

C5.6 Applied Complex Variables Plan

<u># Lectures</u>	<u>Subject</u>	<u>Problem Sheet</u>
3	Revision of core analysis and conformal mapping	1
2	Schwarz-Christoffel formulae and BVPs via conformal mapping	1, 2
2	Steady free surface flows	2
1	Unsteady free surface flows	2

lectures

Subject

Problem Sheets

3

Plemelj formulae, mixed BVPs;
Lanchy singular integral equations

3

2

Complex and generalized
Fourier transforms

3, 4

3

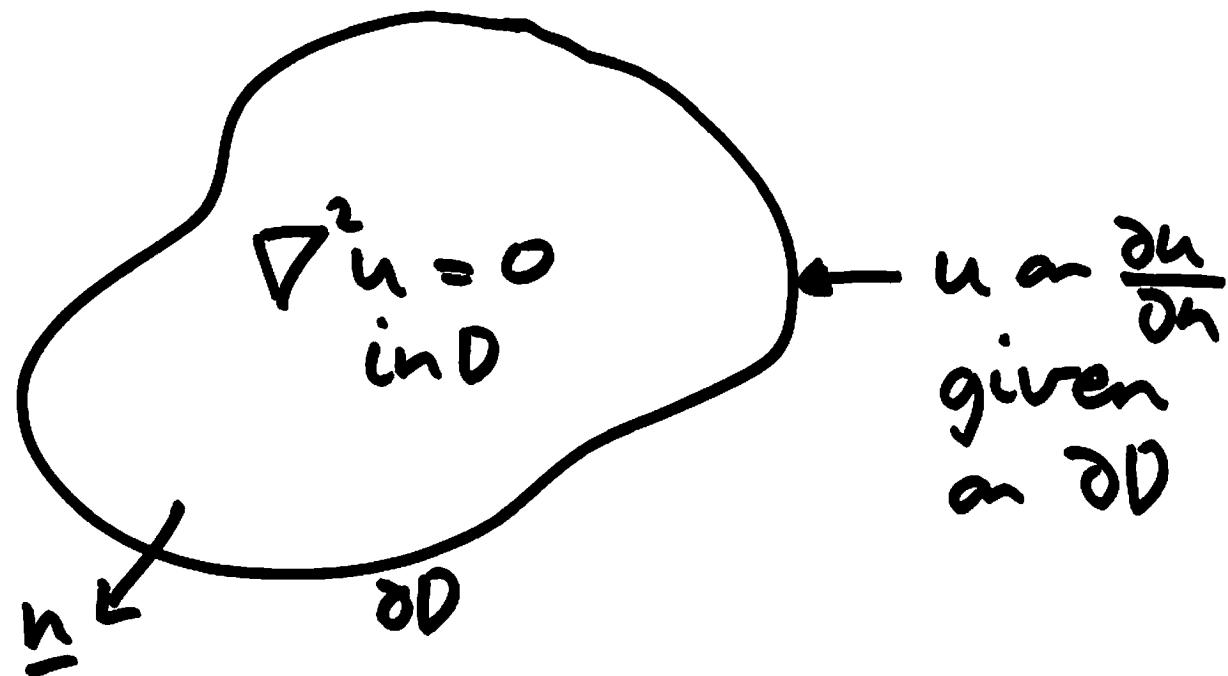
The Wiener-Hopf Method

4

Motivation : problems leading to Laplace's equation

Steady heat flow

- Conservation of energy $\nabla \cdot \underline{q} = 0$] $\Rightarrow \nabla^2 u = 0$
- Fourier's law $\underline{q} = -k \nabla u$]
- Typical BCs:



Inviscid fluid flow

- Steady, 2D, incompressible, irrotational

$$\Rightarrow \underline{u}(x, y) = (u, v, 0), \nabla \cdot \underline{u} = 0, \nabla \times \underline{u} = 0$$

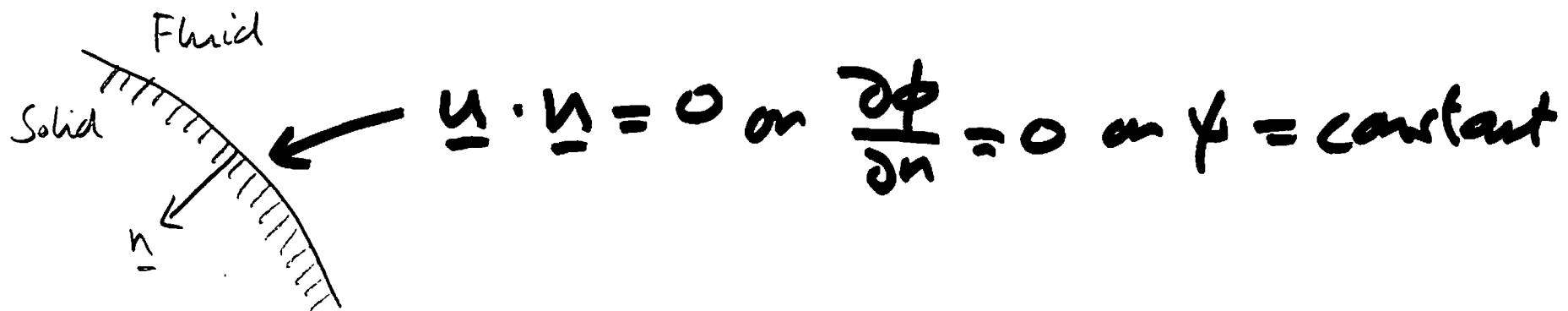
$$\Rightarrow \exists \psi, \phi \text{ s.t. } u = \psi_y = \phi_x, v = -\psi_x = \phi_y$$

$$\Rightarrow \nabla^2 \psi = 0, \nabla^2 \phi = 0$$

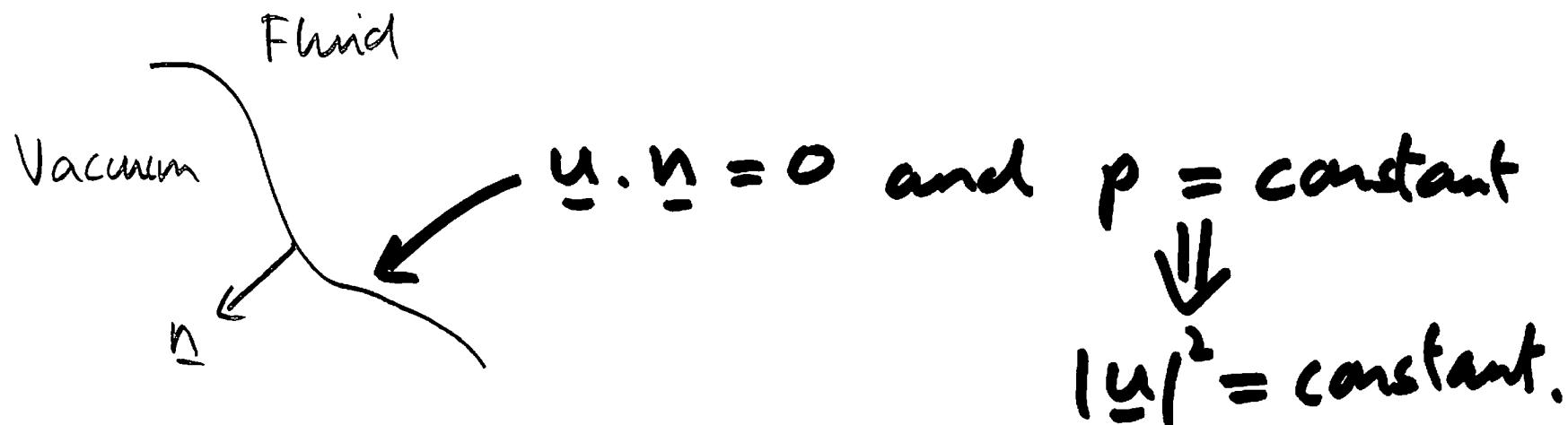
- Pressure given by Bernoulli (no gravity):

$$\frac{P}{\rho} + \frac{1}{2} |\underline{u}|^2 = \text{constant.}$$

- BC at a solid surface:



- BCs at a free surface (no surface tension):



- Others include :

gravitation

electromagnetism

membranes

linear elasticity

Darcy flow

etc

Review of core complex analysis

Notation

- $z = x + iy \in \mathbb{C} (x, y \in \mathbb{R})$; $\bar{z} = x - iy$.
- D is a region (an open, path-connected subset of \mathbb{C}), simply-connected unless stated otherwise, with boundary ∂D .
- Γ is a contour (a piecewise, continuously differentiable, simple path in \mathbb{C}) oriented with the positive (anti-clockwise) orientation closed with interior $\text{Int}(\Gamma)$ unless stated otherwise.
- $D(a, R) := \{z \in \mathbb{C} : |z - a| < R\}$, disc centre a , radius R .

Derivatives

- $f(z)$ holomorphic on D ($f \in H(D)$)
 $\Leftrightarrow f'(z) = \lim_{h \rightarrow 0} \frac{f(z+h) - f(z)}{h}$ exists $\forall z \in D$.
- Much more restrictive than real case \because need
 - $\lim_{h \rightarrow 0} = \lim_{\text{Im}(h) \rightarrow 0} \lim_{\text{Re}(h) \rightarrow 0} = \lim_{\text{Re}(h) \rightarrow 0} \lim_{\text{Im}(h) \rightarrow 0}$
- Let $f(z) = u(x, y) + iv(x, y)$ ($u = \text{Re}(f), v = \text{Im}(f)$)
 $\Rightarrow f'(z) = \underset{h \text{ real}}{\underset{\uparrow}{u_x + iv_x}} = \underset{h \text{ pure imaginary}}{\underset{\uparrow}{\frac{u_y + iv_y}{i}}}$

$\Rightarrow u_x = v_y, u_y = -v_x$ Cauchy-Riemann Equations

$\Rightarrow \nabla^2 u = 0, \nabla^2 v = 0$ Laplace's equation

NB: u, v called harmonic conjugates.

NB: Cauchy-Riemann Equations

$$\Leftrightarrow \frac{\partial f}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (u + iv) = 0$$

↑
Chain rule with z, \bar{z} independent.

Integrals

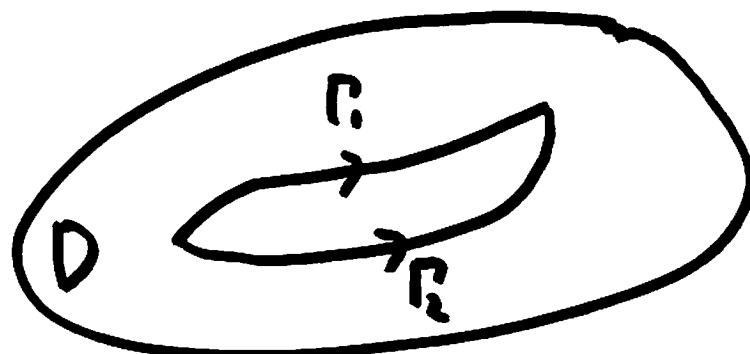
- Lanchy's Theorem

$$f \in H(\text{Int}(\Gamma)) \cap C(\Gamma) \quad \underset{f \text{ continuous on } \Gamma}{\uparrow} \quad \Rightarrow \quad \oint_{\Gamma} f(z) dz = 0$$

- Deformation Theorem

$f \in H(D)$, $\Gamma_1, \Gamma_2 \subseteq D$ open contours with same end points

$$\Rightarrow \oint_{\Gamma_1} f(z) dz = \oint_{\Gamma_2} f(z) dz$$



\Rightarrow Anti-derivative of $f \in H(D)$ well-defined
by

$$F(z) = \int_{z_0}^z f(\hat{z}) d\hat{z}, \quad z \in D, z_0 \in D \text{ fixed.}$$

• Can show $\left| \frac{F(z+h) - F(z)}{h} - f(z) \right| \rightarrow 0$ as $h \rightarrow 0$

$\Rightarrow F' = f$ Fundamental Theorem of Calculus.

• Cauchy's integral formula: $f \in H(D)$, $\Gamma \subseteq D$ and $z \in \text{Int}(\Gamma) \Rightarrow f(z) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(t)}{t-z} dt$

Pf: RHS $\stackrel{\uparrow \text{Defn:thm}}{=} \frac{1}{2\pi i} \int_{|t-z|=\epsilon} \frac{f(z)}{t-z} + \frac{f(t)-f(z)}{t-z} dt \rightarrow f(z) + 0$
as $\epsilon \rightarrow 0$ by cty of f .

- Can show $f'(z) = \lim_{h \rightarrow 0} \frac{f(z+h) - f(z)}{h} = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(t)}{(t-z)^2} dt$

- Induction $\Rightarrow f^{(n)}(z) = \frac{n!}{2\pi i} \oint_{\gamma} \frac{f(t)}{(t-z)^{n+1}} dt$
 \Rightarrow infinite differentiability!
 \Rightarrow focus of complex analysis is on singularities.

- Lianville's Theorem : Any bounded entire (i.e. $f \in H(\mathbb{C})$) function is constant.

Pf: $f'(z) = \frac{1}{2\pi i} \oint_{|t-z|=R} \frac{f(t)}{(t-z)^2} dt \rightarrow 0$ as $R \rightarrow \infty$.

- Corollary : $f \in H(\mathbb{C})$ and $f(z) = O(z^n)$ as $|z| \rightarrow \infty$ ($n \in \mathbb{N}$)
 $\Rightarrow f$ is a polynomial of degree n .

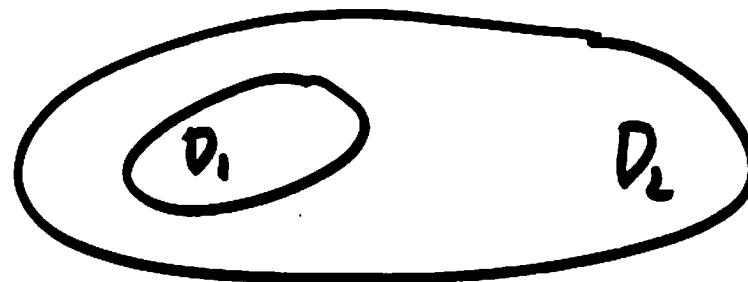
Pf: Apply Liouville to $f^{(n)}(z)$.

