C4.1 Further Functional Analysis

Sheet 4 — MT 2025

For classes in week 1 HT

Sections A and B are based on material up to and including Section 10. Section C contains some questions based on material from Sections 12 and 13.

Section A

1. Let X and Y be normed spaces $T \in \mathcal{B}(X,Y)$. Fill in the details required to show that T is compact if and only if for every bounded sequence $(x_n)_{n=1}^{\infty}$, there is a subsequence $(x_{n_k})_k$ such that $(Tx_{n_k})_k$ converges.

Solution: If T is compact, and x_n is a sequence bounded by M, then $T(x_n/M)$ is a sequence in the compact metric space $\overline{T(B_X)}$ so has a convergent subsequence, say $T(x_{n_k}/M)$. Hence $T(x_{n_k})_k$ converges.

Conversely, if the condition holds, then given a sequence $(y_n) \in \overline{T(B_X)}$, choose $x_n \in B_X$ with $||Tx_n - y_n|| < 1/n$. Then x_n has a subsequence (x_{n_k}) so that $T(x_{n_k})$ converges, and hence too (y_{n_k}) converges. Thus $\overline{T(B_X)}$ is sequentially compact, so compact (as it is a metric space).

2. Show that c_0 embeds isometrically into $\mathcal{K}(\ell^2)$. Deduce that $\mathcal{K}(\ell^2)$ is not reflexive.

Solution: For $(a_n)_n \in c_0$ define $T \in \mathcal{B}(\ell^2)$ by $T(x_n) = (a_n x_n)$. It is not difficult to confirm that this is an isometry (the bound from above is immediate; then find an element where the supremum is achieved). One may then define a finite-rank approximation of T via $T^N(x_n) = (a_n x_n)$ for all $n \leq N$, and $T^N(x_n) = 0$ for all n > N. Choosing $x \in B_{\ell^2}$ we have

$$||T - T^N|| \le \max_{n \ge N+1} |a_n| \to 0 \text{ as } N \to \infty.$$

By Theorem 9.4, T maps into the compact operators. Since reflexivity passes to closed subspaces (Theorem 6.8; see also Sheet 2 problem B.7), and c_0 is not reflexive, neither is $\mathcal{K}(\ell^2)$.

- 3. This question aims to revise your knowledge of the spectrum of self-adjoint operators on a Hilbert space. If you've not seen this before, then the later parts won't be warm up exercises. Let X be a Hilbert space and $T \in \mathcal{B}(X)$.
 - (a) Show that if T is self-adjoint, all eigenvectors are real and eigenvectors corresponding to distinct eigenvalues are orthogonal.
 - (b) Show that T is surjective if and only if the adjoint T^* is bounded below. Use this to show that if $\lambda \in \sigma(T)$ then there is a sequence $(x_n)_{n=1}^{\infty}$ in S_X such that $(x_n, Tx_n) \to \lambda$.
 - (c) If T is self-adjoint show that $||T|| = \sup_{x \in S_X} |(x, Tx)|$ and deduce that r(T) = ||T||.

Solution:

(a) This is as it was in prelims / part A! Let x be an eigenvector with eigenvalue λ . Then

$$\overline{\lambda} ||x||^2 = \langle Tx, x \rangle = \langle x, Tx \rangle = \lambda ||x||^2.$$

Since $x \neq 0$, $\overline{\lambda} = \lambda$, and $\lambda \in \mathbb{R}$.

Suppose $y \in X$ is an eigenvector with eigenvalues μ . As

$$\lambda \langle x,y \rangle = \langle Tx,y \rangle = \langle x,Ty \rangle = \mu \langle x,y \rangle,$$

if $\lambda \neq \mu$, then $\langle x, y \rangle = 0$.

(b) Suppose T is surjective, then T is a quotient operator so T^* is an isomorphic embedding so bounded below. Hence T^* is also bounded below (from the connection between the dual operator $T^*: H^* \to H^*$ and the Hilbert space adjoint $T^*: H \to H$.) Conversely if T^* is bounded below, then it is an isomorphic embedding and hence so too is T^* . Then T is a quotient operator, so surjective.

