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Abstract
In genomics, transcriptomics, and related biological fields 
(collectively known as omics), combinations of experi-
mental techniques can yield multiple sets of features for 
the same set of biological replicates. One example is Patch-
seq, a method combining single-cell RNA sequencing with 
electrophysiological recordings from the same cells. Here 
we present a framework based on sparse reduced-rank re-
gression (RRR) for obtaining an interpretable visualisa-
tion of the relationship between the transcriptomic and the 
electrophysiological data. We use elastic net regularisation 
that yields sparse solutions and allows for an efficient com-
putational implementation. Using several Patch-seq data-
sets, we show that sparse RRR outperforms both sparse 
full-rank regression and non-sparse RRR, as well as previ-
ous sparse RRR approaches, in terms of predictive perfor-
mance. We introduce a bibiplot visualisation in order to 
display the dominant factors determining the relationship 
between transcriptomic and electrophysiological proper-
ties of neurons. We believe that sparse RRR can provide a 
valuable tool for the exploration and visualisation of paired 
multivariate datasets.
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1  |   INTRODUCTION

Since the days of Ramón y Cajal, neuroscientists have classified neurons into cell types, which are 
often considered the fundamental building blocks of neural circuits (Masland, 2004). Classically, 
these types have been defined based on their electrophysiology or anatomy, but due to the recent rise 
of single-cell transcriptomics, a definition of cell types based on genetics is becoming increasingly 
popular (Poulin et al., 2016). For example, single-cell RNA sequencing has been used to establish a 
census of neurons in the retina (Macosko et al., 2015; Shekhar et al., 2016), the cortex (Tasic et al., 
2016, 2018; Zeisel et al., 2015), the whole brain (Saunders et al., 2018) and the entire nervous system 
(Zeisel et al., 2018) of mice. Despite this success, it has proven difficult to integrate the obtained cell 
type taxonomy based on the transcriptome with information about physiology and anatomy (Tripathy 
et al., 2017; Zeng & Sanes, 2017) and it remains unclear to what extent neural types are discrete or 
show continuous variation (Harris et al., 2018; Zeng & Sanes, 2017).

A recently developed technique called Patch-seq (Cadwell et al., 2016, 2017; Földy et al., 2016; 
Fuzik et al., 2016) allows to isolate and sequence RNA content of cells characterised electrophysio-
logically and/or morphologically (Figure 1a), opening the way to relate gene expression patterns to 
physiological characteristics on the single-cell level (Lipovsek et al., 2021). Patch-seq experiments are 
laborious and low throughput, resulting in multimodal datasets with a particular statistical structure: a 
few dozen or hundreds of cells are characterised with expression levels of many thousands of genes as 
well as dozens of electrophysiological measurements (Figure 1a). Integrating and properly visualising 
genetic and physiological information in this n ≪ p regime requires specialised statistical techniques 
that could isolate a subset of relevant genes and exploit information about the relationships within both 
data modalities to increase statistical power.

Here we extended the sparse reduced-rank regression (sRRR) method of Chen and Huang (2012) 
and used it to obtain an interpretable and intuitive visualisation of the relationship between high-
dimensional single-cell transcriptomes and electrophysiological information obtained using tech-
niques like Patch-seq. We used five existing Patch-seq datasets (Cadwell et al., 2016; Fuzik et al., 
2016; Gouwens et  al., 2020; Scala et  al., 2019, 2020) with sample sizes ranging from n  =  44 to 
n = 3395 to demonstrate and validate our method (Table 1). Our sparse RRR method outperformed 
the sparse RRR of Chen and Huang (2012) on our data in terms of cross-validated R2.

Our code in Python is available at https://github.com/beren​slab/patch​-seq-rrr.

F I G U R E  1   (a) Schematic illustration of a Patch-seq experiment: electrophysiological activity is recorded 
by patch clamping, followed by RNA extraction and sequencing. Below: data matrices after computational 
characterisation of electrophysiological properties (Y) and estimation of gene counts (X). (b–e). Schematic 
illustrations and loss functions for several regression methods. (b) Simple regression. (c) Multivariate regression. (d) 
Reduced-rank regression. (e) Regularised reduced-rank regression. Grey circles denote predictors that are left out of 
the sparse model

(a) (b) (c) (d) (e)
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2  |   RESULTS

2.1  |  Patch-seq data

A Patch-seq experiment yields two paired data matrices (Figure 1a): an n × p matrix X containing 
expression levels of p genes for each of the n cells, and an n × q matrix Y containing q electrophysio-
logical properties of the same n cells. We assume that both matrices are centred, that is column means 
have been subtracted.

To illustrate the structure of such datasets and motivate the development of sparse RRR for explor-
atory visualisation, we use principal component analysis (PCA) on the M1 dataset, one of the largest 
existing Patch-seq datasets (Scala et al., 2020). It contains n = 1213 neurons from the primary motor 
cortex of adult mice and spans all types of neurons, both excitatory and inhibitory (Table 1). Each 
cell was described by q = 16 electrophysiological properties and we used the p = 1000 most variable 
genes that were selected in the original publication. Note that there are over 40 thousand coding and 
non-coding genes in the mouse genome that were detected in at least one cell in this particular dataset. 
It is, however, a common practice to select a smaller set of genes for downstream analysis (Luecken 
& Theis, 2019), as most detected genes have low average expression, low variance, and are likely not 
informative. We log-transformed all gene counts and standardised the columns of X and Y matrices 
(see Methods for more details).

PCA in the transcriptomic space (Figure 2a) revealed that PC1, in this case, was an experimental 
artefact largely driven by the variability in the sequencing quality between cells (correlation between 
PC1 and the log number of detected genes was 0.90), whereas PC2 captured a biologically meaningful 
difference between the excitatory and the inhibitory cells. In contrast, PCA in the electrophysiolog-
ical space (Figure 2b) separated major classes of neurons with different firing properties, such as 
Pvalb- (red), Sst- (orange) and Vip- (purple) expressing interneurons. Thus, there appears to be no 
direct relationship between the leading PCs of the two modalities. The aim of RRR is to uncover such 
relationships.