- Taylor's Theorem : $f \in H(D(a, R))$
 $\Rightarrow f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n$ for $z \in D(a, R)$.

NB: Radius of convergence (i.e. maximum possible R) is distance from $z = a$ to nearest singularity,

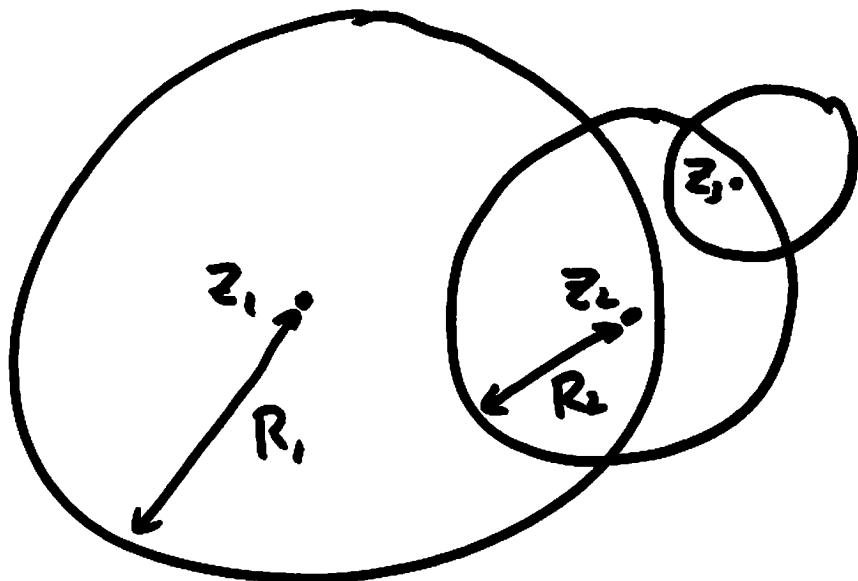
e.g. $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$ for $|z| < 1$.

- Analytic continuation (AC) is the process of extending the domain of definition of a holomorphic function.
- If $f_1 \in H(D_1)$ with $f_1 = f_2$ on $D_1 \subseteq D_2$, then f_2 is an AC of f_1 .



- E.g. $f_1(z) = \sum_{n=0}^{\infty} z^n \in H(D(0,1))$ has AC $f_2(z) = \frac{1}{1-z} \in H(\mathbb{C} \setminus \{1\})$.

- All possible via Taylor series using circle-chain method:



$$f \in H(D(z_1, R_1)) \cup H(D(z_2, R_2)) \cup \dots$$

Construct via Taylor & convergence tests.

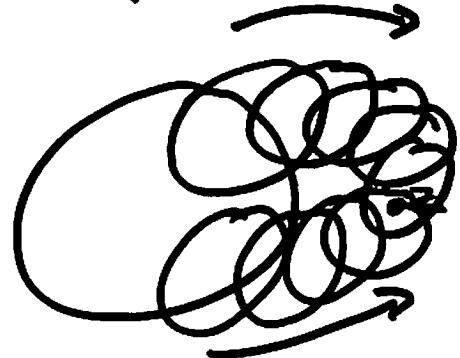
$$\Rightarrow f \in H(D(z_1, R_1) \cup D(z_2, R_2) \cup \dots).$$

- Warning: AC not automatically possible and in general an ill-posed problem.

- E.g. $f(z) = \sum_{n=0}^{\infty} z^n \in H(D(0,1))$, but has a dense set of singularities on the unit circle (a "natural barrier") at $z = e^{i\theta}$, $\theta = 2\pi p/q$ for $p, q \in \mathbb{Z}$ ($\because e^{i\theta n} = 1 \ \forall n \geq q$).

- Identity Theorem: A holomorphic function on a region D is completely determined by its value on any set of points $S \subseteq D$ containing an accumulation or limit point.

\Rightarrow AC via the circle-chain method is locally unique - for global uniqueness need the Monodromy Theorem:



Same answer at z iff f is holomorphic between the chains.

- Warning: if f is multivalued (e.g. $z^{1/2}$, $\log z$), then the circle-chain method generates all branches.
- Isolated zeros: if the zeros of a non-constant function $f \in H(D)$ have an accumulation point, then $f = 0$ by the Identity Theorem, hence zeros must be isolated.

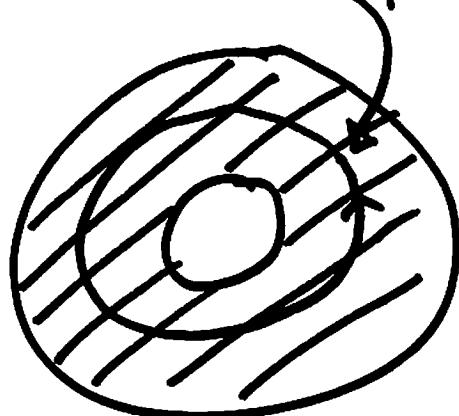
• Laurent's Theorem: $f \in H(\{z \in \mathbb{C} : 0 \leq |z-a| < R \leq \infty\})$

$$\Rightarrow f(z) = \underbrace{\sum_{n=-\infty}^{-1} c_n (z-a)^n}_{\text{Principal part}} + \underbrace{\sum_{n=0}^{\infty} c_n (z-a)^n}_{\text{Fundamental part}}$$

Principal part
 $\in H(\{z \in \mathbb{C} : |z-a| > \rho\})$

Fundamental part
 $\in H(\{z \in \mathbb{C} : |z-a| < R\})$

where $c_n = \frac{1}{2\pi i} \int_{|z-a|=\rho} \frac{f(t)}{(t-a)^{n+1}} dt \quad (\rho < \rho < R)$



Classification of singularities

- $\zeta = 0 \Rightarrow f(z)$ has an isolated singularity at $z = a$, which is
 - Ⓐ removable if $c_n = 0 \forall n < 0$ (by defining $f(a) = c_0$);
 - Ⓑ a pole of order m if $c_{-m} \neq 0$ but $c_n = 0 \forall n < -m < 0$;
 - Ⓒ an essential singularity if $\exists -m < 0$ s.t. $c_n \neq 0 \forall n < -m$.
- NB: Use $z \mapsto 1/z$ to classify singularities at ∞ .
e.g. Ⓑ for z^m , Ⓒ for e^z .
- $c_{-1} := \text{res}_a f(z)$, the residue of $f(z)$ at $z = a$.

- Cauchy's Residue Theorem: $f \in H(\Gamma \cup \text{Int}(\Gamma)) \setminus \{a_j\}_{1 \leq j \leq N}$

$$\Rightarrow \oint_{\Gamma} f(z) dz = 2\pi i \sum_{j=1}^N \text{res}_{a_j} f(z)$$

- Calculate residues using Laurent or Taylor series expansions, e.g.

$$f(z) = \frac{g(z)}{(z-a)^{n+1}}, \quad g \in H(D(a, \epsilon)), \quad n \in \mathbb{N}$$

$$\Rightarrow \text{res}_a f(z) = \frac{g^{(n)}(a)}{n!}.$$

Partial converse to Cauchy's Theorem:

Moerwa's Theorem

$f \in C(D)$ and $\oint_{\Gamma} f(z) dz = 0$

\forall closed $\Gamma \subseteq D \Rightarrow f \in H(\Gamma)$

Corollary

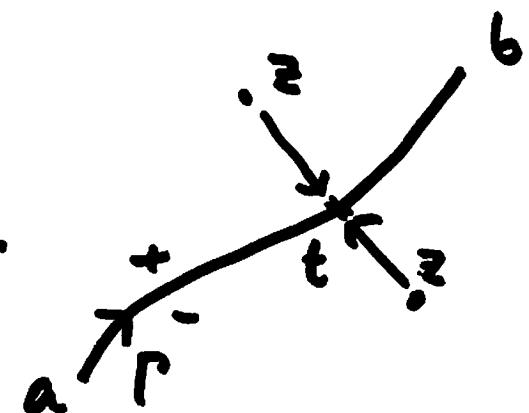
If (I) Γ is open and does not contain its end points a, b ;

(II) $w \in H(\mathbb{C} \setminus \Gamma \cup \{a, b\})$;

(III) $w_{\pm}(t) = \lim_{z \rightarrow t} w(z)$ from \pm side of Γ ,

s.t. $w_+ = w_-$ on Γ and $w_{\pm} \in C(\Gamma)$.

Then, $w \in H(\mathbb{C} \setminus \{a, b\})$.



Multifunctions

- $f(z)$ has a branch point at $z=a$ iff $\exists \varepsilon_0 > 0$ s.t. $f \notin C(\partial D(a, \varepsilon))$



for all $0 < \varepsilon < \varepsilon_0$

- $z = \infty$ a branch point iff $z = 0$ is a branch point of $f(1/z)$.
- Join up branch points with curves or branch cuts to restrict the domain of definition and select thereby a single-valued and continuous branch of a multifunction.
- Cf. Riemann surface approach, which extends the domain of definition by "stacking" \mathbb{C} -planes.

Example : $\omega = \log z$

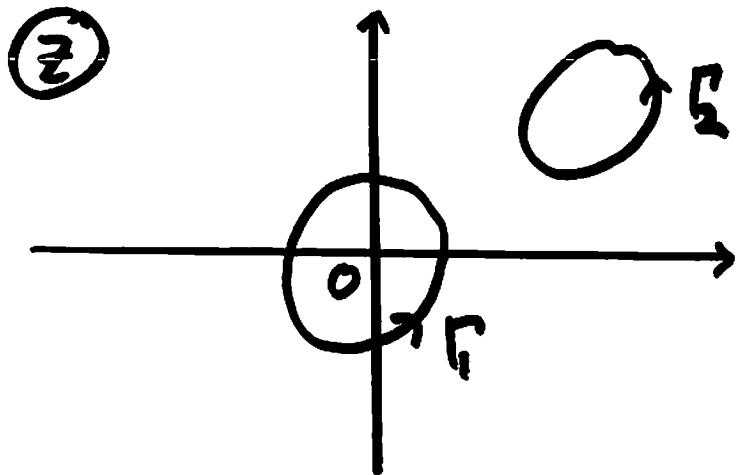
$$\Rightarrow e^\omega = z, \text{ so let } \omega = u + iv \quad (u, v \in \mathbb{R})$$
$$z = re^{i\theta} \quad (r > 0, \theta \in \mathbb{R})$$

$$\Rightarrow e^u e^{iv} = re^{i\theta}$$

$$\Rightarrow u = \log r, v = \theta + 2R\pi \quad (R \in \mathbb{Z})$$

$$\Rightarrow \omega = \omega_R := \log r + i(\theta + 2R\pi) \quad (R \in \mathbb{Z})$$

\Rightarrow infinite number of branches.



$$0 \notin \text{Int}(\Gamma_2) \Rightarrow [\theta]_{\Gamma_2} = 0$$

$$\Rightarrow w_R \in C(\Gamma_2)$$

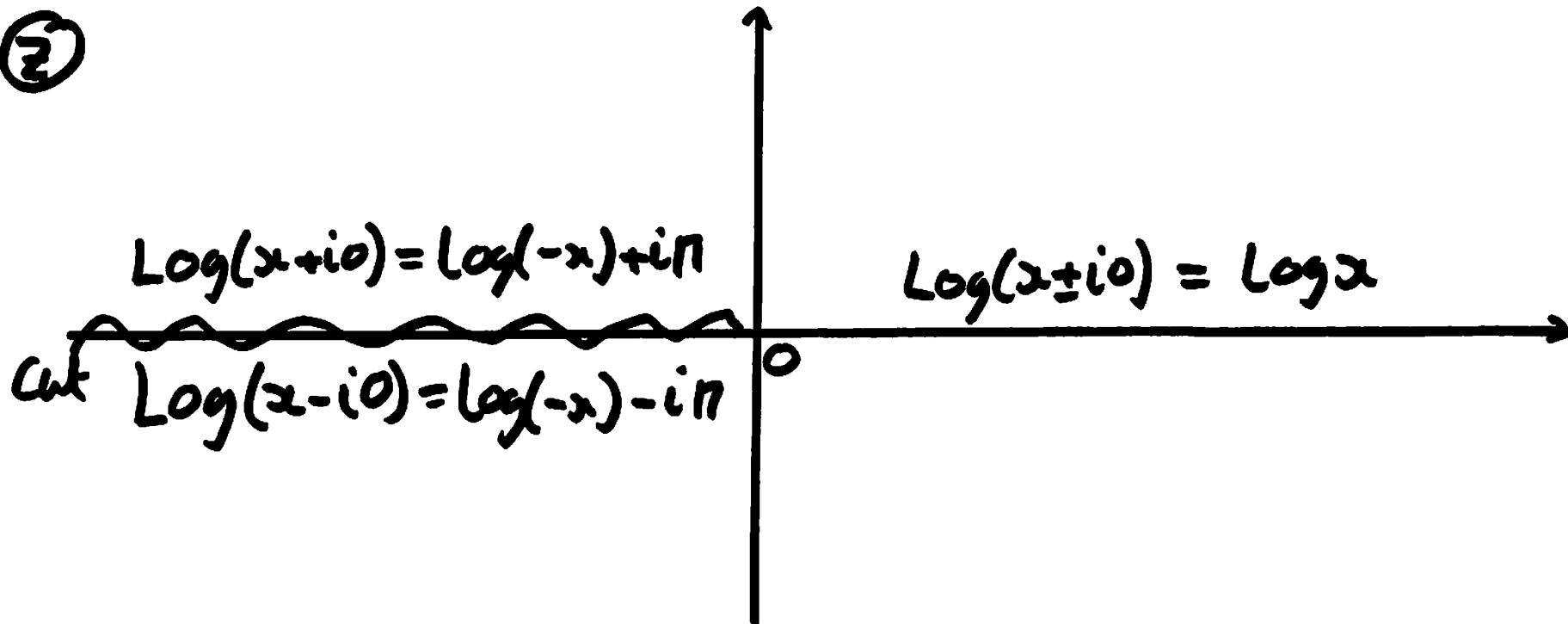
$$0 \in \text{Int}(\Gamma_1) \Rightarrow [\theta]_{\Gamma_1} = 2\pi$$

$$\Rightarrow w_R \notin C(\Gamma_1)$$

- Hence, $z = 0$ is a branch point of $\log z$.
- $e^{-w} = 1/z \Rightarrow \log(1/z) = -\log z \Rightarrow z = \infty$ is a branch point of $\log z$.
- To select a branch : choose (i) $R \in \mathbb{Z}$ and (ii) cut plane from $z = 0$ to $z = \infty$, e.g. by restricting the domain of θ .