Suppose $\lambda \in \sigma(T)$. Either $T - \lambda I$ is not injective, when there exists $x \in S_X$ with $Tx = \lambda x$, or $T - \lambda I$ is not surjective. Thus $(T - \lambda I)^* = T^* - \overline{\lambda}I$ is not bounded below, and hence there exists a sequence $(x_n)_n$ in S_X with $\|(T - \lambda I)^*x_n\| \to 0$. Thus $\langle T^*x_n - \overline{\lambda}x_n, x_n \rangle \to 0$ and so $\langle x_n, Tx_n \rangle \to \lambda$.

(c) Recall that for $T \in \mathcal{B}(X)$, we have $||T|| = \sup_{x,y \in S_X} |\langle Tx, y \rangle|$. Now, for $T = T^*$, note that for $x, y \in S_X$,

$$\langle T(x+y), x+y \rangle - \langle T(x-y), (x-y) \rangle = 2\langle Tx, y \rangle + 2\langle Ty, x \rangle = 2\langle Tx, y \rangle + 2\langle x, Ty \rangle$$
$$= 4\Re \langle Tx, y \rangle.$$

Now, writing $M = \sup_{x \in S_x} |\langle Tx, x \rangle|$, we have

$$\Re \langle Tx, y \rangle = \frac{1}{4} (\langle T(x+y), x+y \rangle - \langle T(x-y), (x-y) \rangle)$$

$$\leq \frac{M}{4} (\|x+y\|^2 + \|x-y\|^2) = \frac{M}{4} (2\|x\|^2 + \|y\|^2) \leq M,$$

using the parallelogram law. Multiplying by a suitable scalar of norm 1 we get $|\langle Tx,y\rangle| \leq M$.

We have $r(T) \leq ||T||$ for all bounded operators T. Now let $T = T^*$ and choose a sequence $x_n \in S_X$ with $|\langle Tx_n, x_n \rangle| \to ||T||$. We can pass to a subsequence such that $\langle Tx_n, x_n \rangle \to \lambda = \pm ||T||$. Now (as $\langle Tx_n, x_n \rangle$, λ are both real),

$$0 \le \|(T - \lambda)x_n\|^2 = \langle (T - \lambda)x_n, (T - \lambda)x_n \rangle$$
$$= \|Tx_n\|^2 - 2\lambda \langle Tx_n, x_n \rangle + \lambda^2 \le 2\lambda^2 - 2\lambda \langle Tx_n, x_n \rangle \to 0.$$

Hence $T - \lambda I$ is not bounded below, and hence $\lambda = \pm ||T|| \in \sigma(T)$. Thus $r(T) \le \sigma(T)$.

- 4. Let X be a separable Hilbert space. An operator $T \in \mathcal{B}(X)$ is a Hilbert-Schmidt operator if there is an orthonormal basis $(e_n)_{n=1}^{\infty}$ for X such that $\sum_{n=1}^{\infty} ||T(e_n)||^2 < \infty$.
 - (a) Show that if $(e_n)_{n=1}^{\infty}$ and $(f_m)_{m=1}^{\infty}$ are orthonormal bases for X, then $\sum_m ||T(f_m)||^2 = \sum_n ||T(e_n)||^2$ for any $T \in \mathcal{B}(X)$.

Solution: For each $m \in \mathbb{N}$, write $f_m = \sum_n \alpha_n^m e_n$, where $\alpha_n^m \in \mathbb{F}$ is zero for all but finitely many values of n. Then

$$\sum_{m} \|Tf_{m}\|^{2} = \sum_{m} \|T\left(\sum_{n} \alpha_{n}^{m} e_{n}\right)\|^{2}$$

$$= \sum_{m} \left\langle \sum_{i} \alpha_{i}^{m} T e_{i}, \sum_{j} \alpha_{j}^{m} T e_{j} \right\rangle$$

$$= \sum_{m} \sum_{i,j} \alpha_{i}^{m} \overline{\alpha_{j}^{m}} \left\langle T e_{i}, T e_{j} \right\rangle$$

$$= \sum_{i,j} \left\langle T e_{i}, T e_{j} \right\rangle \sum_{m} \alpha_{i}^{m} \overline{\alpha_{j}^{m}}$$

$$= \sum_{i,j} \left\langle T e_{i}, T e_{j} \right\rangle \sum_{m} \alpha_{i}^{m} \overline{\alpha_{j}^{m}}.$$

