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1 Introduction

[UNDER CONSTRUCTION !] In data science and in many applications such as quantum field
theories, we have to handle datasets with a large number of attributes, and often labels and attributes
demonstrating a dataset are not independent. It is convenient to represent datasets with D many
attributes as vectors in the Euclidean space of D dimensions, where D though is very large. In many
applications, D is larger than the size of the sample data. Often datasets in applications are located
in a lower dimensional sub-manifolds, so there is a question of reducing dimensions in datasets.
This course does not address this kind of questions, nor to address anything about learning from
data or about regenerating datasets. Rather, we attempt to develop an array of mathematical tools
to address the question of describing the distributions of datasets. The main tool we shall develop
in this course is the Ornstein-Uhlenbeck (OU) diffusion process, although we shall only study this
model from a deterministic dynamic point-view. We however would like to point out that this
OU process plays a crucial role in the recent year Al revolution, namely the regenerative diffusion
model in this new phase of Al technology.

Prerequisite: It is essential that you have good computational skills from (1) Prelims Calculus,
(2) A2.1 Metric Spaces, (3) First half of A8 Probability, and (4) A4 Integration.

Main tools: We shall introduce a few new concepts on the way, but no one of them is particu-
larly new, and they are introduced mainly for convenience. We shall mainly use the computational
tools developed in elementary calculus such as finding derivatives using various rules, finding
some simple integrals, a little bit algebra for helping organizing your computations and etc. A4
Integration is required to backup and to justify your computations. You shall enjoy the powerful
techniques developed in this course, and you shall appreciate the results established in this course
like the isoperimetric inequalities both for Gaussian measures and for the Lebesgue measures. You
shall be able to appreciate the main method developed in this course, i.e. the method of stochastic
quantization in its simplest form.

About this course: This is not a course about data science, it is a course which is quite useful
for understanding datasets. It is a probability course with strong flavor of analysis. While I hope
in near future these tools shall be used widely in data science.

The standard one dimensional normal distribution, even in high-dimensional probability, re-
mains to play an important role as in elementary Probability Theory. The Gaussian distribution
function
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whose probability density function (PDF) is its derivative: @’(x) = T 2. Clearly its second
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derivative @”(x) = —x®’'(x). @ is strictly increasing on (—eo,0) taking values in (0, 1), whose
inverse function @' : (0,1) + (—o0,0) is also strictly increasing. A fundamental fact about
normal distribution is that the tail probability

“ 1 2
1—-P(r)= / e Zdx
r

/2

decays to zero in a speed like e™" /< as r — oo,



In fact we have more precise quantitative decay estimates.

Exercise. For r > 0 we have

(r+ l) B D'(r)<1-D(r) < %(P’(r)-

[Hint: Observe that

You may read page 4 in H. P. McKean: Stochastic Integrals. Academic Press New York and
London (1969), or any other books on probability.]

Therefore we conclude that
< 1] 22 1 1 1 _2
1—P(r) = e 2dx<min{ =, ——-¢ 2
(r) /r V2T - {2 V21 r }
for any r > 0.

Suppose X has a normal distribution with mean zero and variance ¢, then for every r > 0
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which maybe called the Gaussian decay rate. We shall later on prove that

2
PIX >7] Sexp( 2—62>
for every r > 0.

In this course, we shall develop an array of mathematical tools for establishing effective tail
estimates for high-dimensional probability distributions. In contrast with the traditional probabil-
ity theory and classical stochastic analysis, where the concepts such as independence, martingale
property, Markov property, play dominated roles, in High-Dimensional Probability, we seek for
tools which can be used for handling distributions of random fields which do not possess these
properties. These tools shall be particularly useful for the study of distributions of datasets with
large numbers of attributes with complex (dependent) structures.
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Let us collect several notions, notations and a few elementary facts which shall be used in this
course.

Suppose (X,d) is a metric space, then the topology on X defined by the metric d is the collec-
tion of all open subsets, that is all subset U which have the following property: for every x € U,
there is a positive number r (depending on x in general though) such that the open ball centered at x
with radius r, B(r) is a subset of U. A metric space is separable if it has a countable dense subset.
A metric space is complete if every Cauchy sequence has a limit. A complete and separable metric
space is called a Polish space.

The o-algebra generated by open subsets, i.e. the smallest o-algebra on X, containing all
open subsets (and therefore all closed subsets as well) is called the Borel o-algebra, denoted by
2 (X). By saying a measure on a metric space, we mean a measure on the Borel c-algebra on a
metric space, unless otherwise specified. In particular, any continuous function on a metric space
is measurable (with respect to the Borel o-algebra), cf. A4 Integration.

Most distributions one has to deal with in applications are probability measures on sample
spaces with additional space structures, such as linear structures you studied in Linear Algebras.
The most convenient way to introduce a distance on a vector space X is through a norm. We recall
that a function x — ||x|| from a vector space X + [0,0) if ||x|| = 0 only for x =0, ||Ax|| = |A] x|
for every scalar A and x € X, and the triangle inequality holds: ||x+ y|| < ||x||+ ||y|| for any x,y € X.
The topology (i.e. the collection of open sets) on X is defined by the induced distance d(x,y) =
|x —y|| (for x,y € X). In this way we call (X, ||-||) is a normed (linear, or vector) space, that is, a
vector space equipped with a norm. Such normed space is called a Banach space if it is complete
as a metric space (cf. A2.1 Metric Spaces).

A scalar (or inner) product on X is a mapping (-,-) from the product space X x X to C,which
sends an ordered pair (x,y) to a number (x,y) which satisfies the following properties: (x,y) = (y,x)
for every pair x,y € X, (x,x) > 0 for every x and = 0 only for x = 0, the mapping x — (x,y) is
linear (in x) for every y, and y — (x,y) is conjugate linear (in y) for every x, i.e. (x,y;+y2) =
(x,y1) + (x,y2) and (x,Ay) = A (x,y) for any number A, and x,y € X. ||x|| = \/(x,x) for x € X
defines a norm on X, the norm ||-|| induced by the scalar product. A Banach space whose norm is
induced by a scalar product is called a Hilbert space.

2 Measures, integration and probability distributions

In this section we give a quick review about the foundation of probability theory.

2.1 Measures and Lebesgue’s integration

We shall not develop Lebesgue’s theory of integration in detail, which the reader may learn from a
standard textbook such as Halmos [9]. We shall however introduce the notations, notions and the
fundamental results sufficient enough so that the reader may follow the main content of the book
without need to refer to more theoretical approach of the measure theory.

A measurable space (E,.F) consists of two objects, a space (simply a non-empty set) E, and
a o-algebra .# on E. By a o-algebra on E we mean a collection .# of some subsets of E which
satisfies the following properties: the empty set ijce and the whole space E belong to the collection
F,ifA,Be F,thenA\B € %, and if A; € .7 (wherei=1,2,...), then U;— A, € Z.
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Clearly, the collection which contains only the empty set and the whole space is a o-algebra,
which is called the trivial o-algebra on any space. On the other hand, the totality of all subsets of
E is a o-algebra, which shall be the default choice of a 6-algebra when E is a finite or countable
space, unless otherwise specified.