The visualisation in Figure 2b is known as biplot (Gabriel, 1971). Lines represent correlations 
between each electrophysiological property and PC1/PC2: the horizontal coordinate of each line's tip 
shows the correlation with PC1 and the vertical coordinate shows the correlation with PC2. The circle, 
sometimes called correlation circle, shows the maximum attainable correlation. The scaling between 
the scatter plot and the lines/circle is arbitrary. Following Gabriel (1971), we standardise both PCs and 
scale the lines/circle by an arbitrary factor of 3 (so that most points in the scatter plot are contained 
within the circle). We do not show a biplot in the transcriptomic space (Figure 2a) because the PCA 
in the gene space is not sparse, making the biplot practically impossible to display and interpret as it 
would have to show all 1000 genes from X. This motivates the sparsity constraint that we impose on 
RRR.

T A B L E  1   Patch-seq datasets used in this study. All recordings were done in the mouse neocortex

Name Citation
Cells 
(n)

Genes 
(p)

Features 
(q) Description

M1 Scala et al. (2020) 1213 1000 16 Motor cortex, all layers/types

V1 Gouwens et al. (2020) 3395 1252 55 Visual cortex, interneurons (L1–L6)

L4 Scala et al. (2019) 102 1000 13 Layer 4 Sst interneurons

L1 Cadwell et al. (2016) 44 3000 11 Layer 1 interneurons

S1 Fuzik et al. (2016) 80 1384 80 Layer 1/2 neurons D
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2.2  |  Reduced-rank regression

To relate gene expression patterns to electrophysiological properties, one could use the transcriptomic 
data to explain any given electrophysiological property, for example action potential threshold. This 
is a regression problem: the expression level of each gene is an explanatory variable and the action 
potential threshold is the response variable (Figure 1b). To predict multiple electrophysiological prop-
erties at the same time, one can combine individual regressions into a multivariate regression problem 
where the response is a multivariate vector (Figure 1c). The loss function of multivariate linear regres-
sion (known as ordinary least squares, OLS) is

and its well-known solution is given by

Here and below all matrix norms are Frobenius norms. The intercept is omitted because both X and Y are 
assumed to be centered.

Different electrophysiological properties tend to be strongly correlated and so one can construct a 
more parsimonious model where gene expression is predicting r < q latent factors that in turn predict 
all q electrophysiological properties together (Figure 1d). These latent factors form a bottleneck in the 
linear mapping and allow exploiting correlations between the predicted electrophysiological proper-
ties to reduce the number of model parameters and to decrease overfitting. This approach is called 
reduced-rank regression (RRR) (Izenman, 1975; Velu & Reinsel, 2013). Its loss function is

(1)OLS = ‖Y − XB‖2

(2)�BOLS = (X⊤
X)−1

X
⊤

Y.

(3)RRR = ‖Y − XWV
⊤‖2,

F I G U R E  2   (a) Principal component analysis (PCA) of the transcriptomic data in the M1 dataset (Scala et al., 
2020). Colour denotes transcriptomic type (cold colours: excitatory neurons; warm colours: inhibitory neurons). 
Both PCs were standardised. (b) PCA biplot of the electrophysiological data in the same dataset. Grey lines show 
correlations of individual electrophysiological features with PC1 and PC2. The circle (correlation circle) shows 
maximal possible correlations. The relative scaling of the scatter plot and the lines/circle is arbitrary. The label 
positions were automatically adjusted by simulating spring repulsive forces between them until they stopped 
overlapping [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)
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where W and V each have r ≤ min(p, q) columns. Without loss of generality, it is convenient to require 
that V⊤

V = I. The product WV
⊤ forms the matrix of regression coefficients that has rank r.

This decomposition allows to interpret W as a mapping that transforms X into r latent variables 
and V as a mapping that transforms the latent variables into Y (Figure 1e). As a result, RRR can be 
viewed not only as a prediction method, but also as a dimensionality reduction method, allowing vi-
sualisation and exploration of the paired dataset. Latent factors XW can be interpreted as capturing 
low-dimensional genetic variability that is predictive of electrophysiological variability, while YV 
can be interpreted as low-dimensional electrophysiological variability that can be predicted from the 
genetic variability.

RRR can be directly solved by applying singular value decomposition (SVD) to the results of mul-
tivariate regression. Indeed, the RRR loss can be decomposed into the OLS loss and the low-rank loss:

The first term corresponds to the variance of Y that is unexplainable by any linear model. The minimum 
of the second term can be obtained by computing the SVD of XB̂OLS. The right singular vectors corre-
sponding to the r largest singular values give V̂, and �W = �BOLS

�V
⊤

.
Reduced-rank regression with the ridge penalty �‖WV‖2 = �‖W‖2 has the same analytic solu-

tion, but B̂OLS should be replaced with �Bridge = (X⊤
X + 𝜆I)−1

X
⊤

Y.

2.3  |  Reduced-rank regression with elastic net penalty

As there are over 20 thousand genes in a mouse genome (with 1000–5000 typically retained for analy-
sis) while the typical sample size n of a Patch-seq dataset is on the order of 100–1000, the regression 
problems discussed above are in the n < p regime and need to be regularised. Here we use elastic net 
regularisation, which combines ℓ1 (lasso) and ℓ2 (ridge) penalties (Zou & Hastie, 2005). Elastic net 
enforces sparsity and performs feature selection: only a small subset of genes are selected into the 
model while all other genes get zero regression coefficients (Figure 1e). Our elastic net RRR extends 
a previously suggested sparse RRR (Chen & Huang, 2012) that used the lasso penalty on its own. The 
elastic net penalty has well-known advantages compared to the pure lasso penalty, for example it al-
lows to select more than n predictors and can outperform lasso when predictors are strongly correlated 
(Zou & Hastie, 2005).

The loss function of our regularised RRR is:

The ℓ2 penalty is only applied to the matrix W because V is constrained to have a fixed ℓ2 norm. Also, 
following Chen and Huang (2012), we chose not to apply ℓ1 penalty to V and impose sparsity constraint 
only on the gene selection (see Discussion). We used the same parametrisation of the penalty as in the 
popular glmnet library (Friedman et al., 2010): α controls the trade-off between the lasso (α = 1) and the 
ridge (α = 0) while λ controls the overall regularisation strength. Following Chen and Huang (2012), the 
lasso penalty term ∑ p

i=1
‖Wi⋅‖2 =

∑ p

i=1

�∑
r
j=1

W2
ij
 computes the sum of ℓ2 norms of each row of W. 