We now prove that $\sum_{m} \alpha_{i}^{m} \overline{\alpha_{j}^{m}} = \delta_{ij}$, which will conclude the proof of this part. Write $e_{n} = \sum_{m} \beta_{m}^{n} f_{m}$. Then $\langle e_{n}, f_{m} \rangle = \beta_{m}^{n} = \alpha_{n}^{m}$, so

$$\sum_{m} \alpha_{i}^{m} \overline{\alpha_{j}^{m}} = \sum_{m} \beta_{m}^{i} \overline{\beta_{m}^{j}} = \langle e_{i}, e_{j} \rangle = \delta_{ij},$$

as desired.

(b) Show that every Hilbert-Schmidt operator is compact.

Solution: Consider the sequence of operators $T_n \in \mathcal{B}(X)$ defined by $T_n(e_i) = Te_i$ for $i \leq n$ and $T_n(e_i) = 0$ for i > n and extend to all of X by density. Note that $T_n(X)$ is the closure of $T_n|_{\text{span}\{e_i\}}(X)$. But $T_n|_{\text{span}\{e_i\}}(X)$ is finite dimensional and therefore closed. Thus, the operators T_n have finite rank. We now show that $\lim_{n\to\infty} ||T-T_n|| = 0$. Let ε and let $n \in \mathbb{N}$ be such that $\sum_{i>n} ||Te_i||^2 < \varepsilon$, which is possible since T is Hilbert–Schmidt. Let $x = \sum_i \alpha_i e_i \in B_X$. Then

$$\|(T - T_n)(x)\|^2 = \left\| \sum_{i > n} \alpha_i T e_i \right\|^2 \leqslant \sum_{i > n} |\alpha_i|^2 \cdot \|T e_i\|^2 \leqslant \sum_{i > n} \|T e_i\|^2 < \varepsilon.$$

This proves the claim and shows that T is compact by Corollary 11.4 of the notes.

(c) Give a characterisation in terms of eigenvalues and multiplicities of when a compact self-adjoint operator is Hilbert-Schmidt.

Solution: Let T be a compact self-adjoint operator. By the Spectral Theorem, there are nonzero real numbers λ_i and finite-rank orthogonal projections P_i such that $T = \sum_i \lambda_i P_i$ (the sum is either finite or countably infinite) and there is a basis E of orthonormal eigenvectors. For each i, let $e_1^i, \ldots, e_{m(i)}^i$ be the eigenvectors of E with eigenvalue to λ_i . Note that m(i) is the multiplicity of λ_i , and it is always finite (by Theorem 13.3, for example).

$$\sum_{e \in E} ||Te||^2 = \sum_{i} \sum_{k=1}^{m(i)} ||Te_k^i||^2$$

$$= \sum_{i} \sum_{k=1}^{m(i)} \left\langle \sum_{j} \lambda_j P_j e_k^i, \sum_{j} \lambda_j P_j e_k^i \right\rangle$$

$$= \sum_{i} \sum_{k=1}^{m(i)} |\lambda_i|^2 \left\langle \sum_{k=1}^{m(i)} e_k^i, \sum_{k=1}^{m(i)} e_k^i \right\rangle$$

$$= \sum_{i} \sum_{k=1}^{m(i)} |\lambda_i|^2 m(i)$$

$$= \sum_{i} |\lambda_i|^2 m(i)^2.$$

We thus obtain the following characterisation: T is Hilbert–Schmidt if and only if

