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The Super Weight in LLMs

The Super Weight in Large Language Models

Mengxia Yu, De Wang, Qi Shan, Colorado J Reed, Alvin Wan
(2025)

Link to the paper.
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https://arxiv.org/abs/2411.07191


Summary

▶ This paper studies the importance of the model parameters for the performance of
the LLM.

▶ The authors discover that a tiny set of extremely important scalar weights in
LLMs (super weights) are important for the performance of the model. Pruning
a single super weight can catastrophically harm generation quality.

▶ They provide a data-free, single-forward-pass method to identify super weights
and release an index for common open LLMs.

▶ Super weights cause super activations that propagate through layers and are
linked to skip connections.

▶ Practical implication: preserving super weights dramatically improves accuracy of
the model.
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1) Super Weights

▶ Reminder: For GPT3 we estimated about 175B parameters needed to be tunned.

▶ Finding: Models contain a tiny number of weights, “super weights”, that are
disproportionately important. Pruning one such weight can raise perplexity by
orders of magnitude and collapse zero-shot accuracy.
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Figure 1 — Qualitative effect of pruning a super weight

Figure: example model output before (left) and after

pruning a super weight (right).

▶ Visual demonstration: pruning a
single super weight can produce
near-gibberish output.

▶ Use this to motivate why average
metrics hide extreme sensitivities.

▶ Which downstream modules
(Attention head, MLP) could
amplify a local perturbation?
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1) Super Weights

▶ Reminder: For GPT3 we estimated about 175B parameters needed to be tunned.

▶ Finding: Models contain a tiny number of weights, “super weights”, that are
disproportionately important. Pruning one such weight can raise perplexity by
orders of magnitude and collapse zero-shot accuracy.

▶ Where they appear: Frequently in MLP matrices, typically in early layers;
numbers are consistent across model family and size.
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Quantitative importance (Table 1)

Table: performance metrics for original vs prune-SW

vs prune-non-SW.

▶ Table shows that pruning super
weights severely degrades
performance, reducing accuracy.

▶ Pruning 7000 other weights only
marginally affects quality.

▶ By preserving the activation (SA)
but pruning super weights only
partly improves performance.
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2) Identifying Super Weights

▶ The authors propose a data-free, single-forward-pass identification algorithm to
locate super weights (no calibration dataset required).

▶ They provide an index of coordinates for several open LLMs.
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Figure — Identification / Index of Super Weights

Figure: how to identify the super weights across

model layers.

▶ Shows where super weights occur
across layers and model sizes.

▶ The authors also publish
coordinates for many open models
— useful for replication and lab
assignments.

▶ Does the distribution suggest a
training-time origin or
architecture-induced phenomenon?
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3) Super Activation Mechanism

▶ Observation: Super weights induce super activations — massive activations at
a fixed channel/position that persist across layers and prompts.

▶ Mechanism: The super weight amplifies an otherwise ordinary activation into an
outlier.

▶ By pruning super weights, the super activations disappears. Therefore, SW can
be identified by identifying SA in the network.
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Figure — impact of superweights on activations

Figure: activations related to super weights.

▶ Demonstrates that preserving a
tiny set of weights yields much
better activation outcomes.
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Figure — impact of superweights on output probabilities

Figure: output tokens related to super weights.

▶ Super weights affect output token
probability distributions.

▶ Pruning of super weights leads to
non-sensical outputs.
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Figure — impact of superweights on accuracy

Figure: amplifying super-weights increases accuracy.

▶ How variations in the magnitude of
super weights impact the model’s
quality?

▶ They multiply the super weights by
a scaling factor ranging from 0.0
to 3.0

▶ Amplifying super weights can
improve model accuracy to some
extend.
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Breakthroughs

▶ The paper pinpoints extreme single-scalar sensitivity in LLMs and provides a
practical, data-free identification method.

▶ It links weight outliers to activation outliers (mechanistic explanation) and shows
how preserving a tiny set of scalars can be more effective than expensive
mixed-precision schemes.

▶ Research impact: invites more fine-grained robustness/sensitivity analyses.
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Why this paper is interesting?

▶ Shows that tiny, unexpected model elements can have large scale effects. What
does this tell us about interpretability and robustness in LLMS?

▶ What is the origin of super-weights?

▶ What could be the relation to training dynamics?