If ¢ is a non-empty collection of some subsets of E, then

o(%¢)= ﬂ{ﬁ 1% C F and ¥ is c-algebraon E'}

is indeed a o-algebra, which is the smallest -algebra containing %, called the o-algebra generated
by €.

Example 2.1. Let S be a metric space. Then the Borel c-algebra on S, denoted by 2(S), is the
o-algebra generated by the collection of all open (hence closed) subsets of S. Unless it is said
otherwise, the default 6-algebra on a metric space is the Borel G-algebra A(S).

Definition 2.2. Suppose (E, %) and (E,, %) are two measurable spaces, and F : E; — E; is a
mapping. Then F is called a measurable mapping (or called a measurable function) if F~1(.%>) C
Z1. That is, for every A € F, the pre-image F~1(A) € 7.

‘We shall add several comments about this definition.

Remark 2.3. 1) The concept of measurable mappings (functions) between two spaces depends on
their carried G-algebras.

2) F~Y(.%,), which is collection of all F~'(A) (where A runs through %), is itself a 6-algebra
on Ej, called the pull-back c-algebra of 7, by the mapping F. F~1(.%,) is the smallest c-algebra
F on Ej such that F is measurable (with respect to the 6-algebra .% on E| and %, on E;, and
therefore F~! (%) is also called the c-algebra on E| generated by the mapping F.

3) A measurable mapping F : E| — Ej, where (E;, ;) (where i = 1,2) are measurable spaces,
is also called an E»-valued random variable.

4) Let (E,.%) be a measurable space, and let S be a metric space. Then a mapping F : E — S
is called an S-valued random variable if F is measurable with respect to the 6-algebra ¥ and the
Borel 6-algebra B(S), i.e. F~'(A) € .F for every Borel measurable subset A C S.

5) It is convenient to introduce two symbols oo and —o in R of real numbers, with the convention
that —oo < a < oo for any real number a, 0-00 =0, a-c0 = oo jfa > 0, and oo -0 = oo, Let [—o0, 00| =
R U{—o0,00}. Then the Borel 6-algebra HB(|—co,0|) is the G-algebra generated by {—oo}, {0}
and B(R). A [—oo,00| -valued measurable function on a measurable space (E,F) (where the
generalized real line [—co, 0| carries the Borel G-algebra) is called a (generalized) real random
variable on (E, ).

Proposition 2.4. Let (E,.%) be a measurable space, and let f, f, : E — [—o0,00| be (generalized)
real functions (forn=1,2,...).

1) f is measurable if and only if f~'(—o0), f~1(c0) and {f < a} are measurable for every
number a.

2) If f is measurable, then f* = max{f,0} and f~ = max{—f,0} are non-negative and mea-
surable.

3) Suppose f, are measurable (for n =1,2,...), then sup,, f,, inf, f,, limsup f, and liminf f,
are measurable.



Let (E,.#) be a measurable space. An outer measure L on (E,.7) is a function defined on .#
taking values in [0, o] such that u(ijce) = 0, and

u (OA,-) < iH(Ai)
i—1 i=1

for any A; € % (where i = 1,2,...). An outer measure U is called a measure if in addition p is
countably additive:

u (OA,-) = iH(Ai)
i—1 i=1

for any disjoint measurable A; (where i = 1,2,...).
If 1 is an outer measure on (E,.% ), then A € . is called p-measurable if

1w(B)=u(BNA)+u(BNA®) foranyBc .Z.

According to a theorem of Caratheodory’s, the collection .#), of all u-measurable subsets is a sub
o-algebra of .7, and p restricted on ./, is a measure.

If u is a measure (E,.7), then the triple (E,.%, 1) is called a measure space. u is called a
finite measure if ((E) < oo, and it is o-finite if there is a sequence A, € .# (forn=1,2,...) such
that U~ A; =E and u(A,) < e foreveryn=1,2,....

A measure p with total mass 1, that is, u(E) = 1, is called a probability, a probability distribu-
tion, a probability measure, or simply a distribution on (E, .%).

Let us now work with a o-finite measure space (E,.%, ). The integration theory over this
measure space can be constructed as the following. A non-negative function @ : E — [0,00] is
called . -simple if ¢ = Zle cil, for some positive integer k, some A; € .# and some ¢; € [0,0|.
For such a simple function, its integral

k
/E @du =Y cip(A;)
i=1

which may be infinity though. If f : E +— [0, 0| is measurable, then its integral

/fd,u:sup{/ odu : ¢ #-simple, and(p§f}
E E

where sup/ = o if [ is not bounded from above. An non-negative, .%-measurable function is
integrable (with respect to the measure ) if its integral |, pfdu < eo. For a general (i.e. not
necessary non-negative) .% -measurable function f, then f = f* — f~ and |f| = f* + f~, where
both f and f~ are non-negative and .%-measurable. If [ £ frdu < oo, then f is called integrable
(w.r.t. the measure () and its integral

/E fdu = /E frdu - /E .

The totality of all .%-measurable and i-integrable functions is denoted by L' (E,.%#, ut). For sim-
plicity, if f is measurable, and if f is non-negative or integrable, then its integral | g Sdu is also
denoted by [, f(x)u(dx), [ fdu, or by u(f) if no confusion arises.
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Suppose p > 0 is a constant, and f is .%-measurable, then |f|” is .% -measurable, and define
A1, = (fg |f1Pdu) /P (which may be infinity). If p = oo, then

|l fll.. =inf{C >0:|f] < C u almost surely }

For p € (0,e], LP(E, %, j1) denotes the totality of all .7 -measurable functions f such that || f|| , <

For discussions involving functions in L?(E,.%, ), two measurable functions f and g are
identified as the same element (in any L”-space) as long as { f # g} has y-measure zero.

Theorem 2.5. Let p € (1,0, and d(f,g) = || f — gl| , for any two measurable functions on (E, 7 , it).
1) LP(E,Z 1) is a linear space, and d,, is a metric on LP(E,.% ,11).
2) The metric space LP(E, 7, |1) equipped with the metric d,, is complete.

LP(E,.Z,u) is called the LP-space over the measure space (E,.%, ). It is a very important
fact that for every p > 1, f + [|f||, is a norm on the L”-space. In particular if p > 1, then

IF+8ll, <Ifll,+1gll, forany f,g € LP(E,7,u),

which is called the Minkowski inequality. This inequality can be proved by using the convexity of
the power function x” on (0,0) if p > 1. The detail of the proof is left as an exercise (see Problem
Sheet 1).

Let us now review several important results in the integration theory.

Recall that a real function p defined on an interval (a,b) (not necessary bounded) is convex if

p(As+(1—=2A)t) <Ap(s)+(1—-2)p(t) (2.1)
for any 5,7 € (a,b) and A € [0, 1]. A function p is concave if —p is convex.

Theorem 2.6. (Jensen’s inequality) Let (E,.% , L) be a finite measurable space. If p is convex on
(a,b) and f is measurable and takes values in (a,b), then

p <ﬁ /E fdu) < ﬁ /E p(f)du 22)

as long as both f and p(f) are integrable.

Theorem 2.7. (The Holder inequality) If f and g are two measurable functions on a o-finite
measure space (E, L), then

TE ( / |f|Pdu)’l’ ( / Igl"du>; 23)

ifp>1and % —f—é = 1. In particular if f € LP(E,u) and g € LY(E, ) then fg € L'(E, ). The
case where p = q =2 is called the Cauchy-Schwartz inequality.