(4)RRR = ‖Y − XWV
⊤‖2 = ‖Y − X�BOLS‖2 + ‖X�BOLS − XWV

⊤‖2,

(5)sRRR =
1

2n
‖Y − XWV

⊤‖2 + 𝜆

�
𝛼

p�

i= 1

‖Wi⋅‖2 + (1 − 𝛼)‖W‖2∕2

�
s.t. V

⊤
V = I.
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This is known as group lasso (Yuan & Lin, 2006), because it is the ℓ1 norm of the vector of row ℓ2 norms; 
it encourages the entire rows of W, and not just its individual elements, to be zeroed out, corresponding to 
some of the genes being left out of the model entirely. See Discussion about this choice.

This optimisation problem is biconvex and can be solved with an iterative alternating approach: in 
turn, we fix V and find the optimal Wopt and then fix W and find the optimal Vopt until convergence. 
For a fixed V, the least-squares term can be re-written as

meaning that for a fixed V, the loss is equivalent to

This is the loss of multivariate elastic net regression of YV on X, and so the optimal Wopt can be obtained 
using the glmnet library (Friedman et al., 2010) (using family = "mgaussian" option for row-
wise lasso penalty) which has readily available interfaces for Matlab, Python and R.

For a fixed W, the loss does not depend on the penalty terms and the least-squares term can be 
written as

This is an example of the orthogonal Procrustes problem (Gower & Dijksterhuis, 2004). Maximising the 
trace tr(Y⊤

XWV
⊤) is achieved by the thin SVD of Y⊤

XW. If the r left and right singular vectors are 
stacked in columns of L and R, respectively (we order them by singular values, in decreasing order), then 
Vopt = LR

⊤. We provide a short proof in the Appendix.
Given that the loss function is biconvex but possibly not jointly convex in V and W, it can be im-

portant to choose a reasonable initialisation. We initialised V by the r leading right singular vectors of 
X

⊤
Y and found this strategy to work well.

2.4  |  Relaxed elastic net

It has been argued that elastic net or even the lasso penalty on its own can lead to an over-shrinkage 
with non-zero coefficients shrinking too much (Zou & Hastie, 2005). There have been several sug-
gestions in the literature on how to mitigate this effect (Efron et al., 2004; Meinshausen, 2007; Zou 
& Hastie, 2005). Relaxed lasso (Meinshausen, 2007) performs lasso (setting α = 1 and λ = λ1) and 
then, using only the terms with non-zero coefficients, performs another lasso with a different penalty 
(α = 1, λ = λ2; usually λ2 < λ1). If λ2 = 0, then this has also been called LARS-OLS hybrid (Efron et al., 
2004).

Similar two-stage procedures for the elastic net penalty are not as established. We obtained a strong 
improvement in predictive performance if—after RRR with elastic net penalty with coefficients λ and 
α—we take the genes with non-zero coefficients and run RRR again using α = 0 (i.e. pure ridge) and 

(6)
‖Y−XWV

⊤‖2= tr(Y⊤
Y)+ tr(VW

⊤
X

⊤
XWV

⊤)−2tr(VW
⊤

X
⊤

Y)

= const+ tr(V⊤
Y

⊤
YV)+ tr(W⊤

X
⊤

XW)−2tr(W⊤
X

⊤
YV)

= const+‖YV−XW‖2,

(7)sRRR �V ∼
1

2n
‖YV − XW‖2 + �

�
�

p�

i= 1

‖Wi⋅‖2 + (1 − �)‖W‖2∕2

�
.

(8)‖Y−XWV
⊤‖2=‖Y‖2+ tr(VW

⊤
X

⊤
XWV

⊤)−2tr(Y⊤
XWV

⊤)

= const−2tr(Y⊤
XWV

⊤).
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the same value of λ (see Figure 3 below). This procedure does not introduce any additional tuning pa-
rameters but substantially outperforms pure elastic net RRR on our data, as we show below. We called 
it relaxed elastic net, following the relaxed lasso terminology (Meinshausen, 2007). The solution of 
the first round of sparse RRR we call naïve, following Zou and Hastie (2005).

A similar approach was used by De Mol et al. (2009) who performed elastic net using λ = λ1 and 
some small fixed value of α = α1, selected all genes with non-zero coefficients, and did pure ridge 
(α = 0) regression with λ = λ2 on this gene subset. This approach also has two hyperparameters that 
need to be selected using cross-validation, but requires a manual choice of α1 for the first elastic net. 
If α is also treated as an adjustable hyperparameter, then it becomes a more flexible generalisation of 
our approach with three hyperparameters.

2.5  |  Cross-validation

We used cross-validation (CV) to select the values of r, λ, and α that maximise the predictive perfor-
mance of the sparse RRR model. The cross-validation estimates of R2 are shown in Figure 3 for the 

F I G U R E  3   (a) Cross-validation performance of sparse RRR with r = 2 on the L1 dataset, depending on α 
(colour-coded, see legend) and λ. Horizontal axis shows the average number of selected genes obtained for each λ. 
Dashed lines: naive sparse RRR. Solid lines: relaxed sparse RRR. The vertical line at 20 selected genes indicates our 
parameter choice. Thick lines highlight α = 0.5. The standard deviation over all CV folds and repetitions at α = 0.5 
and λ value yielding ∼20 genes was 0.05 for the naive and 0.12 for the relaxed estimator (note that each fold had only 
4 samples in the test set). (b) The same for the L4 dataset. The standard deviation over all CV folds and repetitions 
at α = 0.5 and λ value yielding ∼20 genes was 0.04 for the naive and 0.07 for the relaxed estimator (here each fold 
had only ∼10 samples in the test set). (c) The same for the M1 dataset. Here thick lines highlight α = 1. The standard 
deviation over all CV folds and repetitions at α = 1 and λ value yielding ∼20 genes was 0.01 for the naive and for the 
relaxed estimators (here each fold had ∼120 samples in the test set). (d) The same for the V1 dataset. Here thick lines 
highlight α = 1. The standard deviation over all CV folds and repetitions at α = 1 and λ value yielding ∼20 genes was 
0.01 for the naive and for the relaxed estimators (here each fold had ∼340 samples in the test set). (e) Cross-validation 
performance with α = 0.5 depending on the rank (colour-coded, see legend) on the L1 dataset. Thick lines highlight 
r = 2. (f) The same for the L4 dataset. (g) The same for the M1 dataset (here using α = 1). (h) The same for the V1 
dataset (here using α = 1) [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c) (d)

(e) (f) (g) (h)
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L1, L4, M1 and V1 datasets. We used 10 times repeated 11-fold CV for the L1 data (n = 44), 10 times 
repeated 10-fold CV for the L4 data (n = 102), and non-repeated 10-fold CV for the M1 (n = 1321) 
and V1 (n = 3395) data. See Methods for the preprocessing details. The test-set R2 for each CV fold 
was computed as

where Xtest and Ytest were centred using the corresponding training-set means. We averaged the resulting 
R2 across all folds and repetitions.

