UMAP (consider tradeoffs: global
structure vs local tightness,
runtime, reproducibility).
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Figure 2 — Faithful t-SNE on mouse cortex data
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Figure 5 — Improved t-SNE on large

scRNA-seq dataset
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» Visualization of a large single-cell

RNA-sequencing data set using the
t-SNE pipeline.

Pipeline includes PCA
initialization, multi-scale similarity
kernels, high learning rate.

Compared to default t-SNE, the
embedding better preserves global
geometry — hierarchical
relationships between major cell
classes become interpretable (not
random “islands”).

Oxford

Mathematics Applications

November 2025 29 /67



Figure 7 — Mapping new cells onto existing t-SNE atlas
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KNC: 053
CPD: 066

» Projection of new single-cell data

onto a precomputed reference
t-SNE embedding (atlas), enabling
consistent cross-experiment
visualization.

Maintains locality and global
relations: new cells integrate
appropriately into the overall
structure without disrupting
existing clusters.

Useful for comparing related
datasets or tracking changes over
time.
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Summary

Mathematical
Institute

The paper provides a practical, reproducible recipe for producing t-SNE
visualisations that better reflect global and mesoscopic structure in scRNA-seq
data.

Core recommendations: PCA initialisation, multi-scale similarities, higher learning
rate; plus exaggeration/downsampling for very large datasets.

Quantitative evaluation (KNN/KNC/CPD) supports that the pipeline balances
local detail and global fidelity better than naive defaults.
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Why this is important?

Institute

» Practical impact: Simple changes to the t-SNE pipeline yield more faithful
visualisations and more reproducible results for scRNA-seq — important when
plotting atlases or comparing experiments.

> Methodological rigor: Using quantitative metrics rather than relying solely on
subjective visual assessment.
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Sparse Reduced-Rank Regression

Institute

Sparse Reduced-Rank Regression for Exploratory Visualisation of
Paired Multivariate Data

Dmitry Kobak, Yves Bernaerts, Marissa A. Weis, Federico Scala,
Andreas S. Tolias, Philipp Berens (2021)

Link to the paper.
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https://academic.oup.com/jrsssc/article/70/4/980/7034013

Background

Mathematical
Institute

In genomics, transcriptomics, and related biological fields (collectively known as
omics), the combination of experimental techniques can yield multiple sets of
features for the same set of biological samples.

One example is Patch-seq, a method combining single-cell RNA sequencing with
electrophysiological recordings from the same cells.

The authors present a framework based on sparse reduced-rank regression (RRR)
for obtaining an interpretable visualisation of the relationship between the
transcriptomic and the electrophysiological data.

Sparse RRR can provides a valuable tool for the exploration and visualisation of
paired multivariate datasets.

Oxford
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Highlights

Mathematical
Institute

» They propose a sparse reduced-rank regression (sRRR) framework for exploratory
visualisation of paired multivariate data (e.g., Patch-seq: gene expression and
electrophysiology).

» Use elastic-net regularisation to produce sparse, interpretable low-rank mappings.

v

Introduce the bibiplot (biplot analog) to visualise relationships.

» Demonstrates that sRRR yields compact, interpretable 2D visualisations that link
features in view X (genes) to view Y (electrophysiology), and includes
cross-validation to select sparsity/rank.

Oferd s Applications November 2025 35/67



1) Sparse Reduced-Rank Regression (sRRR)

M
Institute

» Model: Multivariate regression Y = XB + E with coefficient matrix B
constrained to low rank (rank(B) = r) and sparsity on the factors.

£OLs= ||Y—X]3"'||2

Oxford
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1) Sparse Reduced-Rank Regression (sRRR)

M
Institute

» Model: Multivariate regression Y = XB + E with coefficient matrix B
constrained to low rank (rank(B) = r) and sparsity on the factors.

£RRR = Y- XWV' | 2=

The product WV T forms the matrix of regression coefficients that has rank r.