Proof. If one of the integral on the right-hand side vanishes, then f or g equals zero almost surely,
which forces that fg = 0 almost surely too, thus both sides of the inequality are zero. The inequality
is trivial in this case. Thus let us assume both integrals on the right-hand side are greater than zero
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(but may be o). For this case, if one of the integral on the right-hand side is oo, the the right-hand
side is infinity, so the inequality is surely true and of course is also trivial. Therefore we may

assume that 1
P
0< ], = ( / |f|”du) <o

1
q
0 < lgll, = ( / Ig!qdu) <o,

For this case, by replacing f'by f/ | f||, and g/ |[gl|,, we may further assume that || f|| , = [|g||, = 1.
Now we use the elementary inequality

and

1 1
st < —sP 4 11

p q
for any non-negative s,¢ [This inequality follows by inspecting the function @ (x) = x — %x” — é
(for x > 0) and showing the maximum ¢(1) < 0]. O

The Holder inequality may be stated as the following convenient form

o 11—«
o 1-o
[ 15178 dus( / mdu) ( / Ig\du) 0.4

where o € (0,1) is a constant, f, g are y-integrable.
A special case for probabilities is worthy of mention.

Corollary 2.8. Let (Q2,.7,P) be a probability space. Then
(EX])” <E(]X]")
for every p > 1, X is p-th integrable. Equivalently

E(1X]%) < (E[x])*

for every constant o € (0,1), and X is integrable.

Exercise 2.9. Suppose X > 0 and Y are two measurable functions on a o-finite measure space
(E,Z,u). Then

Yz) (e (¥ ))?

p() > WD) (2.5)
(X n(X)

Here we use also () to denote the integral [, fdp.

Proof. In fact by Cauchy-Schwartz inequality

which yields (2.5).



It should be understood that the main task in probability theory (i.e. statistical mechanics) is to
give a good description of the distribution of a random variable. For a real random variable X, we
are interested in its distribution function Fx (1) = P[X <], which is a reason we are so interested
in tail estimates such as P[X >1].

Theorem 2.10. Letr p : (0,00) > [0,00) be right-continuous and increasing with its right-hand
limit at 0: p(0+) = 0. Let my denote the Lebesgue—Stieltjes measure associated with p (cf. A4
Integration), i.e. my is the unique measure on ([0,00), %([0,0))) such that mp ((s,t]) = p(t) — p(s)
foranyt >s>0, and my({0}) = 0.
Let X and Y be two non-negative measurable functions on a o-finite measure space (E, 7 ,|L).
1) It holds that

/E p(X)du = /0 "X > Amy(dA). 2.6)

2) Suppose that there is a constant C > 0 such that L [X > A] < Cu[Y > A| forall A > 0. Then
Jep(X)dp <C [ p(Y)du.

Proof. The proof follows from the construction of m, and the Fubini theorem (cf. A4 Integration).
Indeed

/ p(X (@)1t (do) = / (p(X(®)) — p(0+)) p(de) = / mp((0.X (@)1t (do)
E E

E
- /E U(o,xu»)] o (44)

= / Lix(w)>1)mp (dA)p(dw)
Ex(0,00)

u(@0) = [ | ["1pcxiwpmo(oh)| oo

— [ n(x = 2pmp(@)
(0,00)

where we have used the fact that m, ((s,7]) = p(t) — p(s) for any t > s > 0 by definition. O

Theorem 2.11. If f is a non-negative, Borel measurable function on RP, then
f(x)dx = / Leb({f > t})dt 2.7)
RD 0

where Leb denotes the Lebesgue measure on RP.

Proof. We may observe that, if p is increasing, continuous and p(0+) = 0 in Lemma 2.10, then
[[X > A] can be replaced by u[X > A]. In fact

f(x)dx:/ Leb({f >1})ds.
RD 0
Since t — Leb({f > t}) is decreasing so that

{r = 0:Leb({f >1}) # Leb({f > 1})}

is at most countable, and therefore is a null subset with respect to the Lebesgue measure. Therefore
(2.7) follows immediately. [



Theorem 2.12. Suppose X and A are two non-negative random variables on a probability space,
and suppose

PX>A]<-E[A:X>A] forany A > 0.

1
A
Then, for any p > 1

E[X”] < (Iﬁ)plﬁi [AP]. (2.8)

Proof. We can assume that X is bounded, otherwise we use min{X,n} (for n = 1,2,...) instead
and take limit as n — oo. Let p(z) = t” for t > 0. Then, by (2.6) [with p(¢) = ¢? for ¢ > 0]

E[X?] = /pr[x > Amp(dA) < /Ow%]E[A X > 2] p/(A)dA

gp/ E[A:X > A]AP2dA.
0

Using Fubini’s theorem for the last integration, we obtain that

X
E[X?] < pE {A / zp—zcm] =
0
Apply Holder’s inequality to obtain that

EX?) < -2 B W) (EX))s

where 11) + é = 1. Rearranging the inequality to complete the proof. [

p p—1
—p_lE[AX ].

The previous results, which though are very useful, can be stated in terms of Riemann inte-
grals (if one is happy with Riemann integrals rather than abstract integration), the usefulness of
Lebesgue’s integration however lies in its powerful capability of handling orders of taking various
limits as stated in the following fundamental theorem below, which is the core part of Lebesgue’s
integration.

Theorem 2.13. Let (E,.%,1) be a G-finite measure space. Let f, be measurable on E (where
n=12,...).
1) (Fatou’s lemma) If f,, are non-negative, then

/hmmffndu < hmmf/ fndu.
E

n—oo

2) (Monotone Convergence Theorem, MCT) If f, is an increasing sequence of non-negative
and measurable functions, then

/E,}glgofndﬂzl}ggo/lgfndﬂ

3) (Dominated Convergence Theorem) Suppose f,, — f almost surely and |f,| < g (for every
n) for some integrable function g, then all f, and f are integrable and

/E fdu = lim / fudyt.

Item 3), the Dominated Convergence Theorem, is the theoretical foundation for justifying our
differentiation and taking limits under integration, though very often one should carefully check
the control condition required in this theorem, such details though are often omitted.
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3 General concentration inequalities

Let us begin with a very general concentration principle of high-dimensional distributions, which
is not quantitative as we wish and therefore it has a very limited value.

Lemma 3.1. Let (E,p) be a Polish space, and P be any probability measure on (E,B(E)). Then
for every € > 0 there is a compact subset K C E, such that P|[E\ K| < €.

Proof. Since E is separable, for every 0 > 0, E can be covered by countable many balls with radius

()

§. Therefore, for every n, there is a sequence of closed balls B, of radius = o (where i =1,2,...)

such that U;B l( ") — E for each n. By construction

(n)
lim P B; =P B: =PE)=1.
(Ut < () v
Hence for each n, there is k, such that
kn
(n) €
P (UBi ) > 1o

Let K=", Uf” Bl("). K is totally bounded by definition and is also closed. Since E is complete,
therefore K is compact. Since

chg [(Q]ﬁ’”) g;:

and therefore P(K) > 1 — €. O

3.1 One-dimensional distributions

The most familiar estimates are perhaps those derived from the Markov inequality. Recall that if
X is a real and integrable random variable on a probability space (£2,.%,P), then for every A > 0
we have

X 1
PX 2] =E[ly=n] <E {zl{xzu} = 7 E Xl
In particular, if X is non-negative

1
]P’[XZ?L]SIE[X] forA >0 3.1
which is called the Markov inequality.