When using rank r = 2 (Figure 3a–d), we found that α = 0.5 outperformed α = 1 on the L1 dataset, 
suggesting that adding an additional ridge penalty to the sparse RRR model of Chen and Huang (2012) 
can be helpful. At the same time, α = 0.5 and α = 1 performed equally well on the L4 and V1 datasets, 
while α = 1 outperformed other values on the M1 dataset. Overall, the differences in predictive perfor-
mance in the α ∈ [0.5, 1] range were moderate. For the downstream analysis, we used α = 0.5 for the 
L4 and L1 datasets, and α = 1 for the M1 and V1 datasets. We recommend α = 0.5 as a default setting.

The optimal λ corresponded to ∼30 selected genes for the L1 dataset, ∼15 selected genes for the L4 
dataset, and ∼100 selected genes for the M1 and the V1 datasets (Figure 3a–d), but the performance 
was comparably good in the range of ∼10–100 genes. For the downstream analysis, we always chose 
the value of λ yielding 20 selected genes. Selecting many more genes than that would make visualisa-
tion difficult (see below).

The optimal value of rank was r = 2 for the L1 and L4 datasets and r≈10 for the M1 and V1 data-
sets (Figure 3e–h). Lower ranks had worse performance due to underfitting, whereas higher ranks 
led to a drop in performance due to overfitting. Note that the full rank (r = 11, r = 13, r = 16 and 
r = 55 for the L1, L4, M1 and V1 datasets, respectively) corresponds to the standard multivariate 
elastic net regression. We verified that for the full rank, our algorithm yields the same solution as 
glmnet does on its own. The much better performance of r = 2 compared to the full rank on the L1 
and L4 datasets shows that r can act as a regularisation parameter, making sparse RRR outperform 
sparse full-rank regression. At the same time, for the M1 and V1 datasets, there was almost no dif-
ference in performance for any r ≥ 5 and the full-rank model performed almost as well, suggesting 
little overfitting due to the larger sample sizes. Still, even in this case, the RRR framework allows to 
order individual components by their importance (explained variance) and to make low-dimensional 
visualisations (see below).

Finally, in all datasets, the relaxed version of sparse RRR strongly outperformed the naive version, 
at least in the range of 10–50 selected genes, which is the range needed for interpretable visualisations 
(see below). If a much higher number of genes were selected into the model, the relaxed version per-
formed worse than the naive version, suggesting that the second stage of our relaxed approach was 
overfitting. For the L1 dataset with the smallest sample size, we observed non-monotonic dependency 
of the relaxed performance on the number of genes (Figure 3e), suggesting that the relaxed estimator 
can occupy different positions on the bias/variance trade-off depending on the λ. However, for the low 
number of selected genes, the relaxed version had superior performance across all datasets, all ranks, 
and all values of α.

We did not use nested CV above because our CV performed almost no hyperparameter optimisa-
tion (Cawley & Talbot, 2010): in the downstream analysis, the rank was fixed to r = 2, λ was fixed to 
yield 20 genes, leaving only the four-value α grid for hyperparameter optimisation. As a sanity check, 
we implemented nested CV with 10 outer folds to measure R2 and 10 inner folds to find the value of 
α ∈ {0.25, 0.5, 0.75, 1.0} that yielded the highest R2 with λ corresponding to 20 genes and rank r = 2. 

(9)R2 = 1 −
‖Ytest − Xtest

�W�V
⊤

‖2

‖Ytest‖2
,

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/70/4/980/7034013 by guest on 03 D

ecem
ber 2025



988  |      KOBAK et al.

This procedure yielded the following values for the four datasets: 0.17 (L1 dataset), 0.13 (S1 dataset), 
0.32 (M1 dataset) and 0.19 (V1 dataset). These estimates were nearly identical to the ones shown in 
Figure 3.

Note that sparse RRR of Chen and Huang (2012) corresponds to the naive (non-relaxed) version 
with α = 1. In the regime when the model selects a few dozen genes, it was strongly outperformed by 
our relaxed sparse RRR estimator.

2.6  |  Bibiplot visualisation

We applied our sparse RRR approach with r = 2 and λ chosen to yield 20 selected genes to the 
L1, L4, M1 and V1 datasets (used α values: 0.5, 0.5, 1.0 and 1.0, respectively). For each of the 
datasets, we visualised the results with a pair of biplots, a graphical technique that we suggest 
to call a bibiplot.

To construct a biplot in the transcriptomic space, we use the bottleneck representation XW for the 
scatter plot and show lines for all genes that are selected by the model (even though other genes can 
also have non-zero correlations with XW). The biplot in the electrophysiological space is constructed 
using YV and shows all available electrophysiological properties. If R2 of the model is high, then the 
two scatter plots will be similar to each other. Comparing the directions of variables between the two 
biplots can suggest which electrophysiological variables are associated with which genes.

The L1 dataset encompasses two types of interneurons from layer 1 of mouse cortex: neu-
rogliaform cells (NGC) and single bouqet cells (SBC). Accordingly, the first RRR component 
captured the difference between the two cell types (Figure 4a). The second RRR component had 
only one gene strongly associated with it (Figure 4a) and contributed only a very small increase 
in cross-validated R2, as one can see comparing the cross-validated values for r = 1 and r = 2 
at 20 selected genes (Figure 3e). We conclude that the second RRR component in this dataset is 
only weakly detectable.