▶ Are there ways to train models without such single points of failure?
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The art of using t-SNE

The art of using t-SNE for single-cell transcriptomics

Dmitry Kobak, Philipp Berens (2019)
Nature Communications

Link to the paper.

Applications November 2025 17 / 67

https://www.nature.com/articles/s41467-019-13056-x


Background

▶ Single-cell transcriptomics yields ever growing data sets containing RNA
expression levels for thousands of genes from up to millions of cells.

▶ Common data analysis pipelines include a dimensionality reduction step for
visualising the data in two dimensions, most frequently performed using
t-distributed stochastic neighbour embedding (t-SNE).

▶ Good for visualization, but naive applications often suffer from severe
shortcomings, such as the global structure of the data is not represented
accurately.

▶ The authors propose an alternative approach for dimensionality reduction that
works well for RNA-seq data sets.
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Highlights

▶ Provides a practical t-SNE pipeline for large single-cell transcriptomic data that
better preserves global structure.

▶ Recommends three main modifications: PCA initialisation, multi-scale similarities,
and a larger learning rate.

▶ Quantifies embedding faithfulness with three metrics (KNN, KNC, CPD) and
demonstrates the pipeline on synthetic and several real scRNA-seq data sets.

▶ Compares to alternatives (e.g., UMAP) and discusses reproducibility, mapping
new cells to references, and trade-offs.
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1) PCA initialisation

▶ The authors use the first two principal components (after scaling) to initialise
t-SNE rather than random initialisation.

▶ This approach injects information about global geometry early so t-SNE can focus
on local fine structure while preserving large-scale relationships; improves
reproducibility (reduces random seed dependence).

▶ This demonstrates how PCA captures macroscopic structure and how PCA init
reduces arbitrary cluster placement on the projection space.
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Figure 1 — Synthetic dataset: preserving global geometry

▶ Default t-SNE places clusters
arbitrarily

▶ Use PCA initialization, multi-scale
and higher learning rate recovers
meaningful large-scale
arrangement.

▶ Use KNN/KNC/CPD shown in the
paper to quantify improvement.

▶ How does initialisation influence
final layout?
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2) Multi-scale similarities

▶ Combine multiple perplexity values (e.g., default 30 and a large perplexity like
n/100) to capture both local and more global neighbourhoods simultaneously.

▶ Multi-scale blends both and yields embeddings that balance micro/meso/macro
structure.

▶ Small perplexity favors local detail, large perplexity favors global structure.
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3) Increased learning rate and exaggeration for large data

▶ They use a larger learning rate (rule of thumb η = n/12 whenever this exceeds
200) to improve convergence for large n; for very large data use early exaggeration
and downsampling-based initialisation.

▶ The default η = 200 is often too small for large data sets and may lead to poor
optimization or suboptimal local minima.
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4) Embedding quality metrics

▶ KNN: fraction of original k-nearest neighbours preserved — measures
local/microscopic fidelity.

▶ KNC: fraction of nearest class means preserved — measures mesoscopic structure
(cluster relationships).

▶ CPD: Spearman correlation between pairwise distances in high dimensions vs
embedding — measures global/macroscopic geometry.
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Figure 3 — Metrics and very large dataset strategy

KNN comparisons and example for extremely large

datasets.

▶ Shows numeric comparison of
embedding quality across
parameter choices and comparisons
with UMAP.

▶ When to prefer t-SNE pipeline vs
UMAP (consider tradeoffs: global
structure vs local tightness,
runtime, reproducibility).
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Figure 3 — Metrics and very large dataset strategy

KNC comparisons and example for extremely large

datasets.

▶ Shows numeric comparison of
embedding quality across
parameter choices and comparisons
with UMAP.

▶ When to prefer t-SNE pipeline vs
UMAP (consider tradeoffs: global
structure vs local tightness,
runtime, reproducibility).
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Figure 3 — Metrics and very large dataset strategy

CPD comparisons and example for extremely large

datasets.

▶ Shows numeric comparison of
embedding quality across
parameter choices and comparisons
with UMAP.

▶ When to prefer t-SNE pipeline vs
UMAP (consider tradeoffs: global
structure vs local tightness,
runtime, reproducibility).
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Figure 2 — Faithful t-SNE on mouse cortex data

▶ Improved preservation of
hierarchical relationships among
133 clusters when using the
recommended pipeline.