Oxford
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1) Sparse Reduced-Rank Regression (sRRR)

M
Institute

» Model: Multivariate regression Y = XB + E with coefficient matrix B
constrained to low rank (rank(B) = r) and sparsity on the factors.

» Why low rank? Low-rank B captures a small number of latent factors to explain
the relation between the two variables.

» Why sparse? Elastic-net penalties yield sparsity in the mapping so only a small
subset of X features (genes) drive each latent dimension. This approach improves

interpretability.

Oxford Applications November 2025 38/67
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2) Elastic net and model selection

Institute

There are over 20 thousand genes in a mouse genome. The authors use elastic net
regularisation, which combines ¢; (lasso) and ¢, (ridge)

Elastic net: Combines ¢; and ¢ penalties to select correlated predictors (genes)
while controlling shrinkage.

This stabilises the selection as opposed to pure Lasso.

Selecting rank and sparsity: Authors use cross-validation to choose rank r and
the regularisation parameters, and they demonstrate sensible defaults and
diagnostic plots.
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Figure 1 — Method schematic
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» Experimental setup

(a) | » Acquiring gene information.

\—JHU/\ » Acquiring electrical information.

Combined inputs for each cell.
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| o

Schematic of Patch-seq.
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Figure 1 — Method schematic
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(b) (©

Regression
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Reduced-rank regression
with elastic net regularization

Schematic of sRRR (factorisation B = UV ").

» Inputs for combined features X, y.

» Fit sparse low-rank mapping from
XtoY.

» Elastic net regularization.

» Obtain 2D scores for visualization.
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3) The bibiplot: interpretable 2-D visualisation

» The authors introduce a bibiplot which displays both sample scores (projected
rows of X) and sparse loadings (selected gene / e-phys variables) on the same 2D
plane.

» Visually links which genes drive which electrophysiological properties and which
cells occupy particular regions in the joint space.
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Figure 6 — The bibiplot

Institute

Our sRRR

Figure: Bibiplot linking two different features.
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4) Application to Patch-seq datasets

Institute

» Main application: Patch-seq datasets (single cells with both transcriptomic and
electrophysiological measurements).

» sRRR reveals biologically meaningful gene—ephys associations.

» Other uses: Any paired multivariate data (e.g., imaging features versus
behaviour, multi-omics).

Oxford Applications November 2025 44 /67
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Figure 2 — Cross-validation and variable selection
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(@) Eneesson (b) - ectornysray » (a) Principal component analysis
) » ) (PCA) of the transcriptomic data
s g . in the M1 dataset.
i PR » (b) PCA biplot of the
5 B 3 electrophysiological data in the
N ‘ same dataset.
B B » Grey lines show correlations of
individual electrophysiological
Figure: CV curves and example sparsity paths / features with PC1 and PC2.

chosen genes.
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Figure 3 — Patch-seq example: interpretable associations
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Figure: bibiplot from Patch-seq data showing cell

clusters and driving genes.

>

>

Cross- validation performance of
sparse RRR with r = 2.

Horizontal axis shows the average
number of selected genes obtained
for each A.

They obtained a strong
improvement in predictive
performance if, after RRR with
elastic net penalty with coefficients
A and «, they take the genes with
non-zero coefficients and run RRR
again using « = 0 (i.e. pure ridge).

Oxford
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Figure 5 — Sparse RRR biplot on Patch-seq data
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Orange lines: Witten et al. (2009).
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Summary
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sRRR extends reduced-rank regression by adding sparsity to produce interpretable
low-rank mappings between paired multivariate views.

The bibiplot is an interpretable visual tool linking sample projections and selected
variables from both views.

Cross-validation and elastic-net regularisation are central to achieve a practical
balance between prediction and interpretability.
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Why this is important?

Institute

Interpretability and visualization: sRRR directly produces visualizations that
are interpretable in terms of a small set of original features — crucial for
biological discovery.

Practical for multimodal data: method designed for paired high-dimensional
datasets.

Bridges prediction and exploration: sRRR is between purely predictive

reduced-rank models but also uses descriptive biplots, offering both predictive
power and clarity.