In the L4 dataset (Figure 4b), the most salient feature in the bibiplot is the separation between the 
cells recorded in the visual and the somatosensory cortices. The selected genes here are pointing in all 
directions, and indeed the second component contributed a substantial increase in R2 (Figure 3f). This 
suggests that both components are biologically meaningful. See Scala et al. (2019) for a more in-depth 
analysis using sparse RRR.

The M1 dataset was much larger than the previous two and included a much more diverse selec-
tion of neuron types. As a result, the R2 values were substantially higher and the model needed to use 
rank r ≥ 5 to reach its optimal performance. Here we nevertheless used r = 2 because it allows the 
same kind of visualisation as for the other datasets (Figure 4c). See Scala et al. (2020) for a more in-
depth analysis using sparse RRR with rank r = 5. Two-dimensional bibiplot separated major classes 
of neurons, such as Pvalb, Sst, Vip and Lamp5 expressing interneurons (red/orange/purple/salmon), 
and excitatory cells (green). Moreover, some selected genes were directly related to ion channel dy-
namics, such as the calcium channel subunit genes Cacna1e and Cacna2d1 or the potassium channel-
interacting protein gene Kcnip2. The same was true in the V1 dataset (Figure 4d), where, for example 
a potassium channel gene Kctd8 was among those selected by the model.

It is worth noting that the RRR biplot in the electrophysiological space for the M1 data (Figure 
4c, right) was very similar to the PCA biplot (Figure 2b). This indicates that the sparse RRR model 
explained the dominant modes of variation among the dependent variables. We observed the same in 
other datasets analysed here, even though in principle PCA and RRR components of the Y matrix can 
be very different.
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2.7  |  Comparison to sparse CCA and PLS

Reduced-rank regression does not directly aim to maximise the correlation between Xw and Yv, where w 
and v are corresponding columns of W and V, even though high correlation is needed to achieve high R2. 
Nevertheless, one can ask what is the cross-validated estimate of this correlation in each pair of RRR com-
ponents. We used the same cross-validation scheme to measure these out-of-sample correlations (Figure 
5)1. With the hyperparameters used above, the correlations in the L1 dataset were 0.69 for component 1 
and 0.35 for component 2 (Figure 5a). In the L4 dataset, they were 0.65 and 0.54, respectively (Figure 5b). 
In the M1 dataset, they were 0.91 and 0.77 (Figure 5c); in the V1 dataset—0.92 and 0.83 (Figure 5d).

A statistical method that directly maximises correlation between Xw and Yv is called canonical 
correlation analysis (CCA). A number of different methods for sparse CCA have been suggested in 
the last decade (Chen et al., 2012b; Chu et al., 2013; Gao et al., 2017; Hardoon & Shawe-Taylor, 
2011; Lykou & Whittaker, 2010; Mai & Zhang, 2019; Parkhomenko et al., 2009; Suo et al., 2017; 
Waaijenborg et  al., 2008; Wiesel et  al., 2008; Wilms & Croux, 2015; Witten & Tibshirani, 2009; 
Witten et al., 2009), of which the sparse CCA of Witten et al. (2009) is arguably the most well-known 
(judging by the number of citations in Google Scholar at the time of writing). We used the same cross-
validation procedure as described above to measure the out-of-sample performance of their algorithm, 
using the original R implementation in package PMA. We found that this method performed worse 
than our sparse RRR: correlations for all four datasets and both components (the first and the second) 
were similar or lower than with sparse RRR, with only one exception (Figure 5, orange lines).

A likely explanation is that the method of Witten et al. (2009) is ‘over-regularised’. To see this, 
note that RRR maximises explained variance in Y, that is correlation between Xw and Yv, times the 
standard deviation of Yv. Another related method is called partial least squares (PLS): it maximises 
the covariance between Xw and Yv, that is correlation, times the standard deviation of Yv, times the 
standard deviation of Xw. Both RRR and PLS can be seen as particular regularised versions of CCA, 
because they bias w and v toward the high-variance directions in X and Y, somewhat similar to the 
ridge penalty. The method of Witten et al. (2009) maximises covariance (and so could in fact have 
been called ‘sparse PLS’ and not ‘sparse CCA’), which may provide too strong ℓ2 regularisation. More 
recent sparse CCA methods (Mai & Zhang, 2019; Suo et al., 2017) have not been benchmarked here.

The method of Witten et al. (2009) can also be used to construct a bibiplot, even though the origi-
nal paper did not discuss such visualisations. However, we found that for the M1 dataset such bibiplot 
was less informative than the one built with our method (Figure 6). We tuned the regularisation pen-
alty to yield 20 selected genes for two components together, but the resulting set had no genes associ-
ated with the fast-spiking interneurons (red colour). This is likely due to deflation procedure of Witten 
et al. (2009) leading to correlated components, as mentioned in the original paper. For the M1 dataset 
with 20 selected genes, correlation between the first and the second component in the gene space was 
0.33. Using our method, the same correlation was 0.00.

2.8  |  Gene selection stability

Instability is a general feature of all sparse models, especially when n ≪ p (Xu et al., 2011). We used 
bootstrapping to estimate gene selection stability in our datasets. On each of the 100 iterations, we 

 1In some related previous work (González et al., 2008, 2009), cross-validated correlations were computed by pooling test set 
points across all cross-validation splits. We observed that this procedure can sometimes yield biased results; we compute 
test-set correlation within each test set, and then average across CV splits.
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(a)

(b)

(c)

(d)
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drew a bootstrap sample of n cells with repetitions and fit the sparse RRR model with the same param-
eters as above. This allows to measure how often each gene is selected into the model.

As expected, we found that the larger the sample size the more stable the gene selection was. In the 
L1 dataset (n = 44), the most reliably selected gene was selected only 67% of times. In the L4 dataset 
(n = 102), 89% of times. In the M1 dataset (n = 1213), there were 10 genes that were selected over 
90% of times, with four genes getting into the model on every bootstrap iteration. Finally, in the V1 
dataset (n = 3395), 12 genes were selected at least 90% of times, with eight genes getting selected on 
every iteration.