• Principal branch $\text{Log} z := \log r + i\theta$ ($r > 0, -\pi < \theta \leq \pi$)

\textcircled{z}



$\Rightarrow \text{Log} \in H(\mathbb{C} \setminus (-\infty, 0]), \frac{d}{dz} \text{Log} z = \frac{1}{z}.$

Example : $\omega = z^{1/n}$ ($n \in \mathbb{N}$)

- $z^{1/n} := \exp\left(\frac{1}{n} \log z\right)$

\Rightarrow Branch points at $z = 0$ and $z = \infty$.

- $\log z = \omega_k \Rightarrow z^{1/n} = \exp\left(\frac{1}{n} \omega_k\right) = \exp\left(\frac{2\pi n i}{n}\right) n^{1/n} e^{i\theta/n}$

\Rightarrow n distinct branches (e.g. $k = 0, 1, \dots, n-1$).

- Principal branch : $z^{1/n} := \exp\left(\frac{1}{n} \text{Log} z\right)$

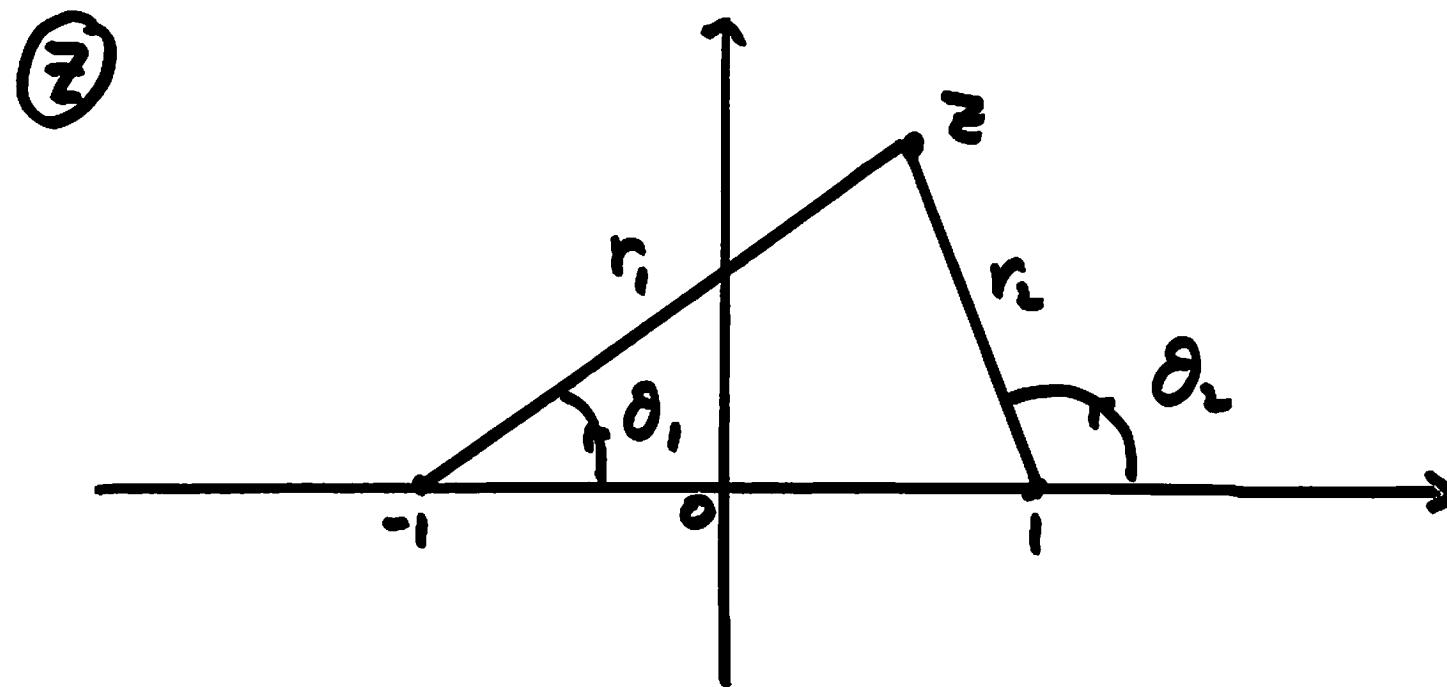


Example: $\omega = (z^2 - 1)^{1/2}$

$\Rightarrow \omega^2 = (z+1)(z-1)$, so let $\omega = Re^{i\Theta}$ ($R > 0, \Theta \in \mathbb{R}$)

$$z+1 = r_1 e^{i\theta_1} \quad (r_1 > 0, \theta_1 \in \mathbb{R})$$

$$z-1 = r_2 e^{i\theta_2} \quad (r_2 > 0, \theta_2 \in \mathbb{R})$$



$$\Rightarrow R^2 e^{2i\Theta} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

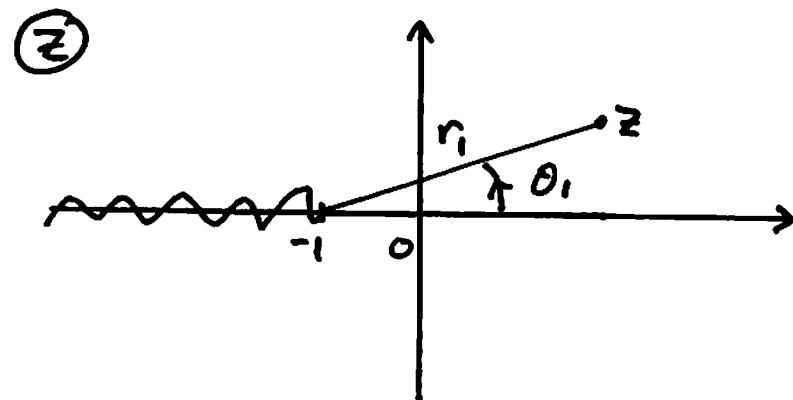
$$\Rightarrow R = (r_1 r_2)^{1/2}, \quad \Theta = \frac{1}{2}(\theta_1 + \theta_2) + k\pi \quad (k \in \mathbb{Z})$$

$$\Rightarrow w = w_k := (-1)^k (r_1 r_2)^{1/2} e^{i(\theta_1 + \theta_2)/2} \quad (k \in \mathbb{Z})$$

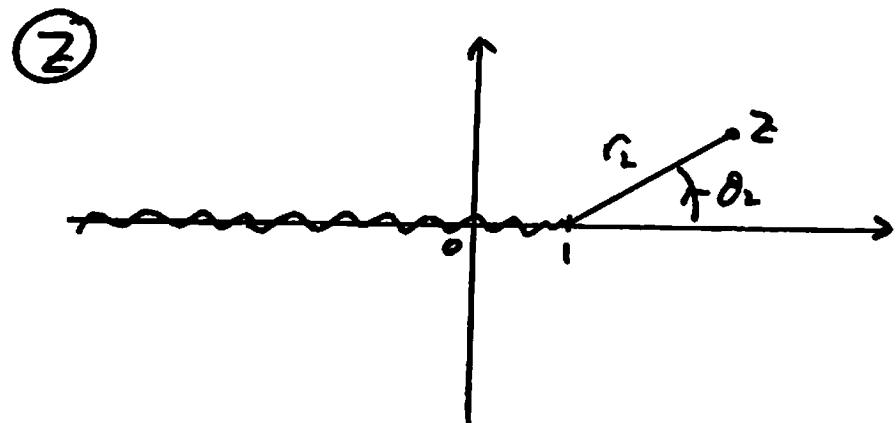
\Rightarrow Two branches (k odd or even $\Rightarrow \pm$) and branch points at $z = \pm 1$, but not $z = \infty$.

- To select a branch: choose (i) \pm and (ii) cut plane from $z = -1$ to $z = +1$ (through $z = \infty$ OK).
- Since $(z^2 - 1)^{1/2} = (z-1)^{1/2}(z+1)^{1/2}$ this is equivalent to choosing a branch for each of $(z-1)^{1/2}$ and $(z+1)^{1/2}$.
- In this course, there are two useful cases.

Case @



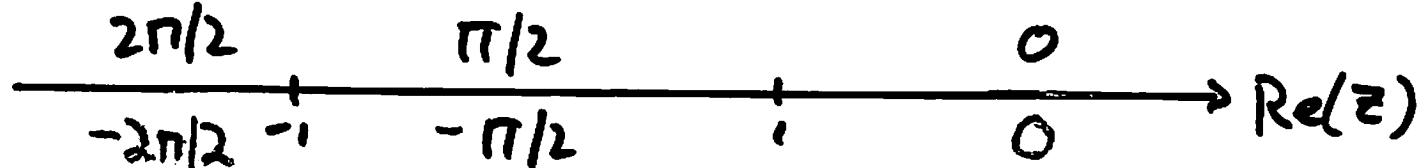
$$(z+1)^{1/2} := +r_1^{1/2} e^{i\theta_1/2} \quad (r_1 > 0, -\pi < \theta_1 \leq \pi)$$



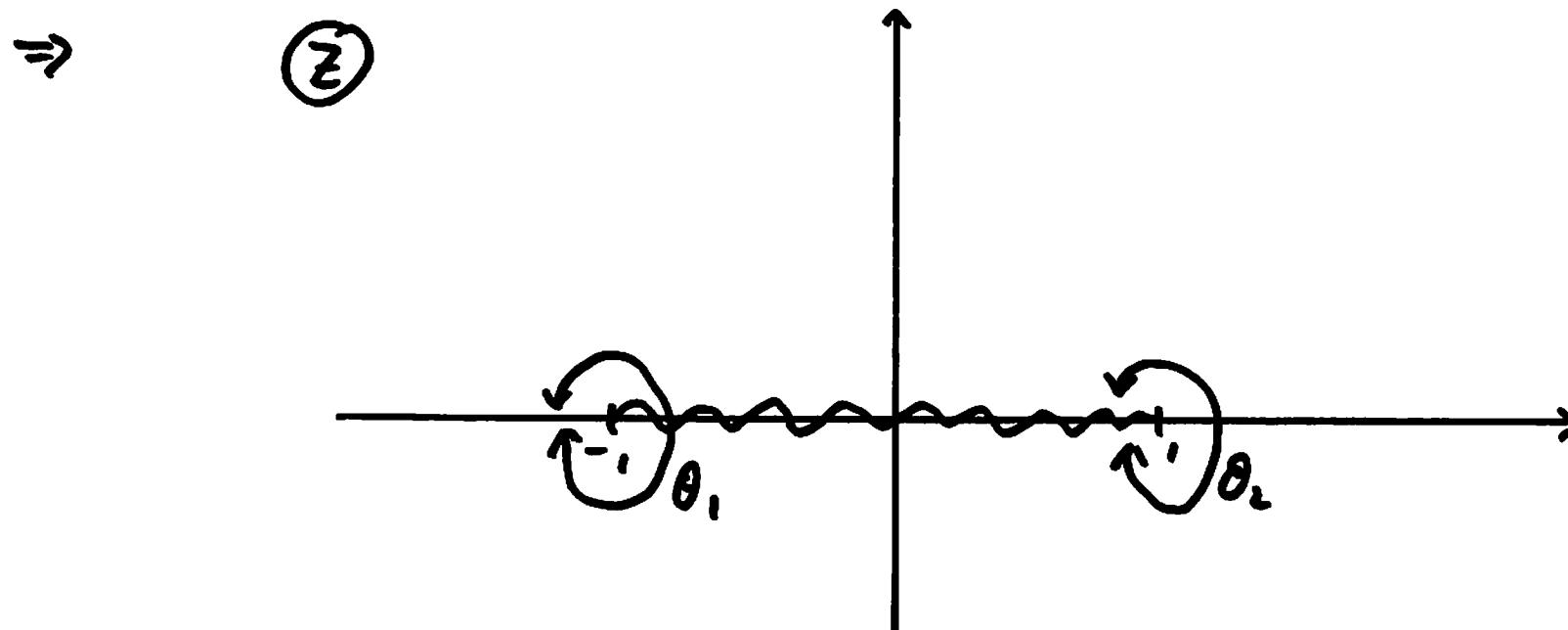
$$(z-1)^{1/2} := +r_2^{1/2} e^{i\theta_2/2} \quad (r_2 > 0, -\pi < \theta_2 \leq \pi)$$

$$\Rightarrow (z^2 - 1)^{1/2} := + (r_1 r_2)^{1/2} e^{i(\theta_1 + \theta_2)/2} \quad (r_1, r_2 > 0, -\pi < \theta_1, \theta_2 \leq \pi)$$

$$\Rightarrow \frac{\theta_1 + \theta_2}{2} :$$

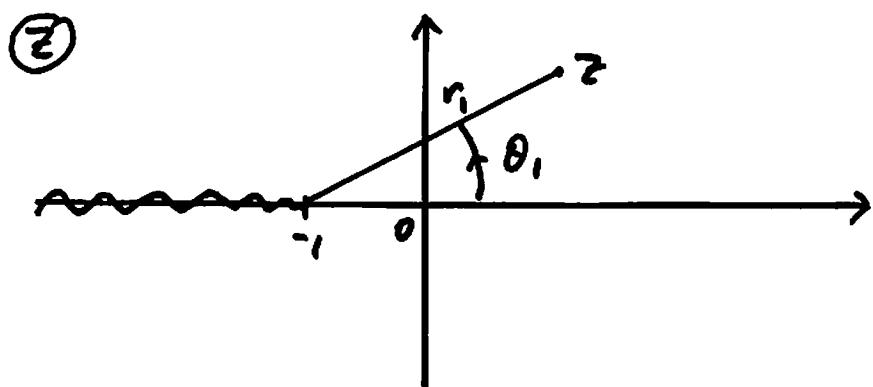
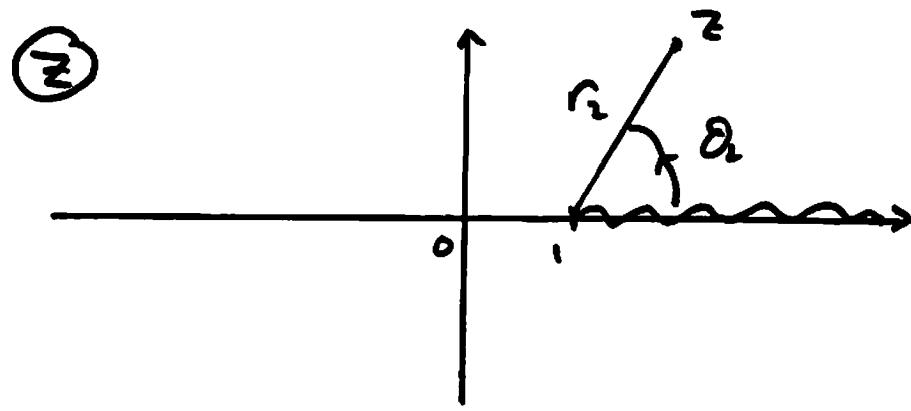


$$\Rightarrow (z^2 - 1)^{1/2} = \begin{cases} (x^2 - 1)^{1/2} & \text{for } z = x \pm i0, x > 1 \\ \pm i(1 - x^2)^{1/2} & \text{for } z = x \pm i0, |x| < 1 \\ -(x^2 - 1)^{1/2} & \text{for } z = x \pm i0, x < -1 \end{cases}$$



NB: Contours cannot cross cut, but θ_1, θ_2 can.