There are variations of the Markov inequality. Suppose ¢ : R — (0,00) is increasing, then

PIX > Al =P[p(X) > p(1)] <E {%uxm]



which of course yields that

PIX>2] < ﬁE [9(X): X > ] (3.2)

for any A and increasing, positive function ¢. In particular
1
IP’HX—/,L\EA]SEEHX—MP] forA >0 (3.3)

for any u and p > 0. The inequality reduces to the Chebyshev inequality where yu = E[X] and
p =2. Similarly if v : R — (0,0) is decreasing, then

PIX <A] = P[y(X) > y(A)] <E {Wl{xgz} .

Therefore X
PIX < A= Flw(x) > wia)] < B | Y00

for any A and any positive and decreasing function .

Proposition 3.2. (Chernoff’s inequality) Suppose E [e’lx ] exists for all A, then

PX >t < e 0 foreveryt € R, (3.4)
where
I (1) = sup {m ~IhE [e“} } . (3.5)
A>0

Proof. ¢(x) = e** (where A > 0) is increasing, therefore

PX >1] < iE [elx] _ o~ (A=IE[eM])

for every t and A > 0. However the left-hand side is independent of A > 0, therefore
P [X > l‘] < efsuplzo(ltflnﬂi[e“])
which completes the proof. 0

The function I; (which takes non-negative values, but maybe infinity) is called the Cramér
transform of (the distribution of) X. We will revisit this function later on.

Example. Let X has a normal distribution N(0, 62). Then

0o 2
E{eu] :/ ;exp b Ax ) dx
oo V202 20?2

_/°° 1 _(X—GZQL)Z_i_Gle "
N oo V27T O2 eXp 2072 2

o2)?
= exp < )
2
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so that
2,2

PX >t < e_supho(ll—%)

where the sup is achieved at A = #, and therefore

PIX >1t] <exp (—2%._2).

3.2 The Cramér theorem

Let X1,X>,... be an independent identically distributed sequence of (real) random variables on
a probability space (,.%#,P), with a common distribution y which is a probability measure on
(R,#(R)). Assume that X; is integrable, and let a = E [X;] = [, xu(dx). Then the strong law of
large numbers says

n

% ZXi — a almost surely.

i=1
That is to say, the distribution of the average %Z?:l X; is concentrated about the mean value a, and
tends to Dirac’s delta measure §, at a as n — oo. This result is at the core of probability, statistics
and Al technology. In this section, we give more precise information about the concentration of
the distribution 1, of 1¥7 | X;

The distribution p, of ¥ | X; (for n = 1,2,...) is a probability measure on (R, %(R)), by

definition

forA € A(R).

1 n
:PZ;&EA

Let us assume that the exponential moment of X = X is finite, that is, E(e;LX ) < oo for every
A. For simplicity, let yx(4) = InE(¢*X). The Legendre transform of yy is defined by

Ix(x) =sup{Ax—yx(A)} forxeR.
AeR

Ix takes values in [0, o).
Now we are in a position to state the first example of large deviation principle.

Theorem 3.3. (H. Cramér) Suppose E(e*X) < oo for every A, then 12 ' Xi (forn=1,2,...)
satisfies the large deviation principle (LDP) with the rate function I, in the sense that

n—e n XGG ( ) ( )

for every open subset G C R.

We divide the proof of this theorem into several steps.

13



Lemma 3.4. 1) The function A — E(e*X) is smooth and log-convex, that is & — yx () is convex.
2) Ix is a convex, and K, = {x : Ix(x) < ¢} is compact for every c.
3) Ix(a) = 0 where , and Ix 1 on (a,o) and Ix | on (—oo,a).
4) We have

inf Iy = Ix () ifx<y<a
(x.y]

and

inf Iy = Ix(x) fa<x<y.
[x.y)

Proof. 1) We only need to show that log E(e*X) is convex. For every o € (0, 1)

E(e(a/ll-i—(l—a)lz))():/eallxe(l—a)/lzx‘u(dx)

<(/ e’“wdx))a ([ #uian) -

(u is the distribution of X = X;), where the inequality follows from Holder inequality with p = é.
Therefore A — logE(e*X) is convex.

2) Ix is non-negative, and is convex as it is the supremum of the linear functions. In particular
Iy is continuous on {x : Iy (x) < co}. We show that for every ¢ > 0

K.={xeR:Ix(x)<c}

is compact. Since Ix is continuous on {Iy < oo}, so K, is closed, thus we only need to show that
K. is bounded. If x € K. then
+x—yx(£l) <c

which implies that
i < e+ Jyx (D] + lyx (=1)]

for every x € K.. Hence K, is bounded.
3) Since —Inx is convex on (0, ), by Jensen’s inequality

logE(e*X) :log/elx,u(dx)
> 2 / xe(dx) = Aa

which implies that
Aa—yx(A) <0 forall A

Therefore we must have Ix(a) = 0 so a is the global minimum of Ix. The other claims then follows
immediately as [, is convex. ]

Lemma 3.5. 1) We have
A —yx(4) < (x—a)A (3.8)

for any x and A. Here we recall that wx (1) = InE(e*X).

14



2) We have

Ix(x) =sup{Ax—yx(A)} for x>a (3.9)
A=0
and
Ix(x) =sup{Ax—yx(A)} for x<a. (3.10)
A<0

Proof. By the proof of 3) in the previous lemma, (3.8) follows from Jensen’s inequality. In partic-
ular, Ax — yx(4) <0 for any x and A such that (x —a)A < 0. Therefore

Ix(x) = sup  {Ax—yx(A)}
A:(x—a)A>0

for any x, which implies (3.9, 3.10) immediately. [
Lemma 3.6. Let u be the distribution of X = X| and a = EX. Then
1 ([x,09)) < exp(~Ix (1) = exp (— [inf)lx) Jorx>a
X,00
and
U ((—o0,x]) <exp(—Ix(x)) =exp (— inf Ix) forx<a.

(—o0,x]

Proof. Indeed we have already proven the first inequality: if A > 0 and x > a

ekz elZ A A
H([xa°°>>=/ u(dz)é/ Wﬂ(dz)S/Wu(dz):e—( )
zzx >x € R €

which yields that

A>0

1 ([x,e0)) < exp {— sup (Ax— llfx(/l))} = exp{—Ix(x)}.
Similarly we may prove the case where x < a. ]

After having established the elementary facts we are now in a position to prove the LDP bounds.

Proof of upper bound (3.6). 1f F =0 or a € F then infl, = 0 so that infr I, = 0 the bound
is trivial in this case. Therefore we assume that a ¢ F. If F C [a,), then F C [y,0) where
=inf{z:z € F}. Hence

infly = Ix(y) = sup{Ay — yx(1)}. (3.11)
F 2>0
For every A > 0
1 12 e%lZ?ZIX,'
Pl-)Y X;eF|<P|-) X;>y| < ———dP




Taking log both sides to obtain that

—lnIED

ZXeF

()

for every A > 0. It thus follows that

—ln}ID < —sup{Ay—wyx (A)} = —Ix(y)

A>0
= —i%fIX = —Ix(minF).