We also found that elastic net with α = 0.5 typically led to a more stable model than the pure lasso 
with α = 1 (with λ values appropriately adjusted to select 20 genes). We quantified the overall gene 
selection stability by computing the mean and the standard deviation of the bootstrap selection frac-
tion across the top 20 most often selected genes. This average stability was 0.24 ± 0.10 with α = 1.0 
versus 0.34 ± 0.12 with α = 0.5 in the L1 dataset; 0.48 ± 0.12 versus 0.55 ± 0.19 in the L4 dataset; 
0.80 ± 0.20 versus 0.85 ± 0.19 in the M1 dataset; and 0.90 ± 0.13 versus 0.83 ± 0.20 in the V1 data-
set. The difference was not large, but observed in three out of four datasets. See Discussion for more 
considerations about model stability.

2.9  |  Preprocessing choices

All of the analysis shown above was done after selecting 1000–3000 most variable genes and stand-
ardising the predictors. Putting these two preprocessing steps inside the cross-validation loop yielded 
practically the same results (Figure 7a–c; magenta lines).

Omitting the gene selection step and performing sparse RRR directly on all detected genes (this 
number can exceed 40000, counting both coding and non-coding genes) and/or omitting the standard-
isation step led to lower cross-validated R2 values in the L1 and L4 datasets but to exactly the same 
performance in the M1 dataset (Figure 7). This suggests that feature selection and standardisation can 
be useful heuristics when the sample size is low, but are not needed for larger sample sizes.

2.10  |  Sparse RRR with r ≠ 2

For the L1 and L4 datasets, cross-validation suggested r = 2 as the optimal rank, conveniently allow-
ing us to use two-dimensional scatter plots for visualisation. For the M1 dataset we used r = 2 for 
visualisation, despite cross-validation suggesting that a higher rank could achieve better predictive 
performance. In this case, one can use a higher rank and display several biplots for different pairs 
of components, or alternatively perform separate RRR analyses on different subsets of the data. For 

F I G U R E  4   (a) Sparse RRR biplot of the transcriptomic space (left) and electrophysiological space (right) in 
the L1 dataset. Colour codes cell type (orange: neurogliaform cells, NGC; green: single bouqet cells, SBC). Only 20 
genes selected by the model are shown on the left. See Figure 2b for the details of biplot visualisation. As there, label 
positions were automatically adjusted to prevent overlap. (b) The same for the L4 dataset. Colour denotes cortical area 
(orange: visual cortex; red: somatosensory cortex). (c) The same for the M1 dataset. Colour denotes transcriptomic 
type (see Figure 2). (d) The same for the V1 dataset. Colour denotes transcriptomic type. For this dataset, only a 
subset of electrophysiological features are shown on the right to reduce the clutter [Colour figure can be viewed at 
wileyonlinelibrary.com]
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this, we refer to our parallel publication describing the M1 dataset using r = 5 (Scala et al., 2020). 
Importantly, we found that the first two components of the rank-5 model were very similar to the two 
components of the rank-2 model shown here, reassuringly suggesting that the choice of r does not 
strongly affect the leading components.

We observed an opposite case when we applied sparse RRR to the S1 dataset with n = 80 inhibi-
tory (all Cck from layers 1/2) and excitatory neurons from mouse somatosensory cortex (Fuzik et al., 
2016). The first RRR component strongly separated excitatory and inhibitory neurons (Figure 8), 
which is not surprising given the large differences in gene expression and in firing patterns between 
these two classes of neurons. However, subsequent RRR components did not carry much signal in this 
dataset. The RRR model with r = 1 and α = 0.5 outperformed the model with r = 2 for low number 
of selected genes (Figure 8a), while the correlation in the second component pair was close to zero 
(Figure 8b). This suggests effectively a one-dimensional shared subspace in this dataset.

3  |   DISCUSSION

We proposed sRRR as a tool for interpretable data exploration and visualisation of Patch-seq record-
ings as an example of paired multivariate datasets in general. It allows to visualise the variability 
across cells in transcriptomic and electrophysiological modalities in a consistent way, and to find a 
sparse set of genes explaining electrophysiological variability. We used cross-validation to tune the 
hyperparameters and to estimate the out-of-sample performance of the model. The method has already 
been used in our parallel publications (Scala et al., 2019, 2020).

3.1  |  Comparison to other regression methods

Our method directly builds up on the sparse RRR of Chen and Huang (2012) who added the lasso pen-
alty to the RRR loss function. We extended this approach by using an elastic net penalty that combines 
lasso and ridge regularisation. This adds flexibility to the method and indeed we showed that in some 
cases non-zero ridge penalty is beneficial for the predictive performance (Figure 3) and for model 
stability. In addition, we introduced the relaxed elastic net approach to mitigate the over-shrinkage 

F I G U R E  5   (a) Cross-validation estimates of correlations between the transcriptomic and the electrophyiological 
reduced-rank regression (RRR) components with r = 2 in the L1 dataset, depending on λ. Horizontal axis shows 
the average number of selected genes obtained for each λ. Here we used α = 0.5. Solid blue line: RRR component 
1. Dashed blue line: RRR component 2. Solid and dashed orange lines: sparse CCA method of Witten et al. (2009), 
components 1 and 2. (b) The same for the L4 dataset. (c) The same for the M1 dataset. (d) The same for the V1 dataset 
[Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c) (d)
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bias associated with naive elastic net or naive lasso solutions (De Mol et al., 2009; Efron et al., 2004; 
Meinshausen, 2007; Zou & Hastie, 2005). The sparse RRR method of Chen and Huang (2012) cor-
responds to our naive RRR with α = 1, which in our experiments performed much worse than the 
relaxed version (Figure 3).

F I G U R E  6   (a) The same bibiplot as shown in Figure 4c for the M1 dataset. (b) The analogous bibiplot 
constructed using the method of Witten et al. (2009), with regularisation parameter tuned to yield 20 selected genes 
for both components together [Colour figure can be viewed at wileyonlinelibrary.com]

(a)

(b)

F I G U R E  7   (a) Cross-validated R2 in the L1 dataset with r = 2, α = 0.5, and different values of λ. Solid lines: 
relaxed version, dashed lines: naive version. Colours code different preprocessing choices. Blue: default approach 
used in other figures. Orange: without standardising the columns of X. Green: without selecting most variable 
columns of X. Red: without either. Purple: gene selection and standardisation done within the CV loop on each 
training set separately (and applied to the test set). (b) The same for the L4 dataset. (c) The same for the M1 dataset. 
Note that the V1 dataset is not analysed here, because for that dataset we used data that were already preprocessed by 
the original authors [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/70/4/980/7034013 by guest on 03 D

ecem
ber 2025

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


994  |      KOBAK et al.