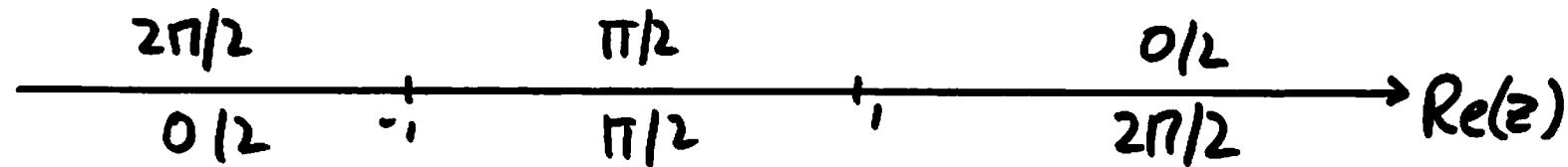
Case ⑥



$$(z+1)^{1/2} := +r_1^{1/2} e^{i\theta_1/2} \quad (r_1 > 0, -\pi < \theta_1 \leq \pi) \quad (z-1)^{1/2} := +r_2^{1/2} e^{i\theta_2/2} \quad (r_2 > 0, 0 < \theta_2 \leq 2\pi)$$

$$\Rightarrow (z^2 - 1)^{1/2} := +(\sqrt{r_1} e^{i\theta_1/2})(\sqrt{r_2} e^{i\theta_2/2}) \quad (r_1, r_2 > 0, -\pi < \theta_1 \leq \pi, 0 < \theta_2 \leq 2\pi)$$

$$\Rightarrow \frac{\theta_1 + \theta_2}{2} :$$

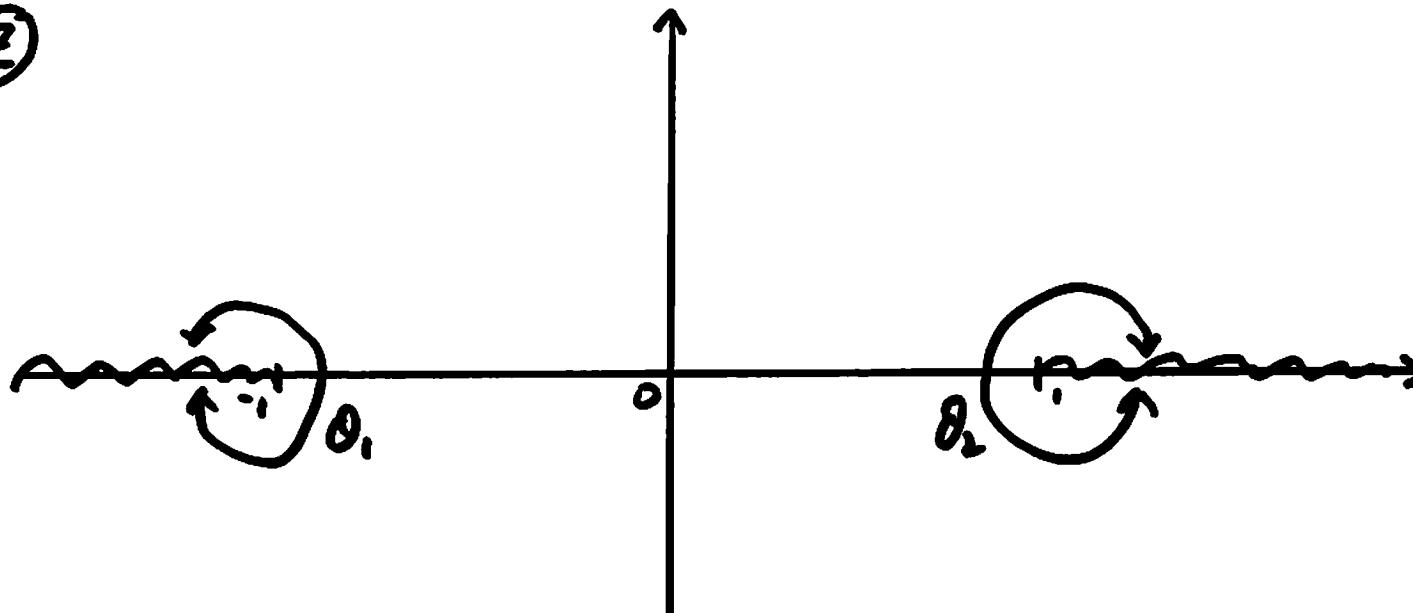


\Rightarrow

$$(z^2-1)^{1/2} = \begin{cases} \pm (x^2-1)^{1/2} & \text{for } z = x+i0, x > 1 \\ i(1-x^2)^{1/2} & \text{for } z = xi+0, |z| < 1 \\ \mp (x^2-1)^{1/2} & \text{for } z = xi+0, x < -1 \end{cases}$$

\Rightarrow

\textcircled{z}



NB: OK for cut to pass through $z = \infty$ even if $z = \infty$ is not a branch point.

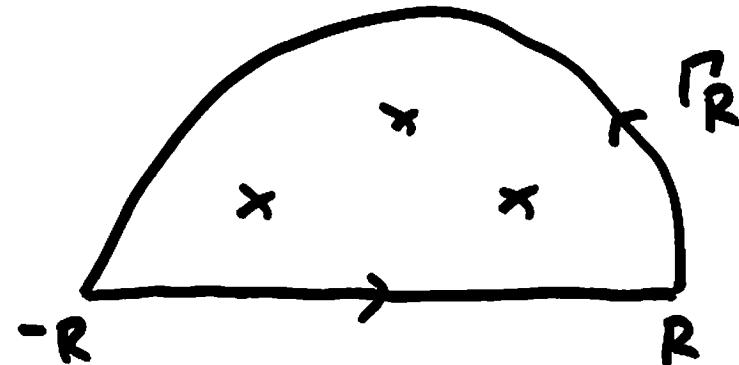
Evaluation of integrals

$$\textcircled{1} \int_0^{2\pi} F(\sin\theta) d\theta \mapsto \int_{\partial D(0,1)} F\left(\frac{z-1/z}{2i}\right) dz$$

\uparrow
 $z = e^{i\theta}$

$$\textcircled{2} \int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} dx \quad (\deg(Q) \geq \deg(P)+2, Q \neq 0 \text{ on } \mathbb{R})$$

$$\mapsto \int_{\Gamma_R} \frac{P(z)}{Q(z)} dz \text{ as } R \rightarrow \infty$$



$$\textcircled{3} \quad \int_{-\infty}^{\infty} \frac{P(x) \cos x}{Q(x)} dx \mapsto \int_{\Gamma_R} \frac{P(z) e^{iz}}{Q(z)} dz \text{ on same contour}$$

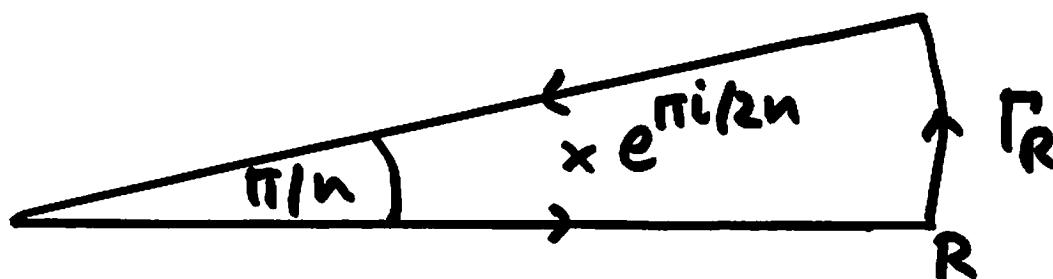
NB : Close at $z = +i\infty \therefore e^{iz} = e^{ix-y} \rightarrow 0$ as $y \rightarrow \infty$

NB : Integral may exist if $\deg(P) = \deg(Q) - 1$,
but need to use Jordan's inequality,

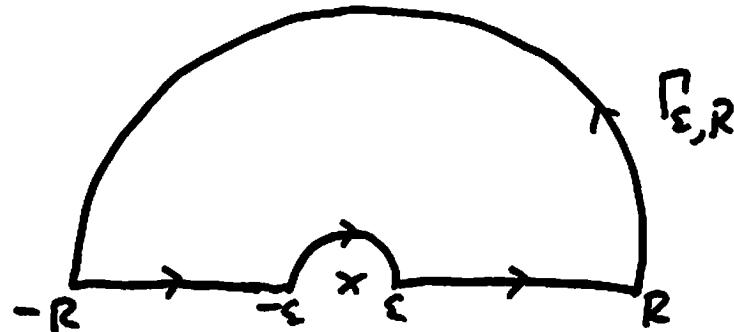
$$\frac{2}{\pi} \leq \frac{\sin \theta}{\theta} \leq 1 \text{ for } 0 < \theta \leq \frac{\pi}{2},$$

to estimate contribution from large semi-circle

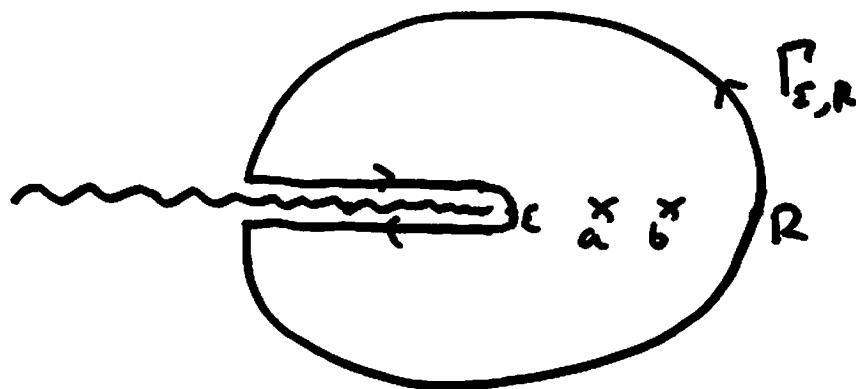
$$\textcircled{4} \quad \int_0^{\infty} \frac{dx}{1+x^{2n}} \quad (n \in \mathbb{N}) \mapsto \int_{\Gamma_R} \frac{dz}{1+z^{2n}} \text{ as } R \rightarrow \infty$$



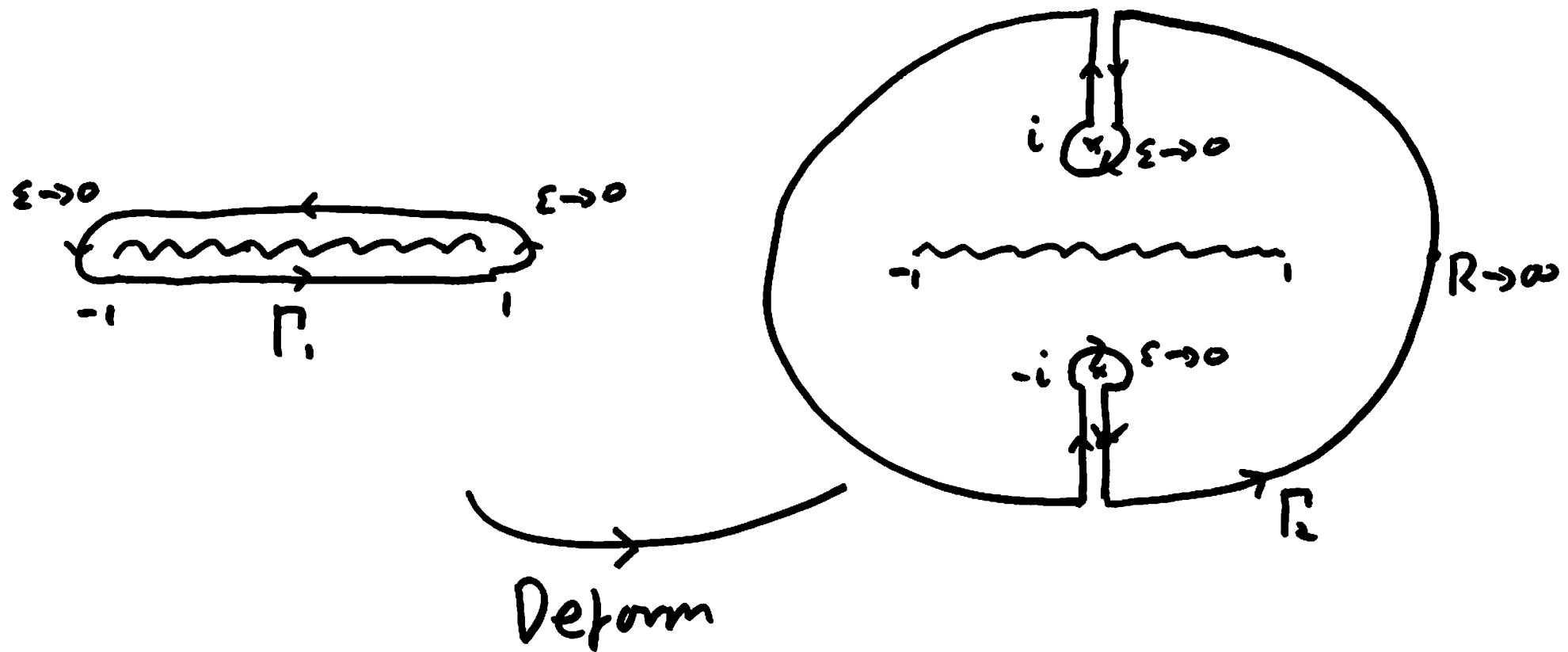
$$⑤ \int_0^\infty \frac{\sin x}{x} dx \mapsto \int_{\Gamma_{\varepsilon, R}} \frac{e^{iz}}{z} dz \text{ as } \varepsilon \rightarrow 0, R \rightarrow \infty$$



$$⑥ \int_0^\infty \frac{\log x}{(x+a)(x+b)} dx \quad (a, b > 0) \mapsto \int_{\Gamma_{\varepsilon, R}} \frac{(\log z)^2}{(z-a)(z-b)} dz \text{ as } \varepsilon \rightarrow 0, R \rightarrow \infty$$



$$\textcircled{7} \quad \int_{-1}^1 \frac{\sqrt{1-x^2}}{1+x^2} dx \mapsto \int_{\Gamma_j} \frac{\sqrt{1-z^2}}{1+z^2} dz \quad (j=1,2)$$