ZXGF

We thus have proven the upper bound for the case that F C [a, ).
Similarly we may show that

—lnIP’

ZXGF

Finally for an arbitrary closed set F in R, let F; = F N (—o0,a] and F> = F Na,). Then

—i%flx = —I; (maxF) if F C(—o,q].

1 1 & 1 &
—mP ZXEF —MQP—Z&EE-HP—Z&EE)
ni= ni=
so that
limsu —lnIP ZX €F| < max<limsu lln]P’ lXH:XEF
n%oopn o k=12 n*>°°pn n.= l ¢

max {—Ix (maxF;); —Ix (minF3)}
—min{lx (maxF}); Ix (minF>)}
—infly

F

IN

which is the upper bound for large deviations.

Proof of lower bound (3.7) Let G be an open subset of R. We are going to show that for every
xeq,

liminf—1nP
n—o 1

1 n
;Z&GGE—&@.
i=1

Obviously we only need to prove the previous inequality for those x € G such that Ix (x) < oco.

We consider two cases.

Firstly let us consider the case that the supremum Ix (x) of sup, (Ax — yx(A)) is not achievable.
Then x # a (as Ix (a) = 0 which is achieved when A = 0). Without loss of generality, let us assume
that x > a. Then we may choose a sequence of A, > 0 such that A,, — o and A,,x — yx (A,) — Ix(x)
asn — oo,

16



By Lebesgue’s dominated convergence theorem

lim M (dz) =0

nee (—oo’x)

and therefore

lim I (dz) = lim [ M (dz)

n—oo [x’oo) n—roo R

—  lim e 1Anx—log [ exp(Anz)u(dz) }
n—oo

= exp(—Ix(x)) < co.

On the other hand, for any 6 > 0 we have
/ I (dz) > p([x+ §,00))
[r-+8,00)
so that
p(lx+8,0)) < e / M (dz)
[x+8,0)

eSln/eln(zx)‘u(dZ)
R

< e_m"e*{)“"x*k’g Jr el"zﬂ(dz)} )

IN

Letting n — oo we conclude that

Anz . _
WD)} [im ¢~ —
n—so0

([x+ 8,00)) < o (o fe

for every 6 > 0. Therefore p((x,o0)) = 0. Hence by (3.12)

lim [ MCIp(ds) = p({ix}) = exp(— I (x)).

7% [x,eo)

Now

and therefore

liminf — InP
n—oo N

Similarly one may handle the case that x < a.

17
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Next we consider the case that x € G and there is Ay such that Ix(x) = Aox — yx(Ao). Then
(x—a)Ap > 0 (see (3.8)), and Ay is a critical point of the function A — Ax — yx (1), so its partial
derivative w.r.t. A at Ay vanishes. Hence

_ [ ze®%u(dz)
Jretoiu(dz)

Without losing generality, assume that x > a so that A9 > 0. Choose § > 0 such that (x—8,x+0) C
G. Then

(3.13)

1 n
P|-Y XicG| =P

i=1

12
—ZX,'—X <0
nl.:

6%2?:1Xi 1 n
ZE W: ;iZiXi—x <5

— oMM+ J QAL Xi. l iXi —X
b n .:

.

:e”%(x+6)/neaozl 1Z‘1{| ¥ 1z—x|<5}‘u<le) - p(dzn)

Define a new probability measure v on R by

ehoz

V(dZ) = fReA{)Z‘U(dZ)

p(dz)

which is a probability measure on (R, %(R)). Then the previous inequality may be written as
> e o(x+9) (/R e%zu(dz)) / 1{| o x|<5}v(dzl) v(dz,)

= A0 (/ e’l‘)zu(dz)) P ! <0
R iz

1 n
P|-Y XieG
iz

Yy

where Y; are 1.1.d distribution v, so that its mean (see equation (3.13))

E[y (d e u(d

[i] - /Zl Zl /fReAOZH dZ Zi)
_ A'OZZ
 Jaehu( dz)/ i)

= X.
By the strong law of large numbers

1 n
i

i=1

<3}—>1asn—>oo
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and therefore the previous estimate yields that

ZXEG

—lnIP’ > —Ao(x+98)+wx(2o)

+11 P liY <0
ne =1

— —Ao(x+68)+yx(dy) asn—oo.

Therefore

> —(Aox—yx(Ao)) — 64
= )-8k V8 >0.

llmlnf InP
n—o 1

ZXEG

By letting 0 | O we obtain

1
liminf —InP
n—o 19

1 n
—ZX,'EG

i=1

> —Ix(x) foreveryx € G.

Thus we have completed the proof of Cramér’s theorem.
The proof is complete.

4 Gaussian distributions

Unfortunately it is a rather challenging problem for describing the distributions of general high-
dimensional datasets. Here we give a detailed study of a class of random datasets with high-
dimensional Gaussian distributions. The approach we have adapted is a primary version called
stochastic quantization.

4.1 High-dimensional normal distributions

Let X = (Xj,---,Xp) be a (random) data set of D dimensions. Suppose X has a normal distribution,
hence its distribution can be determined by its mean vector u = (i;) and its co-variance matrix
X = (0yj), where y; = E[X;] and 0;; = E [(X; — 1;) (X; — ;)] (for i, j = -, D). More precisely,
the law of X is a probability measure on R” with a probability density functlon (pdf) Gy (x— )
with respect to the Lebesgue measure on R”, where

1
Gs(x) = (——xE ) for x € RP,

(27r)D/2\/det2
which is a central Gaussian density with co-variance matrix X. Here X~! denotes the inverse of
X. We will write £~! = (6%/), so that ¥, 0''0;; = §;; for any i, j < D. £ = (0;;) defines a scalar

product on R?: (x,y)s 1 =x- X~y for x,y € RP and its a Hilbert norm ||x||y-1 = Vx- X~ !x. The
Gaussian density

Gx(x) =

1 1. b
CrpP s T (—5||x||21) for x € R”. @1
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By means of change of variables we may see that fRD Gy(x)dx=1.

Lemma 4.1. The norm distance

Ix—yllg1 =sup{f(x) = f(y): f€C suchthat Vf -ZVf < 1}.
Note that, since X is a constant matrix, therefore the right-hand side is translation invariant.
The proof is left as an exercise.

Remark 4.2. A centered Gaussian random variable X = (Xy,--- ,Xp) is symmetric, that is, X and
—X have the same distribution.

The distribution of a centered Gaussian random is parameterized by the co-variance matrix X,
which is positive definite and symmetry, so that |o;;| < 0,0; where O'i2 = 0;; is the variance of X;,
where i, j = 1,---,D. Since Gy is positive, it is a good idea to look at its logarithm

D 1 1
InGy(x) = = In(27) — 5 Indet X — Ex-z—lx.

To calculate its derivatives with respect to variables o;; (for i < j) and o;; = Giz (fori=1,---,D),
we shall calculate its differential with respect to X.