▶ Emphasize reproducibility: PCA
init removes random seed
variability.

▶ t-SNE visualisations of the Tasic et
al. dataset (23,822 cells).
Compare default vs pipeline.
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Figure 5 — Improved t-SNE on large scRNA-seq dataset

▶ Visualization of a large single-cell
RNA-sequencing data set using the
t-SNE pipeline.

▶ Pipeline includes PCA
initialization, multi-scale similarity
kernels, high learning rate.

▶ Compared to default t-SNE, the
embedding better preserves global
geometry — hierarchical
relationships between major cell
classes become interpretable (not
random “islands”).
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Figure 7 — Mapping new cells onto existing t-SNE atlas

▶ Projection of new single-cell data
onto a precomputed reference
t-SNE embedding (atlas), enabling
consistent cross-experiment
visualization.

▶ Maintains locality and global
relations: new cells integrate
appropriately into the overall
structure without disrupting
existing clusters.

▶ Useful for comparing related
datasets or tracking changes over
time.
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Summary

▶ The paper provides a practical, reproducible recipe for producing t-SNE
visualisations that better reflect global and mesoscopic structure in scRNA-seq
data.

▶ Core recommendations: PCA initialisation, multi-scale similarities, higher learning
rate; plus exaggeration/downsampling for very large datasets.

▶ Quantitative evaluation (KNN/KNC/CPD) supports that the pipeline balances
local detail and global fidelity better than naive defaults.
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Why this is important?

▶ Practical impact: Simple changes to the t-SNE pipeline yield more faithful
visualisations and more reproducible results for scRNA-seq — important when
plotting atlases or comparing experiments.

▶ Methodological rigor: Using quantitative metrics rather than relying solely on
subjective visual assessment.
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Sparse Reduced-Rank Regression

Sparse Reduced-Rank Regression for Exploratory Visualisation of
Paired Multivariate Data

Dmitry Kobak, Yves Bernaerts, Marissa A. Weis, Federico Scala,
Andreas S. Tolias, Philipp Berens (2021)

Link to the paper.
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https://academic.oup.com/jrsssc/article/70/4/980/7034013


Background

▶ In genomics, transcriptomics, and related biological fields (collectively known as
omics), the combination of experimental techniques can yield multiple sets of
features for the same set of biological samples.

▶ One example is Patch-seq, a method combining single-cell RNA sequencing with
electrophysiological recordings from the same cells.

▶ The authors present a framework based on sparse reduced-rank regression (RRR)
for obtaining an interpretable visualisation of the relationship between the
transcriptomic and the electrophysiological data.

▶ Sparse RRR can provides a valuable tool for the exploration and visualisation of
paired multivariate datasets.
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Highlights

▶ They propose a sparse reduced-rank regression (sRRR) framework for exploratory
visualisation of paired multivariate data (e.g., Patch-seq: gene expression and
electrophysiology).

▶ Use elastic-net regularisation to produce sparse, interpretable low-rank mappings.

▶ Introduce the bibiplot (biplot analog) to visualise relationships.

▶ Demonstrates that sRRR yields compact, interpretable 2D visualisations that link
features in view X (genes) to view Y (electrophysiology), and includes
cross-validation to select sparsity/rank.
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1) Sparse Reduced-Rank Regression (sRRR)

▶ Model: Multivariate regression Y = XB + E with coefficient matrix B
constrained to low rank (rank(B) = r) and sparsity on the factors.
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1) Sparse Reduced-Rank Regression (sRRR)

▶ Model: Multivariate regression Y = XB + E with coefficient matrix B
constrained to low rank (rank(B) = r) and sparsity on the factors.

The product WV T forms the matrix of regression coefficients that has rank r.
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1) Sparse Reduced-Rank Regression (sRRR)

▶ Model: Multivariate regression Y = XB + E with coefficient matrix B
constrained to low rank (rank(B) = r) and sparsity on the factors.

▶ Why low rank? Low-rank B captures a small number of latent factors to explain
the relation between the two variables.

▶ Why sparse? Elastic-net penalties yield sparsity in the mapping so only a small
subset of X features (genes) drive each latent dimension. This approach improves
interpretability.
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2) Elastic net and model selection

▶ There are over 20 thousand genes in a mouse genome. The authors use elastic net
regularisation, which combines ℓ1 (lasso) and ℓ2 (ridge)

▶ Elastic net: Combines ℓ1 and ℓ2 penalties to select correlated predictors (genes)
while controlling shrinkage.