Fourier Transforms

Convergence Theorem for Fourier Series

If $f : \mathbb{R} \rightarrow \mathbb{C}$ is piecewise smooth (i.e. f, f' are piecewise continuous on all closed bounded subintervals of \mathbb{R}) and periodic with period $2L$, then

$$\frac{1}{2} (f(x-) + f(x+)) = \sum_{n=-\infty}^{\infty} c_n e^{-in\pi x/L}$$

where $f(x-) = \lim_{\tilde{x} \uparrow x} f(\tilde{x})$, $f(x+) = \lim_{\tilde{x} \downarrow x} f(\tilde{x})$ (so $f(x-) = f(x+)$)
iff f is continuous at x) and

$$c_n = \frac{1}{2L} \int_{-L}^L f(x) e^{inx/L} dx.$$

- Remove requirement that f be periodic by letting $L \rightarrow \infty$ with $k = \frac{n\pi}{L} = \alpha$)

- If $\int_{-\infty}^{\infty} |f(x)| dx < \infty$, then

$$2Lc_n = \int_{-L}^L f(x) e^{ikx} dx \rightarrow \int_{-\infty}^{\infty} f(x) e^{ikx} dx \text{ as } L \rightarrow \infty.$$

- This is the Fourier transform of f :

$$\bar{f}(k) \equiv F(f) := \int_{-\infty}^{\infty} f(x) e^{ikx} dx.$$

- To invert note that

$$\begin{aligned} \frac{1}{2}(f(x-) + f(x+)) &= \lim_{L \rightarrow \infty} \sum_{n=-\infty}^{\infty} \frac{1}{2L} \bar{f}\left(\frac{n\pi}{L}\right) e^{-in\pi x/L} \\ &= \lim_{h \rightarrow 0} \frac{h}{2\pi} \sum_{n=-\infty}^{\infty} \bar{f}(nh) e^{-inhx}, \text{ where } h = \frac{\pi}{L}. \end{aligned}$$

- It may be shown that this leads to...

Fourier Inversion Theorem (FIT)

$f: \mathbb{R} \rightarrow \mathbb{C}$ piecewise smooth, $\int_{-\infty}^{\infty} |f(x)| dx < \infty$

$$\Rightarrow \frac{1}{2} (f(x-) + f(x+)) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \bar{f}(R) e^{-iRx} dx,$$

where the principal value integral

$$\int_{-\infty}^{\infty} f(x) dx := \lim_{R \rightarrow \infty} \int_{-R}^R f(x) dx.$$

Key properties

- ① Linearity $\mathcal{F}[mf + \lambda g] = m\mathcal{F}[f] + \lambda\mathcal{F}[g]$

$$\textcircled{2} \quad F[f'] = -iR\bar{f}.$$

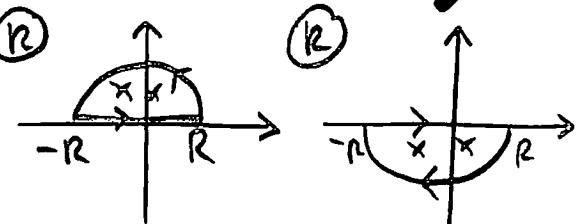
$$\textcircled{3} \quad F[\Im f(x)] = -i \frac{d\bar{f}}{dk}.$$

$$\textcircled{4} \quad f * g(z) = \int_{-\infty}^{\infty} f(z-s)g(s)ds \Rightarrow F[f * g] = \bar{f}\bar{g}.$$

\textcircled{5} In applications, $\bar{f}(k)$ given by a formula

\Rightarrow can often AC into complex k -plane, except for singularities or branch cuts.

\Rightarrow can often use contour integration (i.e. CRT) to invert, closing the contour at $k = \pm i\infty$ only if $\bar{f}(k)e^{-ikx} \rightarrow 0$ as $k \rightarrow \pm i\infty$.



Laplace Transforms

- If $f: \mathbb{R}^+ \rightarrow \mathbb{C}$ is piecewise smooth and $\exists c \in \mathbb{R}$ s.t. $|f(x)| = O(e^{cx})$ as $x \rightarrow \infty$, then the Laplace transform of f is defined by

$$\hat{f}(p) \equiv L[f] := \int_0^\infty f(x) e^{-px} dx \text{ for } \operatorname{Re}(p) > c.$$

- The inversion formula is

$$\frac{1}{2i} (f(x-) + f(x+)) = \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \hat{f}(p) e^{px} dp,$$

where $\gamma > c$, so that the inversion contour is to the right of any singularities of $\hat{f}(p)$.

Key properties

- ① Linearity.
- ② $L[f'] = p\hat{f}(p) - f(0)$ for $\operatorname{Re}(p) > c$.
- ③ $\hat{f} \in H(\{\rho \in \mathbb{C} : \operatorname{Re}(\rho) > c\})$, with $\frac{d\hat{f}}{dp} = L[-s \cdot f(s)]$.
- ④ $f * g(x) := \int_0^x f(x-s)g(s)ds \Rightarrow L[f * g] = \hat{f} \hat{g}$.
- ⑤ In applications, $\hat{f}(p)$ given by a formula \Rightarrow use AL and contour integration to invert.
- ⑥ We'll see Laplace transforms are just a special case of Fourier transforms if you allow complex R.

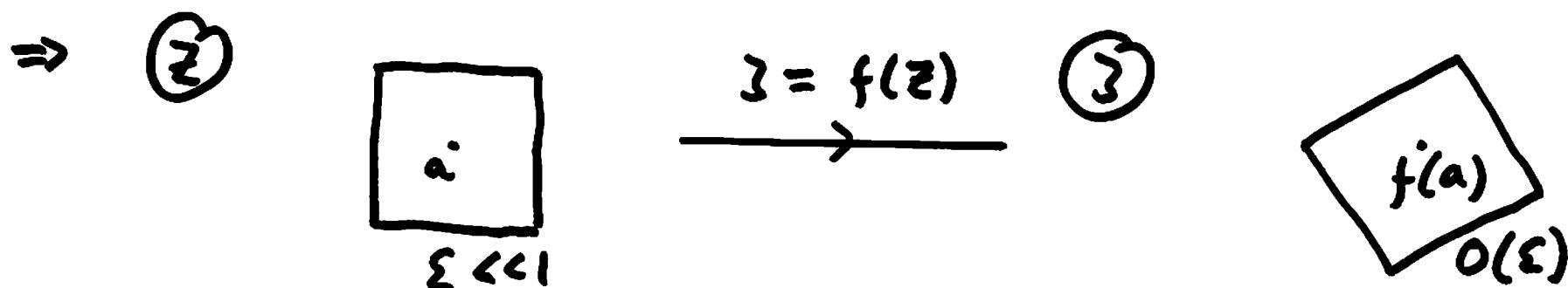
Conformal mapping

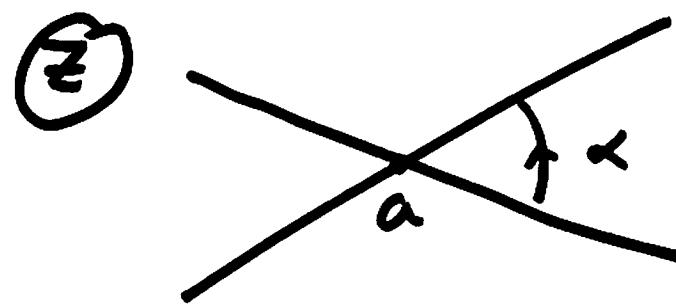
- $f \in H(D)$ and $f'(z) \neq 0 \forall z \in D \Rightarrow f$ is a conformal map,
i.e. it preserves angles.

- To see this, use Taylor's Theorem : $a \in D$

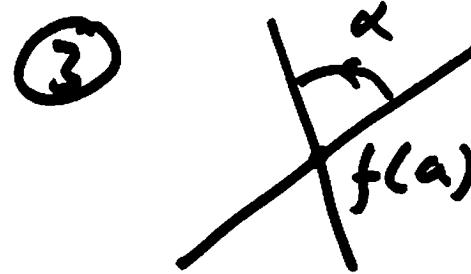
$$\Rightarrow z = f(z) = \underset{\substack{\uparrow \\ \text{translation}}}{f(a)} + \underset{\substack{\uparrow \\ \text{rotation \& scaling}}}{f'(a)(z-a)} + \dots \text{ as } z \rightarrow a.$$

- Locally, map is linear and one-to-one.



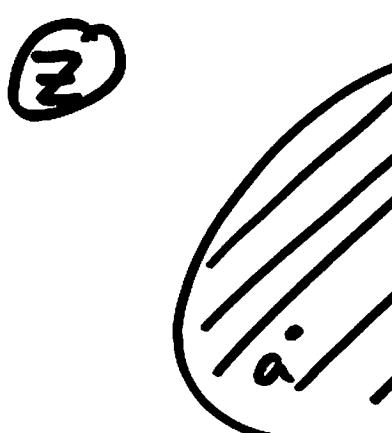


$$z = f(z)$$

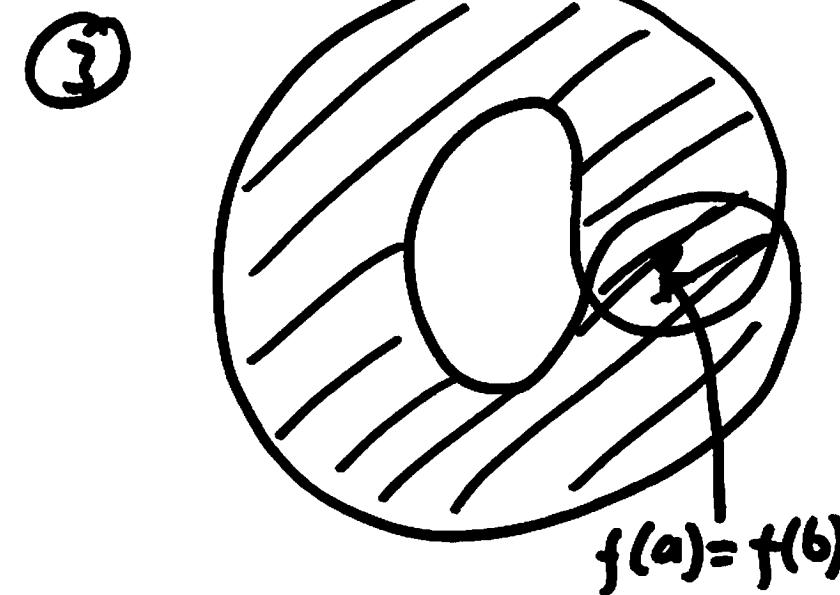


Remarks

① Not necessarily one-to-one globally, e.g.



$$z = f(z)$$

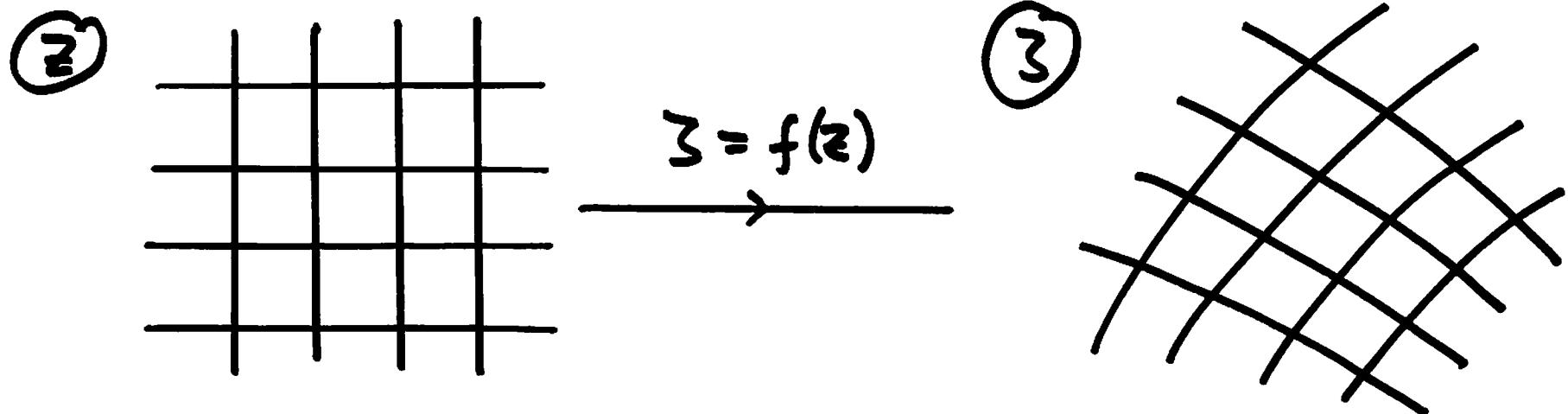


$$f(a) = f(b)$$

② Composition of conformal maps is conformal

⇒ need familiarity with standard maps
to use as building blocks.