Lemma 4.3. Let X(¢€) (for € > 0 but small enough so that X(€) remains positive definite) be a

variation such that £(0) = X and % c_o2>(€) =A, where A is a symmetric matrix. Then

d 1 1
T InGyg)(x) = —Etr(Z_lA) + Ex-E_lAZ_lx for x € RP.

e=0

Proof. Clearly we have
d

de

1 d 1
lnGz(E)(X) = —5 d_ hldetZ(E) i

>(e) x 4.2
el X e () 'x 4.2)

e=0

Now observe that

(which is called Jacobi’s formula), and

d

d
0=—| (ZxN)=x—| xr'l+azr’!
de e=0 de e=0

which yields that

d

—| rtl=-xlarl

de|,_
Using these equations in (4.2) we prove the lemma. [
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Corollary 4.4. Let X = (0;;) be symmetric and positive. Then

d 1 92
%GZZEWGE forl:I,,D (43)
and
0 02 .
8G-~G2 = 8x~8x~G£ fori# j. 4.4)
ij jOAI

Proof. Set A = (ay;) where a;; = 1 otherwise a; = 0 (i.e. ag = 6;0;;) in Lemma 4.3. Then
'[I'(E_IA) = lealk = legligki =o'
and

2
D
x-2'AX x = x 6% ay, 0% = x oMol = (Z Gk’xk>

hence

Similarly, if i # j, we set in Lemma 4.3, A = (ay;) where a;; = aj; = 1 (for i # j) and otherwise
ay; = 0. That is, ai; = 6ki61j + 61i6kj , we deduce that

d
glnGg Z okix, Z olix,— o',

On the other hand, we may differentiate Gy in the space variables x = (x,--- ,xp) to obtain

d
a—GZ = —GZ ZGllxl

and
92 D . D ; N
——Gx(x) =Gx(x o’/ X Glxl—GU .
9x,9%, (x) (x) 1;1 Z_Zi
Comparing the previous equations our corollary follows immediately. [

Remark 4.5. Jacob’s formula holds for any matrix valued function:

Seder (@) = (adi(r(e) T () )

where adj(I"(€)) denotes the adjugate matrix of I'(€). If I'(€) ™! exists, then
1
re "=
() detI"(¢)
that we have learned from linear algebra, so that for this case

%detf(e) = detI"(e)tr (F(e)“ % (8))

adj(I'(e))

which is Jacobi’s formula for differentiation of determinants.
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Theorem 4.6. (Joag-Dev, Pelman and Pitt 1983) Let f : RP +— R be a C?-function whose deriva-
tives are at most polynomial growth. Let

o) = [ F0x (s

where X = (0;;) is symmetric and positive definite (so h is considered as a function of o;; fori < j).
2
Suppose that k <l is a pair, such that ﬁ f > 0o0nRP. Then h is increasing in the variable oy,.

Proof. By an inspection, we are justified for differentiating oy; under the integration, to obtain that
2= [ 1052 Gewae= [ 70957 Gzar
= X X = X X
8le RD 8le x RD 8xk8xl x ’

where the second equality follows from (4.4). Integration by parts twice, we then deduce that

and the conclusion follows immediately. 0

Theorem 4.7. (Slepian’s Inequality) If X = (X,---,Xp) and Y = (Y1,---,Yp) are two centered
Gaussian vectors. Suppose that EX? = EY? and E|X; — X;|* < E|Y; —Y}|* for any i,j = 1,...,D.
Then

P {supX,- > t} <P {squi > t}
forallt, and

E [supX,-] <E [squi] .
i i

Proof. The assumptions imply that the variances E [X,-X j} >E [YiY j} for any i, j. Let# > 0. Since
l(_w, 1s non-negative, and decreasing, we may choose a sequence of functions /, which are c',

decreasing, non-negative, such that 4, and their derivatives are uniformly bounded, and ) s
1(*°°,l} asn — oo. Let fl’l(x17 e 7-xD) - hn(x]) o 'hn(XD). Then

O fr (x) = I, (x;:), (x;) H hu(x) >0
9xi0x; R

for any i # j. Since IEXi2 = IEYl-2 for every i, by Theorem 4.6, we have

]E[fn(le"' 7XD)] ZE[fn(Ylv"' 7YD)]'

Letting n — oo, we obtain that

P [supXi < t} >P {supXi < t]

1 1
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which is equivalent to the first inequality. To show the second inequality, we observe that

+ —
(supX,-) <supX,->
i i

oo i + o -
:/ P (supX) ] dr — / P (supX,-) > t] dr
0 i
:/ P [supX; >t / P{—supX >t} dr
0 L i J

:/ P |supX; >t P {supX < —t} dr
0 J

L i

E {supX,} =K —-E
i

0

o T . 0
:/ P |supX; >t / P [supX < t] dr
0 L i J )

(=] I 0
< P squ >t1dt / ]P’{squ <t]dt

(oo}

which completes the proof. 0

4.1.1 Sudakov-Fernique’s inequality

Let X = (X, --,Xp) and Y = (¥,---,Yp) be two independent D-dimensional centered Gaussian
random vectors, whose co-variance matrices are £ = (o;;) and £ = (8;;) respectively. Let X (1) =
X sint + Y cost where 1 € (—oo,00) is a real parameter, and let X () denote the co-variance matrix
for every ¢.

Lemma 4.8. The following facts hold true.
1) For every t, X (t) and %X (t) are centered Gaussian with the co-variance matrices X(t) =
(0j(t)) and X(t + %) respectively, where

Gij(l‘) = G,'J'Sil’lzl‘ —+ 6,'jCOSzl‘
foreverytandi,j=1,...,D.
2) The co-variance between X (t) and %X (1) are given by
d I . ~
E X,'(I)EXJ'(I‘) = ESIH(ZZ‘) (G,’j — G,'j)
foreveryt,andi,j=1,...,D.
The proof follows from direct computation.

Lemma 4.9. Consider the probability density Gs ;) (x). Then

) . .
EGEU) = Sln(2l)A£G2(t) (x) — Sln(ZZ)AiGE(Z) (x)

forallt.
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Proof. By chain rule we have

d P d
Z 36 200 +) 36._G2(r@°’ii(t)
ij i i
02 d d
Z Bxlax g GU Z ax,é?x, G”(t)
1 D 92 d

8x,8x]G ()_toij(t)
1. D N Pk
= 551n(2l) Z (Gij—G,'j) MGZ(Z)

ij=1

1 .
= 5 8in(20) (A —Az) Gy

1]1

I .
= 581n(2l‘) (AEGZ(z) _AEGE(t))
which completes the proof.

Let 4 be a C! function on RP with bounded derivatives, and let us consider the function

0(r) = /R h(©)Gyy )y for € R

Then

d d
L 0(0) = /RDh(X)a—Gz(t) (x)dx

— %sm(Zt) (/RDh( X)Ar Gy () (x)dx — / XAsGr((x )dx>
_ %sin(Zl‘) (_/RD Vh(x) ~ZVG2(;)(X)dx+/

” Vh(x)-EVGyy (x)dx>

where the second equality follows from integration by parts. On the other hand

VGy ) (x) = =Gy (x)X (t)ilx

so by substituting this into the previous equation for the differentiation of ¢, we deduce that

400 =sin(@) [ V() (2= )Z(0)1x) Gy (e

]RD
Since
(1) =sin?tX +cos’tE =sin’1(E—£)+ £
so that .
T-D)xn) = [—2X()7!
(E-HE0 " = — (1-£2()"")



Lemma 4.10. Let hp(xy,- - ,xp) = max{xy,---,xp}. Then

hD(X] y ,XD) = max {xi7hD—l(x17'

.. ,)21.,... 7XD)}
= E(Xi‘i‘thl(Xl,"' Xiy-oo,xp) + |xi —hp—1(x1,- -+, %i, -+, xp)|)

and therefore

) 1 1 xi—hp_i(x1,---, %, ,xp)

—hp==+3 -

ox; 2 2|xi—hp_1(x1, -+, %, ,xp)|
4.2 Heat kernel
The heat kernel on R” equipped with the metric X is defined by

1 1
t,x,y) = exp| ——(y—x)-Z ' (y—x 4.5

fort >0, x,y € RP. By definition, Gy (x) = px(3,0,x) and px(t,x,y) = Gz (y — x).