$$\sum_{i} |\lambda_i|^2 m(i)^2 < \infty.$$

Section B

- 1. (a) Let X and Y be normed vector spaces and let $T \in \mathcal{B}(X,Y)$. We say that T is *completely continuous* if, for every weakly convergent sequence (x_n) in X, the sequence (Tx_n) is norm-convergent in Y.
 - (i) Show that if T is compact then T is completely continuous.
 - (ii) Prove that the converse of (i) holds if X is reflexive. [You may, if you wish, assume in addition that X is separable.]
 - (iii) Exhibit an operator which is completely continuous but not compact.
 - (b) Let $1 . Show that <math>\mathcal{B}(\ell^p, \ell^1) = \mathcal{K}(\ell^p, \ell^1)$. Is $\mathcal{B}(c_0, \ell^p) = \mathcal{K}(c_0, \ell^p)$?
- 2. Let $K \in L^2(\mathbb{R}^2)$ and consider the map T sending $x \in L^2(\mathbb{R})$ to the function Tx defined by

$$(Tx)(t) = \int_{\mathbb{R}} K(s, t)x(s) \, \mathrm{d} \, s$$

whenever $t \in \mathbb{R}$ is such that the integral exists.

- (a) Show that T is a well-defined element of $\mathcal{B}(L^2(\mathbb{R}))$ with $||T|| \leq ||K||_{L^2(\mathbb{R}^2)}$.
- (b) Prove that T is compact. [You may use the fact that indicator functions of bounded rectangles span a dense subspace of $L^2(\mathbb{R}^2)$.]
- 3. Let X and Y be normed vector spaces and let $T \in \mathcal{B}(X,Y)$. We say that T is weakly compact if the weak closure of $T(B_X)$ is weakly compact.
 - (a) Show that T is weakly compact if and only if Ran $T^{**} \subseteq J_Y(Y)$.
 - (b) Prove that if T is weakly compact then T^* is weakly compact, and that if Y is complete then the converse holds too.
- 4. Let X, Y be Banach spaces and suppose that $T \in \mathcal{B}(X, Y)$. Show that T is Fredholm if and only if T^* is and that, if both operators are Fredholm, then ind $T + \operatorname{ind} T^* = 0$.
- 5. Let X, Y and Z be Banach spaces and let $S \in \mathcal{B}(Y, Z)$ and $T \in \mathcal{B}(X, Y)$.
 - (a) Show that if S, T are both Fredholm then so is ST and ind $ST = \operatorname{ind} S + \operatorname{ind} T$.
 - (b) Suppose now that ST is Fredholm. Prove that S is Fredholm if and only if T is Fredholm. Give an example in which neither S nor T is Fredholm.
 - (c) Show that if X = Y = Z and ST = TS then ST is Fredholm if and only if S and T are both Fredholm.

Section C

- 1. Let X be the complex Banach space ℓ^1 and consider the left-shift operator $T \in \mathcal{B}(X)$ given by $Tx = (x_{n+1})_{n \geq 1}$ for $x = (x_n)_{n \geq 1} \in X$. Moreover let $\Gamma = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$.
 - (a) Show that for $\lambda \in \mathbb{C}$ the operator $T \lambda$ is Fredholm if and only if $\lambda \notin \Gamma$, and determine the index ind $(T \lambda)$ whenever it is defined.
 - (b) Let p be a complex polynomial. Prove that p(T) is Fredholm if and only if $p^{-1}(\{0\}) \cap \Gamma = \emptyset$ and that, if this condition is satisfied, then

$$\operatorname{ind} p(T) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{p'(\lambda)}{p(\lambda)} d\lambda.$$

Solution:

- (a) Since ||T|| = 1 we know that for $|\lambda| > 1$ the operator $T \lambda$ is invertible and hence Fredholm with ind $(T \lambda) = 0$. If $|\lambda| < 1$ then it is easy to verify that $\text{Ker}(T \lambda) = \text{Span}\{(1, \lambda, \lambda^2, \dots)\}$. We now show that $T \lambda$ is surjective for $|\lambda| < 1$. This can be done directly, or alternatively by noting that if we identify X^* with ℓ^{∞} then T^* is the right shift defined by $T^*x = (0, x_1, x_2, \dots)$ for $x = (x_n) \in \ell^{\infty}$. In particular, T^* is an isometry and $||T^*x \lambda x|| \ge (1 |\lambda|)||x||$ for all $x \in \ell^{\infty}$, so $T^* \lambda$ is an isomorphic embedding. Since X is complete it follows from a result in lectures that $T \lambda$ is a quotient operator and in particular surjective. Hence $T \lambda$ is Fredholm and ind $(T \lambda) = 1$ for $|\lambda| < 1$. Since the index is locally constant on the set of Fredholm operators, $T \lambda$ cannot be Fredholm when $|\lambda| = 1$.
- (b) Let p be a complex polynomial. If p is constant then p(T) is Fredholm if and only if p is non-zero. If p is non-constant then we may write it in the form $p(\lambda) = c(\lambda \lambda_1) \cdots (\lambda \lambda_n)$ for some $n \geq 1, \lambda_1, \ldots, \lambda_n \in \mathbb{C}$ and $c \in \mathbb{C} \setminus \{0\}$. Then