Furthermore, on some of the datasets sRRR outperformed sparse full-rank regression (which is 
directly available, for example in the popular glmnet library), suggesting that reduced-rank con-
straint is not only useful for visualisation but can also provide additional regularisation and reduces 
overfitting.

Elastic net regularisation has two parameters, α and λ, and cross-validation sometimes indicated 
that α can be varied in some range without affecting the model performance (Figure 3). This allows 
the researcher to control the trade-off between a sparser solution and a more comprehensive gene 
selection. If there is a set of genes that are highly correlated among each other, then large α will tend 
to select only one of them, whereas small α will tend to assign similar weights to all of them. We rec-
ommend using α = 0.5 as a reasonable default compromise.

We followed Friedman et al. (2010), Chen and Huang (2012) and others in imposing sparsity only 
in the predictor space: the lasso penalty is applied only to W but not to V and so feature selection only 
happens on the columns of X but not of Y. This arguably makes sense for the Patch-seq data consid-
ered in this manuscript but may be different for other kinds of datasets. See Chen et al. (2012a) for a 
discussion of sRRR with sparsity in both X and Y.

3.2  |  Comparison to other dimensionality reduction methods

Reduced rank-regression is closely related to two other classical dimensionality reduction methods 
analysing two paired data matrices (also called two-view data): CCA and PLS. They can be understood 
as looking for projections with maximal correlation (CCA) or maximal covariance (PLS) between X 
and Y, whereas RRR looks for projections with maximal explained variance in Y. In recent years, 
multiple approaches to sparse CCA (Chen et al., 2012b; Chu et al., 2013; Gao et al., 2017; Hardoon & 
Shawe-Taylor, 2011; Lykou & Whittaker, 2010; Mai & Zhang, 2019; Parkhomenko et al., 2009; Suo 
et al., 2017; Waaijenborg et al., 2008; Wiesel et al., 2008; Wilms & Croux, 2015; Witten & Tibshirani, 
2009; Witten et al., 2009) and sparse PLS (Chun & Keleş, 2010; Lê Cao et al., 2008, 2011) have been 
suggested in the literature. Here, we chose sparse RRR at the core of our framework, because for the 
Patch-seq data it seems more meaningful to predict electrophyiological properties from transcriptomic 
information instead of treating them symmetrically, as genes give rise to physiological function. In 
addition, sparse RRR allows a mathematically simple formulation for rank r > 1 (using group lasso), 

F I G U R E  8   (a) Cross-validation estimates of R2 in sparse RRR with r = 1 and r = 2 (α = 0.5) in the S1 dataset. 
Horizontal axis shows the average number of selected genes obtained for each λ. (b) Cross-validation estimates of 
correlations between the transcriptomic and the electrophysiological RRR components with r = 2 and α = 0.5. (c) The 
RRR component using r = 1 and α = 0.5 in the transcriptomic space (horizontal axis) and in the electrophysiological 
space (vertical axis). The value of λ was chosen to yield 10 selected genes [Colour figure can be viewed at 
wileyonlinelibrary.com]

(a) (b) (c)
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whereas sparse PLS/CCA methods cited above are typically iterative: after extracting the k-th compo-
nent, matrices X and Y are deflated and the algorithm is repeated to extract the (k+1)-th component, 
resulting in a cumbersome procedure that is often difficult to analyse mathematically.

That said, by comparing our sparse RRR method with sparse PLS/CCA method of Witten et al. 
(2009), we found that our method can be competitive as a CCA variant, at least for the kind of datasets 
studied here. On the other hand, the method of Witten et al. (2009) can also be used to construct a 
bibiplot of Patch-seq data, using the same approach as developed here. The original papers (Witten & 
Tibshirani, 2009; Witten et al., 2009) did not discuss any such visualisations.

Sparse (and non-sparse) CCA and PLS have been applied to biological datasets in order to in-
tegrate multi-omics data (González et  al., 2008, 2009, 2012; Lê Cao et  al., 2008, 2009), with the 
recent mixOmics package for R providing a convenient implementation for several of these methods 
(Rohart et al., 2017). We believe that our sparse RRR can be a useful addition to this array of multi-
omics statistical techniques.

This series of multi-omics papers always used two separate plots for visualising the CCA/PLS 
results within each modality: a sample plot, also called a units plot (in our case this would be a scatter 
plot of Patch-seq cells), and a variable plot, also called a correlation circle plot (in our case, this would 
be a scatter plot of selected genes or electrophysiological properties, together with the correlation 
circle). We found it convenient to combine these two plots into a single biplot (Gabriel, 1971). This 
allows to use two biplots (what we called a bibiplot) instead of four separate plots.

In ecology, RRR has been long used for dimensionality reduction and data visualisation, under the 
name of redundancy analysis (RDA) (Ramette, 2007; Ter Braak, 1994). This field uses biplots similar 
to the ones developed in this manuscript (Braak & Looman, 1994), sometimes combining both biplots 
into one single plot. A recently suggested sparse RDA (Csala et al., 2017) has similar aim to our work; 
their method can be seen as a variant of sparse PLS.

3.3  |  Limitations and outlook

Following Friedman et al. (2010) and Chen and Huang (2012), we used group lasso that induces row-
wise sparsity in W. This means that the same set of genes is selected for all RRR components. For 
r = 2, as used in this manuscript, the same set of genes influences the first and the second component, 
which has both advantages and disadvantages. Our sparse RRR algorithm is easy to modify for the 
standard lasso case: using ∑‖Wi·‖1 in Equation (5) instead of ∑‖Wi·‖2 would induce element-wise 
sparsity. In this case, the loss in Equation (7) can be minimised separately for each column of W (e.g. 
also using glmnet). Using this approach, different genes can be selected for different RRR compo-
nents and the same value of λ can yield different number of selected genes for different components. 
However, when using relaxed elastic net and performing RRR again, all components will get non-zero 
contributions from all selected genes. Further work would be needed to formulate a relaxed version of 
the element-wise sparse RRR that would preserve element-wise sparsity. Empirically, we found that 
for the datasets considered here, the performance of the element-wise sparse RRR without relaxation 
was similar to the performance of the naive row-wise sparse RRR but worse than the performance of 
the relaxed row-wise sparse RRR.