For every pair ¢ > 0 and x € RP, Px(t,x,dy) = px(t,x,y)dy is a probability measure on R?
(with the Borel c-algebra Z(RP)), that is,

AHPE(t,x,A)Z/p):(hxa)’)dy
A

for A € Z(RP) defines clearly a probability on (R, Z(RP)). The mapping Ps : (t,x,A)
Ps(t,x,A), fort >0, x € RP and A € B(RP) is a transition probability kernel from (R Z(RP))
to (0,00) x RP with its Borel ¢-algebra in the following sense:

1) for every pair > 0 and x € R, Ps(t,x,-) is a probability measure on Z(RP),
2) For every A € %(RP), the function (¢, x) > Ps(t,x,A) is Borel measurable on (0,0) x RP.
Indeed, the function (¢,x) ~— Ps(t,x,A) smooth in ¢ > 0 and x € R? for this example.

Proposition 4.11. For every x € RP, the probability measures Ps(t,x,dy) converge weakly, as
t 1 0, to Dirac measure 6,(dy). That is

lim [ ps(t,x,y)f(y)dy = f(x) foranyxeRP
tl0 JrD

for every bounded and continuous function f.

) ) . . . I
Proof. Since X is positive definite and symmetry, so that there is a square root X2 of X, a sym-

metric positive definite matrix such that $ir =%, Making change of variable: y = \/ZZ%Z +x,
whose Jacobi is detX? = (2t)% vdet X. Therefore

1 1 1
/RDPE(EXJ)JC()’)dy:/RDWCXP (—§|Z|2)f<\/522z+x> dz

e (-3R) raz =00

as t J. 0, where the limit taking under integration is justified by Lebesgue’s dominated convergence
theorem [cf. A4: Integration].

]
25



In view of this lemma, we may define for each t > 0 an operator P, which maps a function f
to another function P, f, by the following formula:

Pf( /f Vpx(t,x,y)dy = /f )Ps(t,x,dy) forx e RP

as long as the right-hand side is well defined. For example, for any f which is non-negative
and is measurable, for f in LP(RP) for any p > 1, for f which is bounded and measurable, i.e.
f € L=(RP).

Remark 4.12. If f is measurable and non-negative, then P, f is also non-negative. Therefore the
operator P; preserves the positivity.

Remark 4.13. If f is bounded and measurable, then, according to the theorem of taking derivatives
under integration (cf. A4 Integration), the function u(t,x) = P, f (x) is smooth in both variables t >0
and x € RP.

Remark 4.14. Suppose X is a random variable in RP with a normal distribution N(m,X), then
with the definitions above, E[f(X)] = Pyf (m).

By a slightly complicated but completely elementary computation, we prove the following
lemma.

Proposition 4.15. The heat kernel {px(t,x,y) : t > 0} possesses the following properties.

1) px(t,x,y) is positive, smooth for t > 0, x,y in RP, and py(t,x,y) = px(t,x,y) for any t >0
and x,y.

2) The following equality holds:

2t t s
t = t 4.6
pelonaps(.ay) = pals s (At ) “6)

forany s >0,t >0 and x,y,z € RP.
3) Chapman-Kolmogorov’s equality holds:

/ N2 (s,x,2)px(t,2,y)dz = pr(s+1,x,y) 4.7)
R

for any s > 0,t >0 and x,y € RP.

Proof. 1) is obvious by the expression (4.5). Clearly (4.7) follows by integrating (4.6) and the fact

2st
— dz=1
fore ()

for every a € RP. To show 2) we use the polar identity for the scalar product (x,y) y—1 which yields
that

] sl
-1 V21 ||z 2t +2s
where a = ti—sx%— 7157, and the equality (4.6) follows 1mmed1ately. [
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Proposition 4.16. The family of operators P; for t > 0 together with Py = I the identity operator
forms a semi-group of linear operators, denoted by (P;);>0, in the following sense.

1) For eacht > 0, P, is linear: P,(f +g) = P,.f + B.g and P,(cf) = cP, f for any constant c, for
any measurable function f, g which are bounded, or non-negative.

2) For any s,t > 0, it holds that P, f = P,(Pf) for any measurable function f which is bounded
or non-negative.

3) For eacht > 0, B, is self-adjoint, and P, is a contraction in LP (RY) for every p > 1.

The first item follows from the definition of P and the second item shows that P 3 = P o P
(often shall write P, P, for simplicity), called the semi-group property. The family (P, ),>o is the heat
semi-group on R? with the metric X. 3) follows from the symmetry that py(,x,y) = px(t,y,x).
Indeed

/ fhg= / / f(x)g(y)ps(t,x,y)dy
~ [ [ 1@e0Ips00

=/ng

Proposition 4.17. The Lebesgue measure is the invariant measure of (P;);~o, that is,

for any f,g € L*(RP).

/ Pf(x)dx= [ f(x)dx forallt>0
RP RD

for any f € L'(RP).
Remark 4.18. Let us recall, for a given p > 1, that LP (RP) denotes the normed space of all p-th

integrable functions (identified up to almost surely) with respect to the Lebesgue measure on RP

whose norm ||-|| , defined by | 1|, = (fzp |f(x)|Pdx) % LP(RP) is complete and separable, so that
LP(RP) is a Banach space. Similarly L”(RP) is a separable Banach space to. As a matter of
fact, for every p > 1, P; can be extended to be a linear operator from LP(RP) to L (RP) such that
P,y = P.oP, for any s,t > 0. Every P, is a contraction on L (RP), i.e. 1B, < [Ifl, for every
f € LP(RP). Moreover P,.f — fin LP(RP) ast | 0.

4.3 Geometric properties of normal distributions

In this part we study the geometric aspects of the heat kernel py(z,x,y). Firstly we observe that

D 1 1
Inpy(t,x,y) = —Eln(47rt) — 5 IndetX — 4_t<y_x) I y—x)

which allows us to work out the derivatives of py with respect to all variables # > 0, x (equivalently
y too) and X = (o;;). In fact

D 1

J _ -1
Elnpz(faX7Y)—_Z+@(y_x>‘2 (y—)C)7 (48)
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9 lnps(t,xy) = o f 4.9)
—In X — .
ox; px(t,x,y) =5 &
We therefore have proved the following important fact.

Theorem 4.19. Let X = (0;j) be a positive definite and symmetric D x D matrix, and Ay =
Zl i=10i j% a differential operator of second order in RP. Then px(t,x,y) is the fundamen-

tal solution to the heat operator a — Ay in the following sense:

d
(E —AE) pr(t,x,y) =0 fort>0,x,y€cRP

(where Ay either acts on the variable x or y with the other variables being fixed), and px (t,x,y)dy —
Oy weakly as t | O for each x.