$$p(T) = c \prod_{k=1}^{n} (T - \lambda_k),$$

and by a previous result and induction we obtain that p(T) is Fredholm if and only if $T - \lambda_k$ is Fredholm for $1 \le k \le n$. By part (a) we know that $T - \lambda_k$ is Fredholm if and only if $|\lambda_k| \ne 1$, so p(T) is Fredholm if and only if $\{\lambda_1, \ldots, \lambda_n\} \cap \Gamma = \emptyset$. But $\{\lambda_1, \ldots, \lambda_n\} = p^{-1}(\{0\})$. Thus in all cases p(T) is Fredholm if and only if $p^{-1}(\{0\}) \cap \Gamma = \emptyset$. Moreover, if p(T) is Fredholm then by Q.2 and the first part

$$\operatorname{ind} p(T) = \sum_{k=1}^{n} \operatorname{ind} (T - \lambda_k) = \frac{1}{2\pi i} \sum_{k=1}^{n} \oint_{\Gamma} \frac{\mathrm{d}\lambda}{\lambda - \lambda_k} = \frac{1}{2\pi i} \oint_{\Gamma} \frac{p'(\lambda)}{p(\lambda)} \, \mathrm{d}\lambda.$$

Remark: Suppose that p has no zeros on the unit circle Γ , so that p(T) is Fredholm. Let $\Gamma_p = p(\Gamma)$ and parameterise Γ_p (with the orientation inherited from Γ being

traversed counterclockwise) by $t \mapsto r(t)e^{i\theta(t)}$, where r(t) > 0 and $\theta(t)$ is real for $0 \le t \le 1$. Then r(0) = r(1) and hence

$$\operatorname{ind} p(T) = \frac{1}{2\pi i} \oint_{\Gamma_n} \frac{\mathrm{d}\lambda}{\lambda} = \frac{1}{2\pi i} \int_0^1 \left(\frac{r'(t)}{r(t)} + i\theta'(t) \right) \mathrm{d}t = \frac{\theta(1) - \theta(0)}{2\pi}.$$

Thus ind p(T) coincides with the winding number of the curve Γ_p , that is to say its total number of counterclockwise revolutions about the origin. There are many other situations in which the Fredholm index has a topological interpretation. For instance, the famous Atiyah-Singer Index Theorem states that for elliptic differential operators on compact manifolds the Fredholm index equals a certain topological index.

2. Let X be a Banach space and let $\{x_n : n \geq 1\}$ be a Schauder basis for X with basis projections P_n , $n \geq 1$, and let

$$|||x||| = \sup\{||P_n x|| : n \ge 1\}, \quad x \in X.$$

Prove that $\| \cdot \|$ defines a complete norm on X.

Solution: If |||x||| = 0, then $||P_n x|| = 0$ for all $n \in \mathbb{N}$ and therefore the representation of x in terms of the Schauder basis is $x = \sum_n 0 \cdot x_n$. Hence x = 0. Next,

$$\||\lambda x|\| = \sup_{n \in \mathbb{N}} \{||P_n(\lambda x)||\} = \sup_{n \in \mathbb{N}} \{|\lambda| \cdot ||P_n x||\} = |\lambda| \cdot \sup_{n \in \mathbb{N}} \{||P x_n||\} = |\lambda| \cdot ||x||$$

for all $\lambda \in \mathbb{F}$. For the triangle inequality, we have

$$|||x + y||| = \sup_{n \in \mathbb{N}} \{||P_n(x + y)||\}$$

$$= \sup_{n \in \mathbb{N}} \{||P_nx + P_ny||\}$$

$$\leq \sup_{n \in \mathbb{N}} \{||P_nx|| + ||P_ny||\}$$

$$\leq \sup_{n \in \mathbb{N}} \{||P_nx||\} + \sup_{n \in \mathbb{N}} \{||P_ny||\}$$

$$= |||x||| + |||y|||$$

for all $x, y \in X$.