▶ This stabilises the selection as opposed to pure Lasso.

▶ Selecting rank and sparsity: Authors use cross-validation to choose rank r and
the regularisation parameters, and they demonstrate sensible defaults and
diagnostic plots.
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Figure 1 — Method schematic

Schematic of Patch-seq.

▶ Experimental setup

▶ Acquiring gene information.

▶ Acquiring electrical information.

▶ Combined inputs for each cell.

Applications November 2025 40 / 67



Figure 1 — Method schematic

Schematic of sRRR (factorisation B = UV⊤).

▶ Inputs for combined features X , y .

▶ Fit sparse low-rank mapping from
X to Y .

▶ Elastic net regularization.

▶ Obtain 2D scores for visualization.
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3) The bibiplot: interpretable 2-D visualisation

▶ The authors introduce a bibiplot which displays both sample scores (projected
rows of X ) and sparse loadings (selected gene / e-phys variables) on the same 2D
plane.

▶ Visually links which genes drive which electrophysiological properties and which
cells occupy particular regions in the joint space.
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Figure 6 — The bibiplot

Figure: Bibiplot linking two different features.
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4) Application to Patch-seq datasets

▶ Main application: Patch-seq datasets (single cells with both transcriptomic and
electrophysiological measurements).

▶ sRRR reveals biologically meaningful gene–ephys associations.

▶ Other uses: Any paired multivariate data (e.g., imaging features versus
behaviour, multi-omics).
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Figure 2 — Cross-validation and variable selection

Figure: CV curves and example sparsity paths /

chosen genes.

▶ (a) Principal component analysis
(PCA) of the transcriptomic data
in the M1 dataset.

▶ (b) PCA biplot of the
electrophysiological data in the
same dataset.

▶ Grey lines show correlations of
individual electrophysiological
features with PC1 and PC2.
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Figure 3 — Patch-seq example: interpretable associations

Figure: bibiplot from Patch-seq data showing cell

clusters and driving genes.

▶ Cross- validation performance of
sparse RRR with r = 2.

▶ Horizontal axis shows the average
number of selected genes obtained
for each λ.

▶ They obtained a strong
improvement in predictive
performance if, after RRR with
elastic net penalty with coefficients
λ and α, they take the genes with
non-zero coefficients and run RRR
again using α = 0 (i.e. pure ridge).
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Figure 5 — Sparse RRR biplot on Patch-seq data

▶ Cross-validation estimates of
correlations between the
transcriptomic and the
electrophyiological reduced-rank
regression (RRR) components
depending on λ.

▶ Horizontal axis shows the average
number of selected genes obtained
for each λ.

▶ Solid blue line: RRR component 1.
Dashed blue line: RRR component 2.
Orange lines: Witten et al. (2009).
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Summary

▶ sRRR extends reduced-rank regression by adding sparsity to produce interpretable
low-rank mappings between paired multivariate views.

▶ The bibiplot is an interpretable visual tool linking sample projections and selected
variables from both views.

▶ Cross-validation and elastic-net regularisation are central to achieve a practical
balance between prediction and interpretability.
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Why this is important?

▶ Interpretability and visualization: sRRR directly produces visualizations that
are interpretable in terms of a small set of original features — crucial for
biological discovery.

▶ Practical for multimodal data: method designed for paired high-dimensional
datasets.

▶ Bridges prediction and exploration: sRRR is between purely predictive
reduced-rank models but also uses descriptive biplots, offering both predictive
power and clarity.
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A synaptic learning rule for exploiting nonlinear dendritic
computation

A synaptic learning rule for exploiting nonlinear dendritic
computation

Brendan A. Bicknell, Michael Hausser (2021)

Link to the paper.
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Background

▶ Information processing in the brain depends on the integration of synaptic input
distributed throughout neuronal dendrites.

▶ Dendritic integration is a hierarchical process, proposed to be equivalent to
integration by a multilayer network, potentially endowing single neurons with
substantial computational power.

▶ They develop a learning rule from dendritic cable theory and use it to investigate
the processing capacity of a detailed pyramidal neuron model.
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Highlights

▶ Derive a synaptic learning rule based on dendritic cable theory to exploit nonlinear
dendritic integration.