One important caveat is that the list of selected genes should not be interpreted as definite. There 
are two reasons for that. First, the model performance (Figure 3) was often unaffected in some range 
of parameters corresponding to selecting from ∼10 to ∼100 genes, meaning that the choice of reg-
ularisation strength in this interval remains an analyst's call. Second, even for fixed regularisation 
parameters, a somewhat different set of genes may be selected every time the experiment is repeated. 
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We used bootstrapping to directly estimate gene selection stability of sparse RRR, and found that the 
larger the sample size, the more stable the model was. There is an interplay between these two factors. 
Stronger ℓ1 regularisation leads to a sparser model with less selection reliability. Weaker ℓ1 regulari-
sation leads to a less sparse model with higher selection reliability. We stress that such instability is an 
inherent feature of all sparse methods (Xu et al., 2011).

Single-cell RNA-seq data are notoriously noisy, with non-perfect sensitivity due to Poisson de-
tection noise, and high variability due to variation in sequencing depths and other technical factors 
(Lause et al., 2020). These problems can be particularly strong in Patch-seq data where samples are 
collected manually, inducing additional variability (Lipovsek et al., 2021). Such data quality issues 
can make it difficult to detect an underlying biological signal using statistical methods. Here we used 
bootstrapping and cross-validation to show that our method was nevertheless able to extract reliable 
and useful biological information.

In conclusion, we believe that sparse RRR can be a valuable tool for exploration and visualisation 
of paired datasets. We expect that our method can be relevant beyond the scope of Patch-seq data. For 
example, spatial transcriptomics (Lein et al., 2017) combined with two-photon imaging may allow 
characterising the transcriptome and physiology of individual cells in the intact tissue, yielding large 
multi-modal datasets. Similarly, other types of multi-omics data where single-cell or bulk transcrip-
tomic data are combined with some other type of measurements (e.g. chemical, medical, or even 
behavioural), may benefit from interpretable visualisation techniques such as the one introduced here.

4  |   METHODS

4.1  |  Data preprocessing

4.1.1  |  L1 dataset

We used read counts table from the original publication (Cadwell et al., 2016). In this dataset, there 
are n = 51 interneurons (from 53 sequenced interneurons, 2 were excluded in the original publication 
as contaminated), p = 15,074 genes identified by the authors as detected, and q = 11 electrophysi-
ological properties. We excluded all cells for which at least one electrophysiological property was not 
estimated, resulting in n = 44. We restricted the gene pool to the p = 3000 most variable genes, the 
same ones identified in the original publication. We used the expert classification of cells into two 
classes performed in the original publication for annotating cell types. Out of n = 44 cells, only 35 
cells were classified unambiguously (score 1 or score 5 on the scale from 1 to 5); the remaining 9 cells 
received intermediate scores. When performing cross-validation with gene selection in the CV loop, 
we used the gene selection procedure from Kobak and Berens (2019).

4.1.2  |  S1 dataset

We used UMI counts table from the original publication (Fuzik et al., 2016). In this dataset, there are 
n = 83 cells, p = 24,378 genes after excluding ERCC spike-ins, and q = 89 electrophysiological prop-
erties. Out of 83 sequenced cells, we were only able to match n = 80 to the electrophysiological data. 
We used only q = 80 electrophysiological properties for which the data were available for all these 
cells (the fact that n = q = 80 is coincidental). We selected p = 1,384 genes with average expression 
above 0.5 (before standardisation) for the RRR analysis.
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4.1.3  |  L4 dataset

We used read counts table from the original publication (Scala et al., 2019). In this dataset, there are 
n = 110 Patch-seq neurons; we used the same n = 102 as in the original publication (after excluding 
low quality cells). We used the same p = 1000 genes selected in the original publication, and the same 
q = 13 electrophysiological properties.

4.1.4  |  M1 dataset

We used read counts table from the original publication (Scala et al., 2020). In this dataset, there are 
n = 1320 Patch-seq neurons; we used the same n = 1213 as in the original publication (after excluding 
low quality cells). We used the same p = 1000 genes selected in the original publication, and the same 
q = 16 electrophysiological properties.

4.1.5  |  V1 dataset

We used preprocessed data (after gene selection, normalisation, log-transformation, etc.) from https://
github.com/Allen​Insti​tute/coupl​edAE-patchseq (Gala et al., 2020) and further z-scored the electro-
physiological features. This is a subset of the data from Gouwens et al. (2020); the entire dataset was 
not available at the time of writing.

4.1.6  |  Preprocessing

For the full-length datasets (L1, L4, M1) we performed sequencing depth normalisation by converting 
the counts to counter per million (CPM). For the UMI-based dataset (S1), we divided the values for 
each cell by the cell sum over all genes (sequencing depth) and multiplying the result by the median 
sequencing depth size across all cells. In both cases we then log-transformed the data using  log 2(x+1) 
transformation. Finally, we standardised all gene expression values and all electrophysiological prop-
erties to zero mean and unit variance.

4.2  |  Data availability

All datasets were either downloaded following the links in the original publications or provided by 
the authors. All datasets can be found at https://github.com/beren​slab/patch​-seq-rrr. Our full analysis 
code in Python is also available there.
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APPENDIX 

PROCRUSTES PROBLEM
Given A, the Procrustes problem is to maximise tr(AV

⊤
) subject to V⊤

V = I (Gower & Dijksterhuis, 
2004). Let us denote by A = LQR

⊤ = L̃Q̃R
⊤ the thin and the full SVD of A. Now we have:

Here H = R
⊤

V
⊤

L̃ is a matrix with orthonormal rows as can be verified directly, and so it must have 
all its elements not larger than one. It follows that the whole trace is not larger than the sum of singular 
values of A. Using V = LR

⊤ yields exactly this value of the trace, hence it is the optimum.

tr(AV
⊤

) = tr(L̃Q̃R
⊤

V
⊤

) = tr(Q̃R
⊤

V
⊤

L̃) = tr(Q̃H) =
∑

qiHii ≤

∑
qi = tr(Q).
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