Now we verify that $\|\cdot\|$ is complete. Let $(a_i)_{i\in\mathbb{N}} = (\alpha_1^i x_1 + \alpha_2^i x_2 + \cdots)_{i\in\mathbb{N}}$ be a Cauchy sequence in $(X, \|\cdot\|)$. Let $\varepsilon > 0$. Then there is some $N \in \mathbb{N}$ such that for all i, j > N we have

$$\varepsilon > |||a_i - a_j||| = \sup_{n \in \mathbb{N}} \left\{ ||(\alpha_1^i - \alpha_1^j)x_1 + \dots + (\alpha_n^i - \alpha_n^j)x_n|| \right\}$$
$$\geqslant ||(\alpha_1^i - \alpha_1^j)x_1 + \dots + (\alpha_n^i - \alpha_n^j)x_n||$$

for every $n \in \mathbb{N}$. In particular, this implies that $(\alpha_1^i x_1 + \dots + \alpha_n^i x_n)_i$ is a Cauchy sequence for each $n \in \mathbb{N}$. It is then easy to show that each $(\alpha_n^i)_i$ is a Cauchy sequence for every $n \in \mathbb{N}$, and therefore that there are constants $\alpha_1, \alpha_2, \dots$ such that

$$\lim_{i \to \infty} (\alpha_1^i x_1 + \dots + \alpha_n^i x_n) = \alpha_1 x_1 + \dots + \alpha_n x_n$$

for each $n \in \mathbb{N}$. Formally define $a = \sum_{n} \alpha_{n} x_{n}$; we have not yet shown that the series on the right hand side is norm convergent, but for now we will only be interested in the projections $P_{n}a = \alpha_{1}x_{1} + \cdots + \alpha_{n}x_{n}$ which are well-defined.

Let $n \in \mathbb{N}$, let i > N, and let j > N be such that $||P_n a - P_n a_j|| < \varepsilon$. Then

$$||P_n a - P_n a_i|| \le ||P_n a - P_n a_j|| + ||P_n a_j - P_n a_i|| < 2\varepsilon.$$

Since the above inequality is independent of n, we obtain

$$\sup_{n\in\mathbb{N}} \{\|P_n a - P_n a_i\|\} < 2\varepsilon$$

for all i > N. It only remains to show that the series defining a is in fact norm convergent so that a is actually a well-defined element of X. To do this, we will show that $(P_n a)_{n \in \mathbb{N}}$ is a Cauchy sequence in $(X, \|\cdot\|)$. Let m, n > N. Then for every i > N we have

$$||P_m a - P_n a|| \le ||P_m a - P_m a_i|| + ||P_m a_i - P_n a_i|| + ||P_n a_i - P_n a|| < 4\varepsilon + ||P_m a_i - P_n a_i||$$

But $(P_n a_i)$ is Cauchy for every i, so there is some N_i such that $||P_m a_i - P_n a_i|| < \varepsilon$ for all $m, n > N_i$. So for $m, n > \max\{N, N_i\}$, we obtain $||P_m a - P_n a|| < 5\varepsilon$, which proves the claim.

- 3. (a) Prove that if X is a Banach space with a Schauder basis, then every compact operator on X is a norm limit of finite rank operators. ¹
 - (b) Show that if $T: X \to Y$ is a finite rank operator, then so too is T^* .
 - (c) Suppose that X is a Banach space with a Schauder basis. Show how to use parts (a) and (b) above to deduce that if $T: X \to Y$ is compact, then so too is T^* in this case. Note that this result applies when X is a Hilbert space.

¹Additional exercise. Show that regardless of separability, every compact operator on a Hilbert space is a limit of finite rank operators.