Oxford
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A synaptic learning rule for exploiting nonlinear dendritic
computation

A synaptic learning rule for exploiting nonlinear dendritic
computation

Brendan A. Bicknell, Michael Hausser (2021)

Link to the paper.
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https://www.sciencedirect.com/science/article/pii/S0896627321007170

Background

Institute

Information processing in the brain depends on the integration of synaptic input
distributed throughout neuronal dendrites.

Dendritic integration is a hierarchical process, proposed to be equivalent to
integration by a multilayer network, potentially endowing single neurons with
substantial computational power.

They develop a learning rule from dendritic cable theory and use it to investigate
the processing capacity of a detailed pyramidal neuron model.
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Mathematics

Applications November 2025 51/67



Highlights

Institute

Derive a synaptic learning rule based on dendritic cable theory to exploit nonlinear
dendritic integration.

Show a single detailed pyramidal neuron can learn complex spatio-temporal
feature-binding tasks.

Demonstrate synergy between spatial placement of synapses and temporal
bursting, thereby enabling nonlinear computations in one neuron.

Single neurons can learn network-level computations simply by tuning synaptic
weights.
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Graphical Abstract
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1) Learning rule from dendritic cable theory

Institute

» Derive a synaptic update rule that explicitly accounts for dendritic cable properties
(spatial attenuation, branch interactions, local nonlinearities).

» Unlike point-neuron rules, this rule lets the neuron tune synapses with awareness
of their dendritic location and the local integrative environment.

» Which biological signals (local dendritic voltage, calcium) could plausibly
implement the required local information for this rule?

Oxford Applications November 2025 54 /67
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Figure 1 — Model morphology and input patterns
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2) Single neuron learns nonlinear feature binding

Institute

In a morphologically detailed neuron model, the learning rule produces synaptic
configurations that make the neuron selective to specific spatio-temporal input
conjunctions.

The neuron only spikes when inputs occur at particular dendritic regions and in
particular temporal burst patterns.

How is this different from a point-neuron trained on the same task?
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Figure 2 — Output selectivity across input combinations
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Figure 2 — Output selectivity across input combinations
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3) Synergy of spatial placement and input timing

Institute

» Spatial distribution of synapses across branches interacts with temporal burst
patterns to create nonlinear gating of outputs.

» The neuron implements logical-like conjunctions (e.g., A at branch X and B with
timing pattern T) rather than simple linear sums.

Oxford Applications November 2025 59 /67
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Figure 3 — Mechanistic view: local dendritic events cause global
output
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Figure 3 — Mechanistic view: local dendritic events cause global
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4) Single neuron as a small multilayer processor

Institute

» Because dendritic subunits integrate nonlinearly and pass signals up the tree, a
single neuron can implement hierarchical computations similar to a small deep

network.
» Some functions attributed to networks of neurons might instead be implemented
within single neurons.
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Summary

Mathematical
Institute

» The authors derive a dendrite-aware synaptic learning rule and show in detailed
neuron models that a neuron can learn complex spatio-temporal feature bindings.

P> Results demonstrate spatial placement and timing synergy and that single cells
can implement nontrivial nonlinear computations.

» Broader claim: biological neurons, thanks to dendrites, are computationally richer
than standard point-neuron abstractions.
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Why this is important?

Rethinking the unit of computation: single neurons may be much more
powerful processors than typically assumed.

Biology inspired algorithms: Dendrite-inspired learning and architectural motifs
could inspire new ML primitives or neuromorphic designs that leverage local
subunit nonlinearities.

Practical: This example is bridging the properties of computational neuroscience
and ML and highlights the cost of oversimplification.

Oxford
Mathematics

Applications November 2025 64 /67



Summary

» Dendritic structure and local nonlinearities show that single neurons can solve
complex tasks when guided by appropriate learning rules.

» Critical thinking about modeling choices: when is the point-neuron adequate and
when is it insufficient?
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Please provide feedback for the coursel!

MMSC Machine Learning Special

Topic Feedback Form
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Thank you! Questions?