③ All orthogonal curvilinear coordinates can be generated by a conformal map of Cartesian coordinates.



Behaviour near a critical point

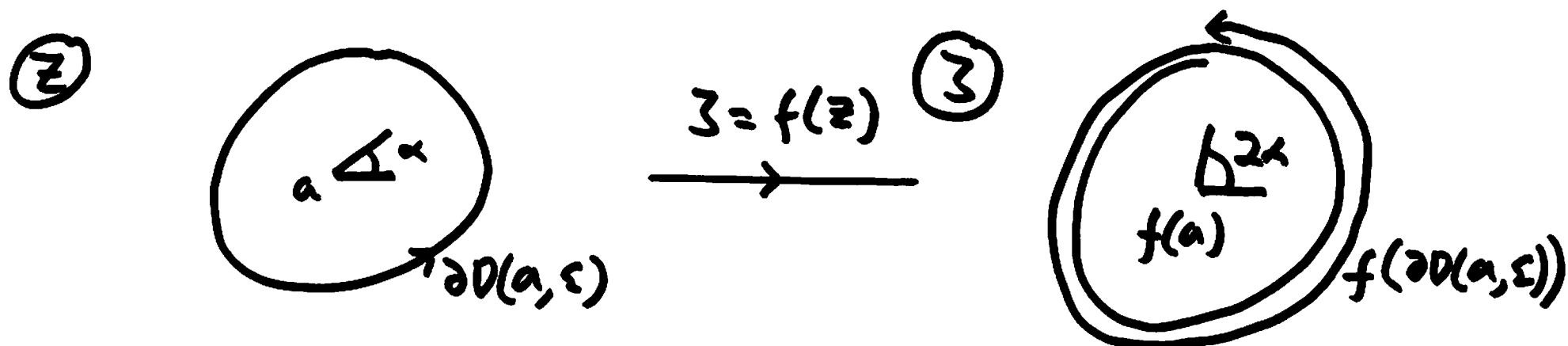
- $a \in D \cup \partial D$ is a critical point iff $f'(a) = 0$.

- If $f'(a) = 0 \neq f''(a)$, then

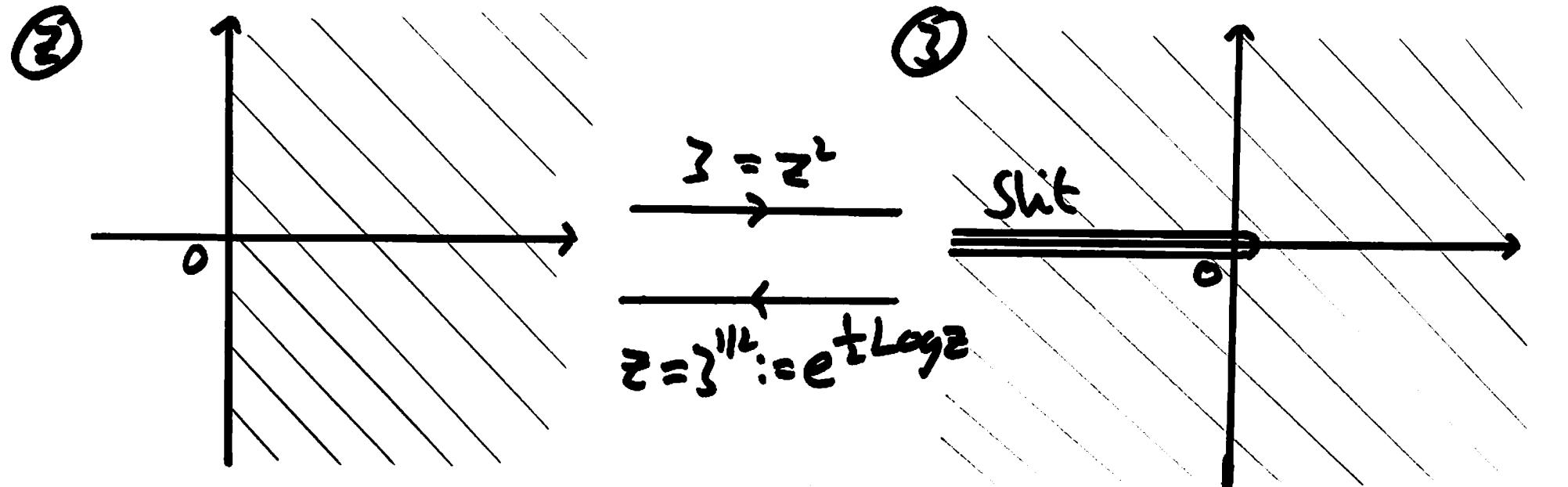
$$f(z) - f(a) = \frac{1}{2} f''(a)(z-a)^2 + O((z-a)^3) \text{ as } z \rightarrow a.$$

- If $z - a = \varepsilon e^{i\theta}$, then $z - f(a) = \frac{1}{2} f''(a) \varepsilon^2 e^{2i\theta} + O(\varepsilon^3)$ as $\varepsilon \rightarrow 0$

\Rightarrow angles doubled and map not one-to-one locally.



- Hence, need $a \in \partial D$ if map $f : D \rightarrow \tilde{D} \subseteq \mathbb{C}$ is to be one-to-one.
- E.g. $z = f(z) = z^2$ has a critical point at $z=0$.



$$D = \left\{ z \in \mathbb{C} : |\arg z| < \frac{\pi}{2} \right\}$$

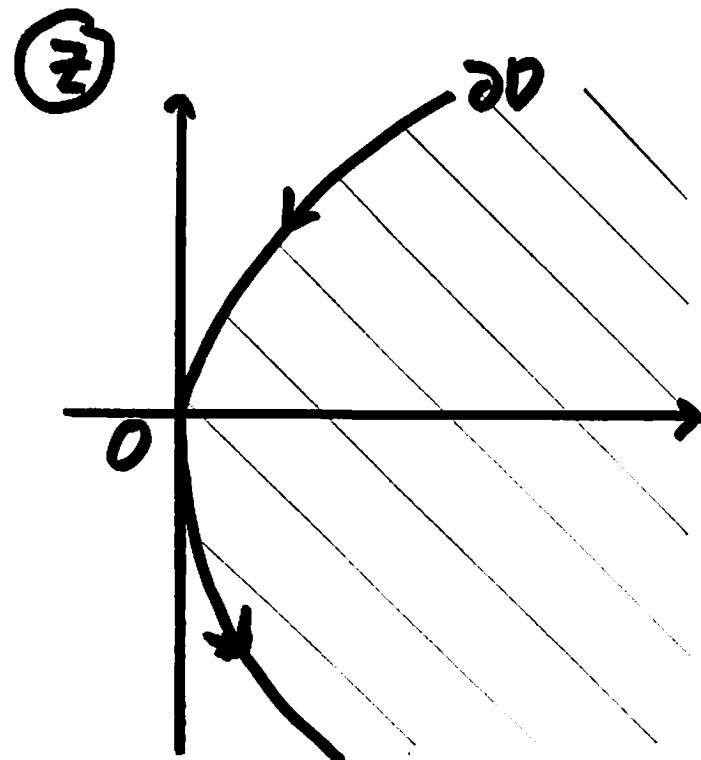
$$\tilde{D} = \left\{ z \in \mathbb{C} : |\arg z| < \pi \right\}$$

one-to-one

- In general, local behaviour of $f(\partial D)$ near a critical point depends delicately on the curvature of ∂D near $z=a$ and on the derivatives of $f(z)$ at $z=a$.
- E.g. Suppose (i) $\partial D: z \sim it + \frac{1}{2}\kappa t^2$ as $t \rightarrow 0$ ($\kappa \in \mathbb{R}$);
 (ii) $f(z) \sim z^2 + \zeta z^3$ as $z \rightarrow 0$ ($\zeta \in \mathbb{C}$).

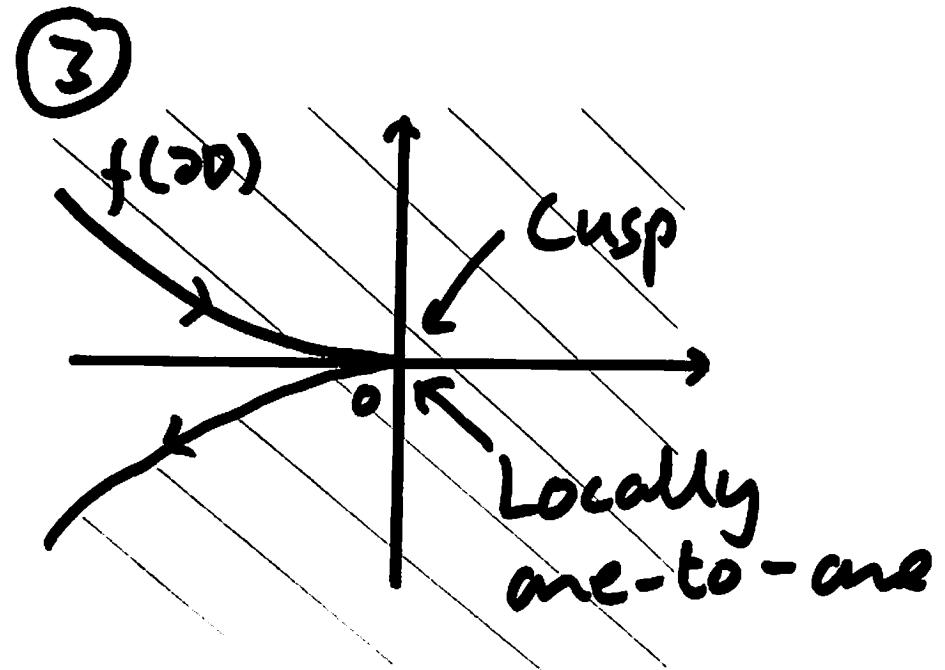
Then on $f(\partial D)$ near $f(0)$,

$$\begin{aligned} z &= \bar{z} + im = f(z) \sim \left(it + \frac{1}{2}\kappa t^2\right)^2 + \zeta \left(it + \frac{1}{2}\kappa t^2\right)^3 \text{ as } t \rightarrow 0 \\ \Rightarrow \bar{z} &= -t^2 + O(t^3), \quad m = \left(\kappa - \operatorname{Re}(\zeta)\right)t^3 + O(t^4) \text{ as } t \rightarrow 0. \end{aligned}$$



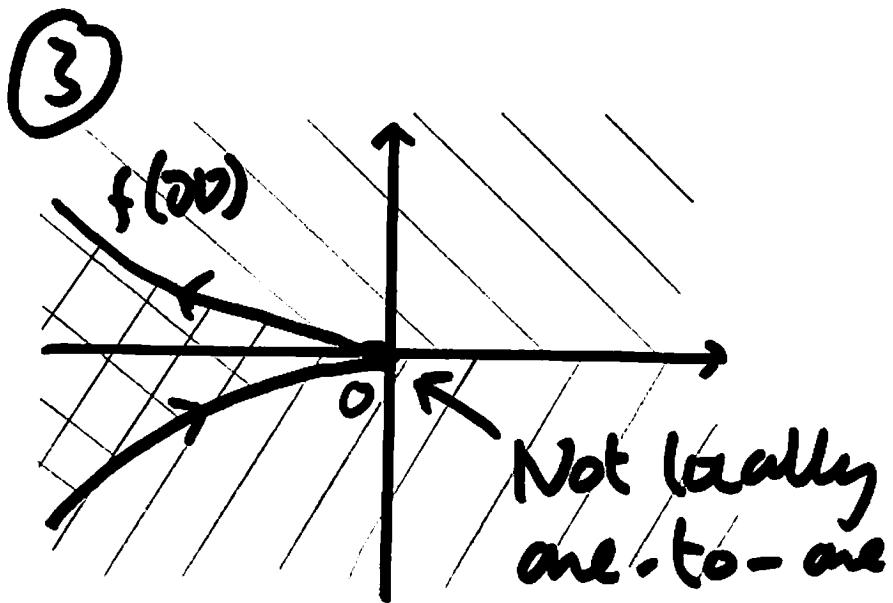
$$z = f(z)$$

$$r > \operatorname{Re}(c)$$



$$z = f(z)$$

$$r < \operatorname{Re}(c)$$

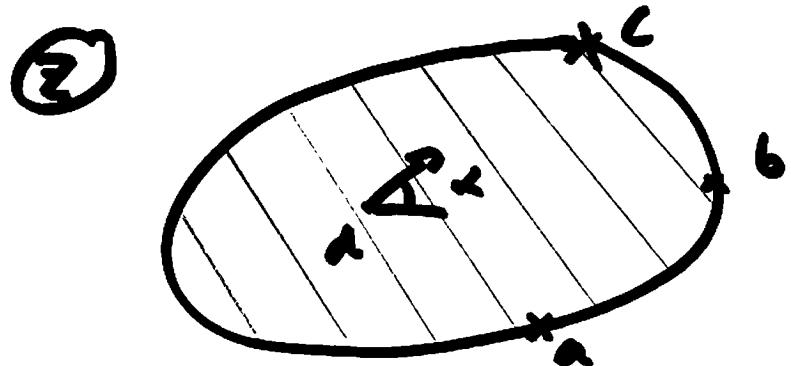
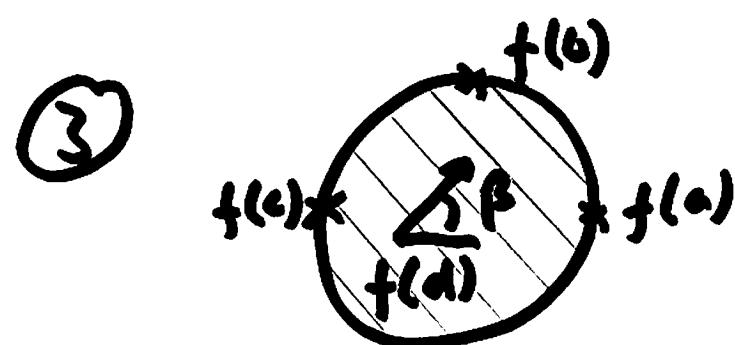


Riemann Mapping Theorem

If $D \neq \mathbb{C}$ is a simply connected region, then there exists a three-parameter family of conformal transformations $f : D \rightarrow D(0, 1)$.