▶ Show a single detailed pyramidal neuron can learn complex spatio-temporal
feature-binding tasks.

▶ Demonstrate synergy between spatial placement of synapses and temporal
bursting, thereby enabling nonlinear computations in one neuron.

▶ Single neurons can learn network-level computations simply by tuning synaptic
weights.
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Graphical Abstract
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1) Learning rule from dendritic cable theory

▶ Derive a synaptic update rule that explicitly accounts for dendritic cable properties
(spatial attenuation, branch interactions, local nonlinearities).

▶ Unlike point-neuron rules, this rule lets the neuron tune synapses with awareness
of their dendritic location and the local integrative environment.

▶ Which biological signals (local dendritic voltage, calcium) could plausibly
implement the required local information for this rule?
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Figure 1 — Model morphology and input patterns

▶ Detailed neuron morphology and
locations of synaptic inputs.

▶ The simulated response to
increasing numbers of excitatory
synaptic inputs at the indicated
locations, compared with the peak
of the linear sum of the same
number of unitary EPSPs.

▶ Captures spatial attenuation,
branch isolation, and local
nonlinearities.
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2) Single neuron learns nonlinear feature binding

▶ In a morphologically detailed neuron model, the learning rule produces synaptic
configurations that make the neuron selective to specific spatio-temporal input
conjunctions.

▶ The neuron only spikes when inputs occur at particular dendritic regions and in
particular temporal burst patterns.

▶ How is this different from a point-neuron trained on the same task?

Applications November 2025 56 / 67



Figure 2 — Output selectivity across input combinations

▶ Spike / somatic voltage responses
for different spatio-temporal input
patterns.

▶ Example simulation of the active
model stimulated with Poisson
input into excitatory (black) and
inhibitory (magenta) synapses.
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Figure 2 — Output selectivity across input combinations

▶ Spike / somatic voltage responses
for different spatio-temporal input
patterns.

▶ The neuron responds only to
specific conjunctions — evidence
of learned feature binding.
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3) Synergy of spatial placement and input timing

▶ Spatial distribution of synapses across branches interacts with temporal burst
patterns to create nonlinear gating of outputs.

▶ The neuron implements logical-like conjunctions (e.g., A at branch X and B with
timing pattern T) rather than simple linear sums.
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Figure 3 — Mechanistic view: local dendritic events cause global
output

▶ Local nonlinear events (NMDA
spikes / plateaus) amplify selected
patterns and propagate to the
soma.

▶ (A) Nonlinear feature-binding
problem. Synapses representing
different stimulus features were
randomly distributed throughout
basal and apical dendrites.
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Figure 3 — Mechanistic view: local dendritic events cause global
output

▶ (A) Nonlinear feature-binding
problem. Synapses representing
different stimulus features were
randomly distributed throughout
basal and apical dendrites.

▶ (B) Example simulations of a
model before (gray) and after
(black) training on the task
defined in (A)
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4) Single neuron as a small multilayer processor

▶ Because dendritic subunits integrate nonlinearly and pass signals up the tree, a
single neuron can implement hierarchical computations similar to a small deep
network.

▶ Some functions attributed to networks of neurons might instead be implemented
within single neurons.
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Summary

▶ The authors derive a dendrite-aware synaptic learning rule and show in detailed
neuron models that a neuron can learn complex spatio-temporal feature bindings.

▶ Results demonstrate spatial placement and timing synergy and that single cells
can implement nontrivial nonlinear computations.

▶ Broader claim: biological neurons, thanks to dendrites, are computationally richer
than standard point-neuron abstractions.
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Why this is important?

▶ Rethinking the unit of computation: single neurons may be much more
powerful processors than typically assumed.

▶ Biology inspired algorithms: Dendrite-inspired learning and architectural motifs
could inspire new ML primitives or neuromorphic designs that leverage local
subunit nonlinearities.

▶ Practical: This example is bridging the properties of computational neuroscience
and ML and highlights the cost of oversimplification.
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Summary

▶ Dendritic structure and local nonlinearities show that single neurons can solve
complex tasks when guided by appropriate learning rules.

▶ Critical thinking about modeling choices: when is the point-neuron adequate and
when is it insufficient?
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Please provide feedback for the course!
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Thank you! Questions?