Remarks

- ① If ∂D is a contour, obtain a unique transformation by prescribing e.g. 3 ordered boundary points on $f(\partial D)$ or an interior point and a direction at that point.



② 3-parameter family $\therefore \exists$ a 3-parameter family of maps from $D(0,1) \rightarrow D(0,1)$, given by

$$z = e^{i\phi} \frac{z - \omega}{1 - \bar{\omega}z} \quad (\omega \in \mathbb{C}, \phi \in \mathbb{R})$$

③ $D = \mathbb{C} \Rightarrow f \in H(\mathbb{C})$ and $|f| \leq 1$ on \mathbb{C}
 $\Rightarrow f = \text{constant}$ by Liouville \triangleleft

④ Often use upper-half plane as $f(D)$, with e.g.
 $f(a) = 0, f(b) = 1, f(c) = \infty$.

⑤ f may be crazy on $\partial D \because$ singularities are required to smooth any corners and cusps.

⑥ Orientation preserved (\because conformal maps preserve angles): very useful in practice!

Standard maps

Bilinear maps (Möbius transformations)

- $z = f(z) = \frac{az+b}{cz+d}$, where $a, b, c, d \in \mathbb{C}$, $ad - bc \neq 0$,
 $\begin{matrix} \uparrow \\ f \neq \text{constant} \end{matrix}$ $\begin{matrix} \uparrow \\ c \neq 0 \\ \text{nontrivial.} \end{matrix}$
- $f \in H(\mathbb{C} \setminus \{-d/c\})$ with $f'(z) = \frac{ad-bc}{(cz+d)^2} \neq 0 \quad \forall z \neq -d/c$.
- $f : \mathbb{C} \cup \{\infty\} \rightarrow \mathbb{C} \cup \{\infty\}$ is one-to-one upon defining $f(\infty) = \frac{a}{c}$, $f(-\frac{d}{c}) = \infty$.
- Composition of

$$z_1 = cz + d,$$

\uparrow

Rotation, scaling
and translation

$$z_2 = 1/z_1,$$

\uparrow

Inversion

$$z = \frac{d}{c} + \frac{bc-ad}{c} z_2$$

\uparrow

Rotation, scaling
and translation

- Map circles to circles.

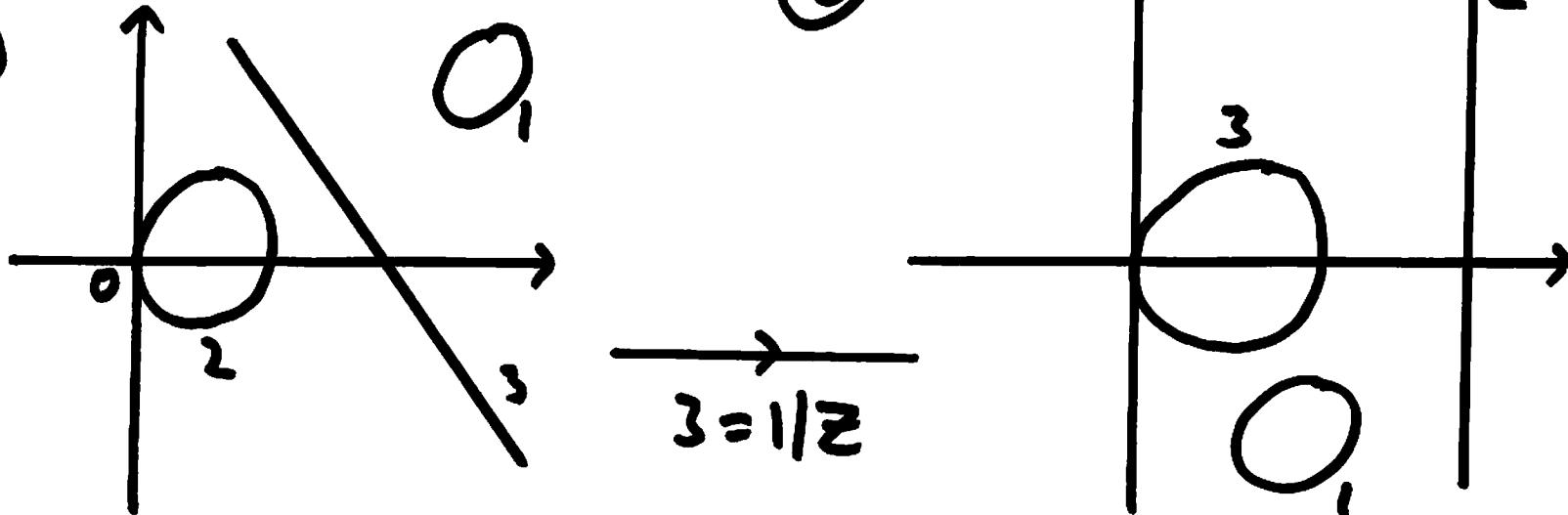
Pf: Trivial for rotations, scalings and translations, so it is sufficient to show for inversions:

$$\alpha^2 z \bar{z} + \bar{\beta} z + \beta \bar{z} + \gamma^2 = 0 \quad (\alpha, \beta \in \mathbb{R}, \beta \neq 0; \text{ circle } \alpha \neq 0, \text{ line } \alpha = 0)$$

$$\Rightarrow \alpha^2 + \bar{\beta} \bar{z} + \beta z + \gamma^2 \bar{z} \bar{z} = 0, \text{ i.e. } \alpha \leftrightarrow \gamma, \beta \rightarrow \bar{\beta} \quad \square$$

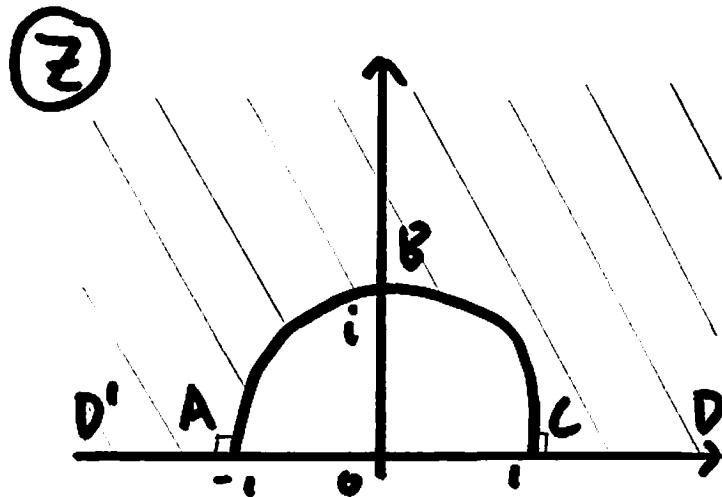
$z = 1/\bar{z}$

- Eg ③



- Thus, if $\partial D = \{ \text{circles} \}$, then $f(\partial D) = \{ \text{circles} \}$, with the same angles and orientation at corners where the circles meet.

- E.g.

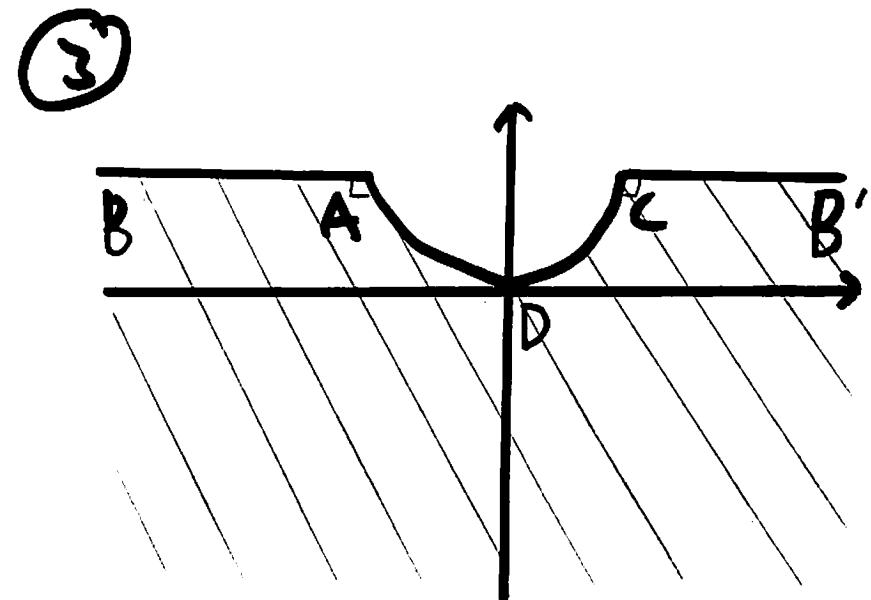


$$3 = \frac{1}{z-i}$$

$$\pm 1 \rightarrow \frac{\pm 1 + i}{2}$$

$$\infty \rightarrow 0$$

$$i \rightarrow \infty$$

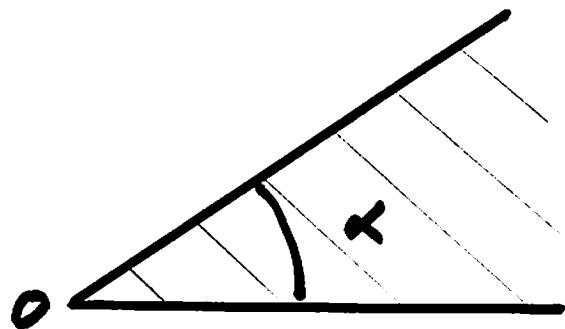


Powers of z

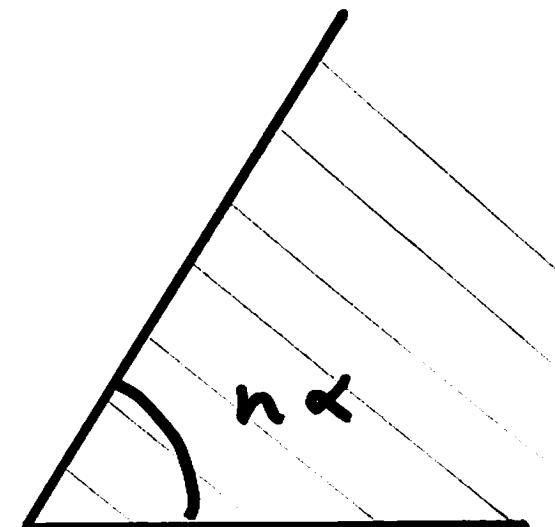
- Use to get rid of corners.

- E.g.

(2)

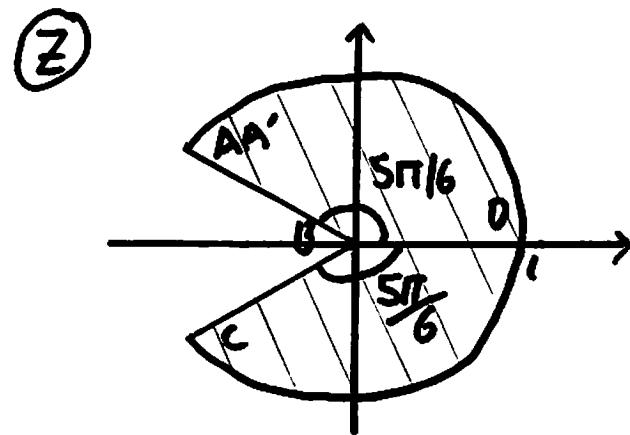


(3)

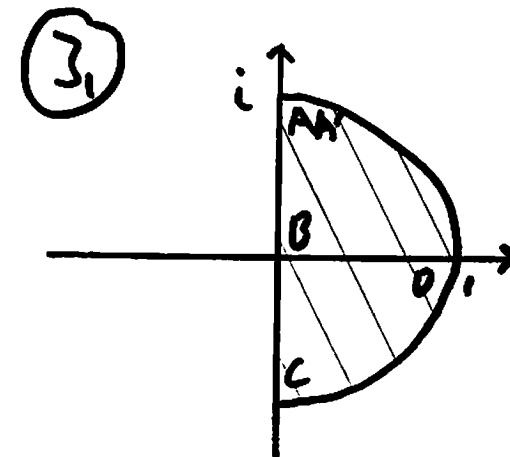


$$z = z^n := e^{n \log z}$$

Example

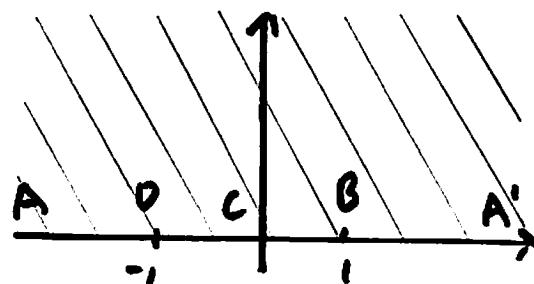


$$z_1 = z^{3/5} := e^{\frac{3}{5} \operatorname{Log} z}$$



(3)

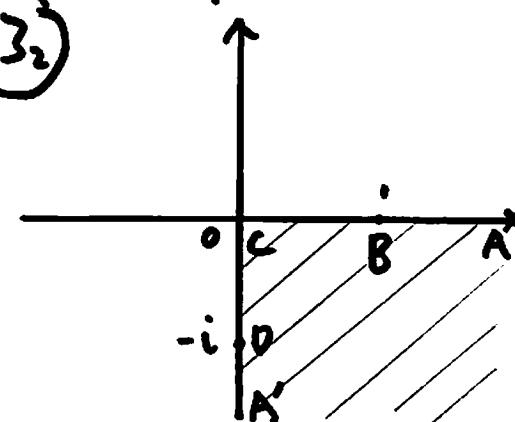
$$z = \left(-\frac{z^{3/5} + i}{z^{3/5} - i} \right)^2$$



$$z = z_2^2$$

(3)

$$z_2 = -\frac{z_1 + i}{z_1 - i}$$



Exponential and logarithm

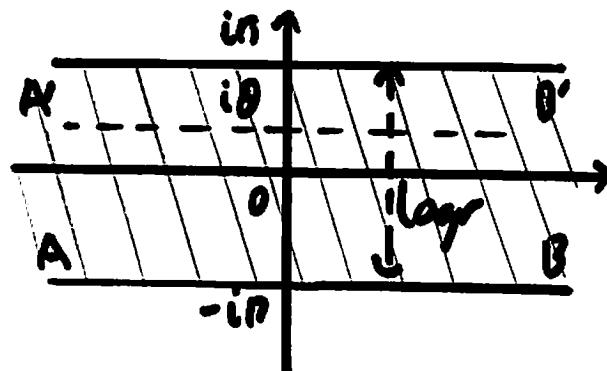
- Use \exp to open a strip or half-strip; \log for the reverse.

- E.g. $z = e^z$, $z = re^{i\theta}$, $z = x+iy$

$$\Rightarrow \underbrace{r = e^x}_{x = \text{constant, are circles}}, \underbrace{\theta = y}_{y = \text{constant, are rays}}, \underbrace{(\text{mod } 2\pi)}_{e^z \text{ is } 2\pi\text{-periodic in } y.}$$

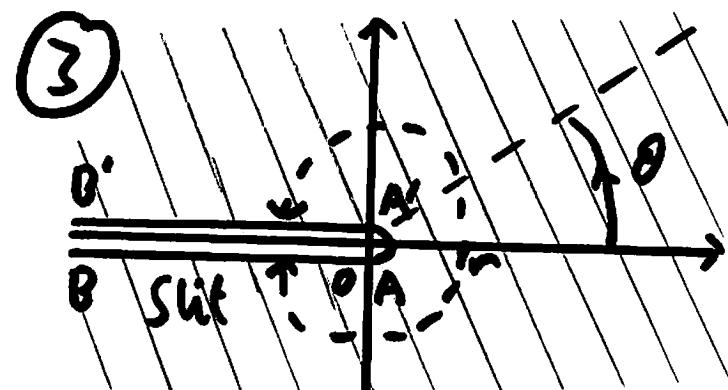
\exp map generates polar coords.

- E.g. ②



$$|\operatorname{Im}(z)| < \pi$$

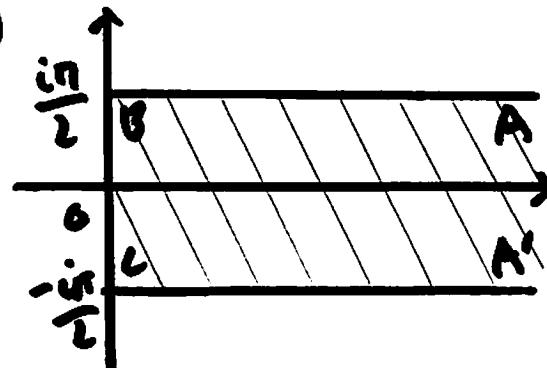
$$\begin{array}{c} z = e^z \\ \uparrow \\ z = \log z \end{array}$$



$$|\operatorname{arg}(z)| < \pi$$

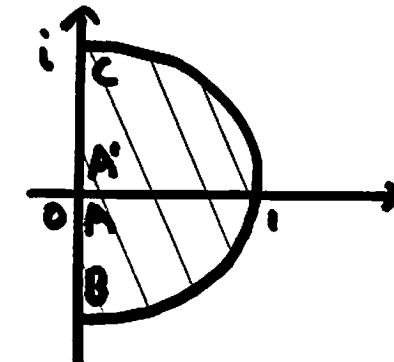
NB: Same image if strip translated by $2\pi k$ ($k \in \mathbb{Z}$) in y -direction, each one corresponding to a branch of $\log z$.

E.g. ②



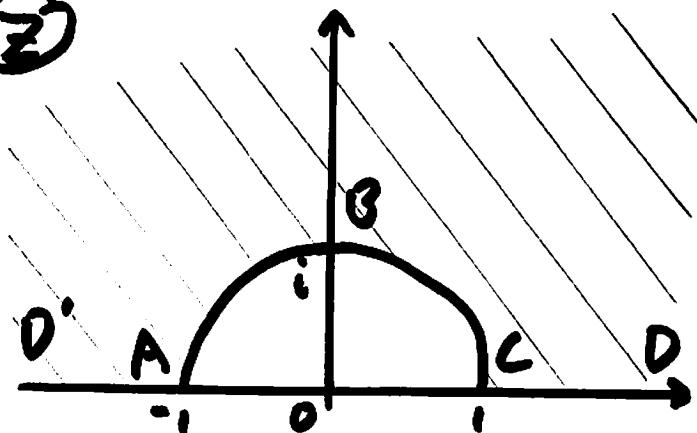
$$z = e^{-x}$$

③



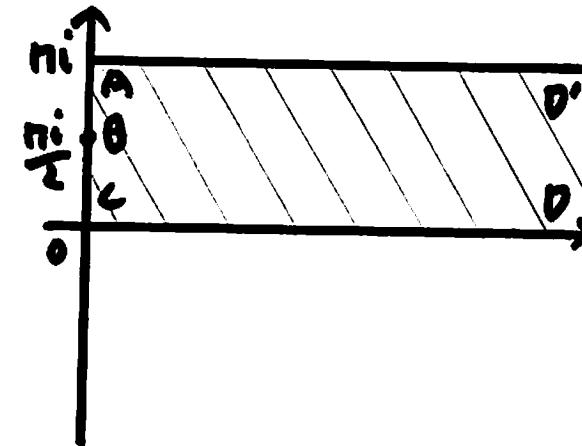
E.g.

②



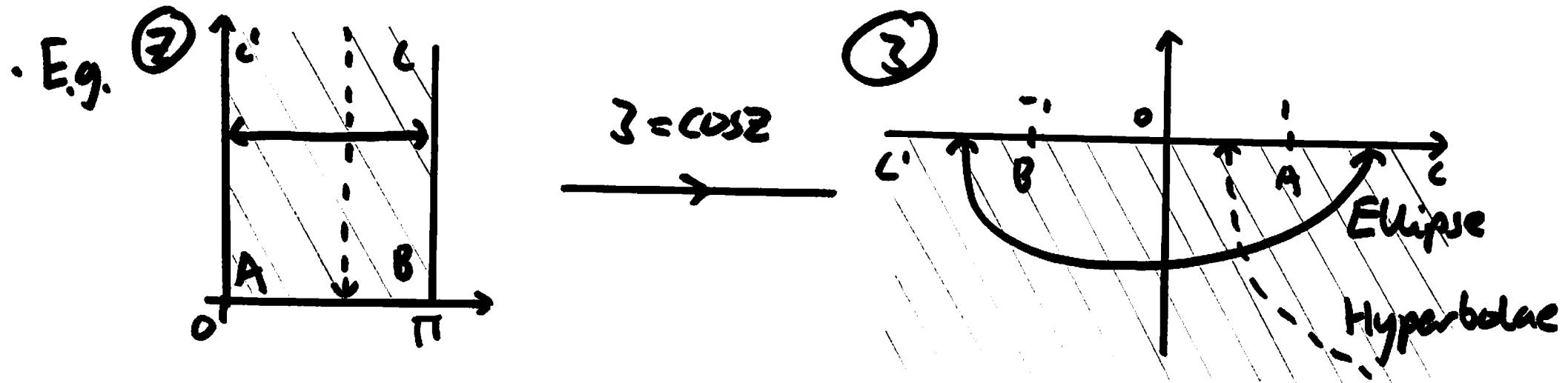
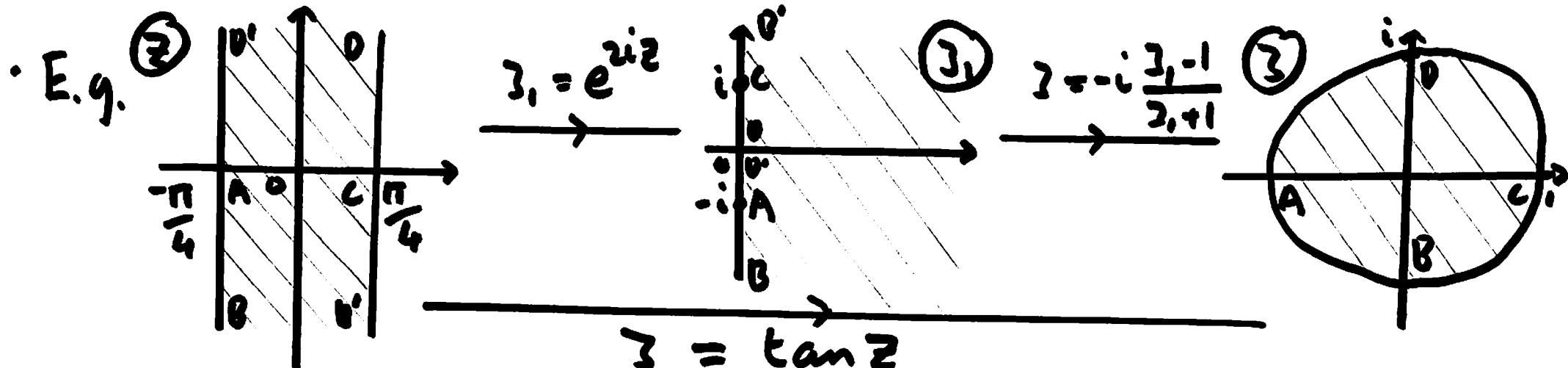
$$z = \log z$$

③

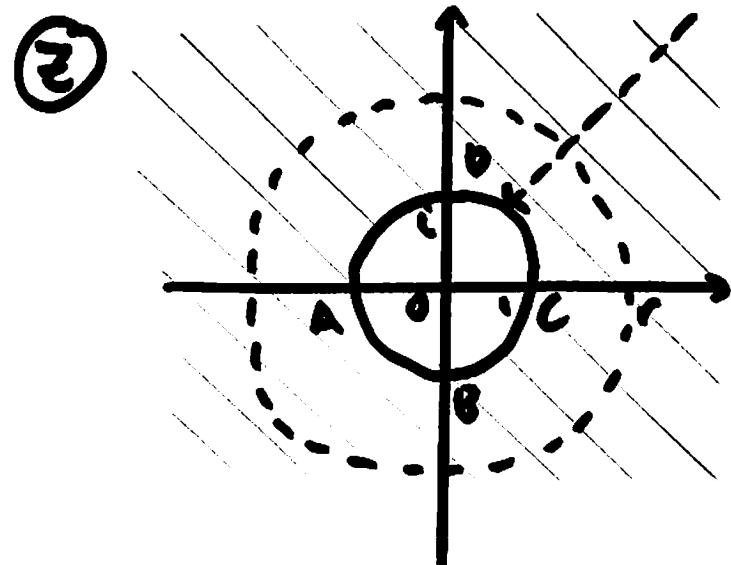
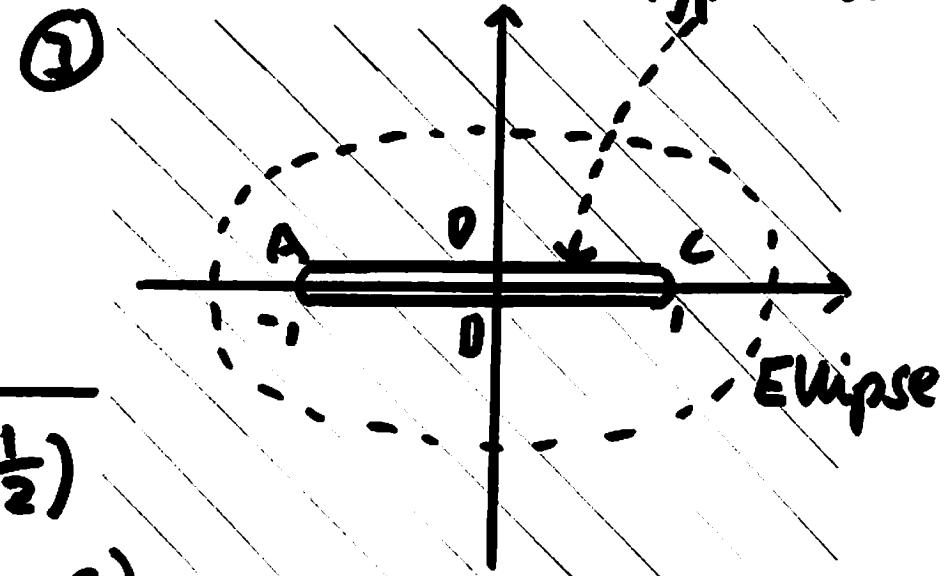


Sin, cos, tan

- Critical points periodically in x -direction \Rightarrow combine angle-doubling and stripmapping properties of z^2 and e^z , resp.

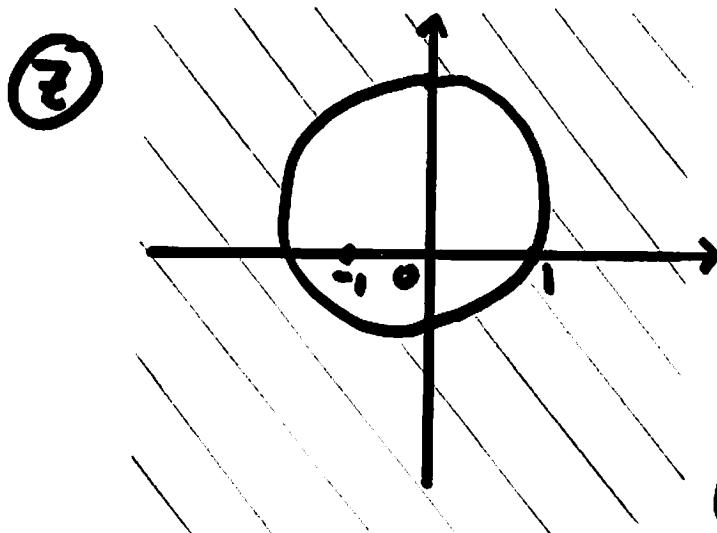


The Jan-Rauski map



$$z = \frac{1}{2}(z + \frac{1}{z})$$

$$(z = e^{i\theta} \Rightarrow z = \cos\theta)$$



$$z = \frac{1}{2}(z + \frac{1}{z})$$

(critical points at $z = \pm 1$)