Proof. First we have the time derivative of py is given by

d D 1

EPZ:(t?xay) = (__+

5t 20— -Z_I(y—x)> px(t,x,y).

While the space derivative of pyx(,x,y) can be calculated as the following:

o ——Inpx(t,x,y) = ! —ao'
X
dxiox; PELEYE T,

which reflects the fact that In px (¢,x,y) is a quadratic polynomial of x,y. Therefore

8—2 (l )—i (l )il (t )
axiaxjpz XY _axj pxi\l,x,y axi npxit,x,y

d d 0?2
= — t —1 t t —1 t
xjpz( ,X,Y) o nps(t,x,y) +ps(t,x,y) ERER nps(t,x,y)
2

d d
a_xJIHPZ(t X y)a ilan(t7x7y)+ axjaxi lan(t7x7y)> pZ(t7x7y>

d
1 2 ]l 1 ’
- _ZZ ‘o (v — xl)(Yk_xk)—ZG px(t,x,y),

and therefore

1 D D 1 D
Aspx(t,x,y) 172 Z Z Oij oo/l (y, - X1)(Yk—xk)—2— Z ;jc" | ps(t,x,y)
1 ==t 1=
1 D
= z0-9-Z7'0—x) — 5 ) ps(t,x,y)
4¢ 2t
d
= —px(t .
5, Px(1,%,y)
This completes the proof. ]
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Corollary 4.20. Suppose that f is a bounded measurable function on RP. Let u(t,x) = P,f(x) (for
t >0 and x € RP). Then u is smooth on (0,00) x RP, and u solves the heat equation

(%—Az) u(t,x) =0 in (0,0) x R”. (4.10)

If in addition f is continuous, then u(t,x) — f(x) ast | 0 for every x € RP.

Proof. Since u(t,x) fRD f(y)px(t,x,y)dy, all conclusions follow by using the theorem of differ-
entiation under intergrals. [

The heat equation (4.10) may be written as %P, f = Ax(PBf) for every bounded (or non-
negative) measurable function f, so by abusing notation, the last equation may be written as
%P, = Ay P, for every t > 0. In this sense, we say Ay is the infinitesimal generator of the heat

semi-group (P;);>0, and formally write as P, = e*' for ¢ > 0.

Remark 4.21. The heat semigroup P, (hence its heat kernel py(t,x,y)) is uniquely determined by
the second-order differential operator Ay, and equivalently determined by the quadratic form:

2
[, ~vnsots= [ —pwo, 2o pwas

29y
= Oij5— = dx
/ T 9x; Ox; ;
for any @,y belonging to W1 (RP).
Proposition 4.22. It holds that
d D
2
IVInps(r,x,y)lls — 5 Inpe(t,x,y) = o (4.11)

foreveryt >0, x,y € RP, where ||a||* = a- Za [Note that it is not HaH%_l].

Proof. The verification is completely elementary. In fact

d D 1 I
—1 =—— X (y— 4.12
ot an(taxay) 2t+4t2< ) (y )C), ( )
and 5 5 .
— ~1
;Gija—xilﬂpz(th)a—lenpz(laxa)’) =202 I —x) (4.13)
which completes the proof. 0

Exercise. [Hard] Suppose u(x,t) = P, where ¢ is a positive continuous function. Let f(x,7) =
Inu(x,t),X =Vinf-ZVInfandY = S Inf.

(1) Work out ( AZ)X and ( A2>
(2) Show that
X(xat) _Y(xat) S

S
~

for all x and ¢ > 0.

[Hint: you may look at the paper by D. Bakry and Z. Qian: Harnack inequalities on a manifold
with positive or negative Ricci curvature, in Revista Matemadtica Iberoamericana (1999) Volume:
15, Issue: 1, page 143-179.]
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5 The Ornstein-Uhlenbeck semi-group

In the previous section we have studied a few properties of Gaussian measures on R”. In particular
we demonstrate that the Lebesgue measure is the invariant measure of heat semi—group F; = €A%
(for t > 0) defined via the heat kernel py(¢,x,y). In this section we introduce a dynamical system
whose invariant measure is the Gaussian measure Gy (x)dx. More precisely, we construct a semi-
group Q; (for ¢ > 0) in analogs with the heat semigroup, such that Gy (x)dx is the invariant measure
of (Qr)r>o0-.

For simplicity we use y(dx) denote the Gaussian measure Gx(x)dx on the Borel c-algebra
%(RP), if no confusion may arise. Let LP(y) (for every p € [1,0]) denote the LP-space over the
measure space (RP, Z(RP),y).

5.1 The Mehler formula

The simplest way to construct the Orenstein-Uhlenbeck semigroup Q; is to apply the Mehler for-
mula. For every ¢t > 0 define linear operator Q; : f — O, f by setting

0= [ 1 (v V=) Gx )y 5.1)

for every ¢ > 0 and x € RP, where f is a Borel measurable function as long as the integral on the
right-hand is defined — for example f is bounded or f is non-negative. Clearly Q;1 = 1 for every
t >0, and Q;f > 0 as long as f is non-negative.

Making a change of variable one can rewrite the above formula as the following

exp | —3 Ly (v—ex) I (y—e ')
0= [ 7o) ( e )
RP (27m(1 — e~21))% \/detZ

= Jeo f)gz(t,x,y)Gx(dy) (5.2)

dy

where

ey (_m@_ e x) 1 (y erx))

qz(t,x,y) = (5.3)
G (y) 2a(1—e-2))% VdelZ
is called the transition probability density function of the OU semi-group.
Recall that the heat kernel associated a positive definite and symmetric X is given by
(1) : (~30-0x -0
,X,y) = exp( ——(y—x)- —X
R T EN = R N T g
so that
(1) (1_"2[ . ) : (5:4)
s\LXY) =P\ — =€ X, N .
A ’) Gz ()

for every t > 0 and x,y € RP. Here the Gaussian density Gy (y) is inserted in the definition of the
probability density kernel gy, since we expect that the Gaussian measure Gy (y)dy is the invariant
measure for Q;.
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Lemma 5.1. Suppose f is continuous and is of at most polynomial growth, then
limQ, f(x) = f(x) and limQ;f(x)= / f(y)Gx(dy) (5.5)
110 t—roo RD

for every x € RP.,
This follows immediately from the Mehler formula (5.1).

Lemma 5.2. The transition probability function of the Orenstein-Uhlenbeck semi-group is given

by
1 ly- 2 ly4x.-Z7lx—2ex- 271y
qr(t,x,y) = ———— €xp (-- > (5.6)
(1 _ e—Zt) 2 2 e’ —1
for everyt > 0 and for any x,y. In particular q is symmetric: qxs(t,x,y) = qs(t,y,X).
Proof. By (5.3) the transition probability density function
1
qz(t,x,y) = ————p exp(=1(1,x,y))
(1 _ e—Zt) 2
where i {
_ —t ~1 —t ~1
I(t,x,y) = m(y—e x)-Z7 (y—e'x) —Ey'z y.
Collecting the quadratic terms of y together we have
1 e -1 -1 oyl
I(t,x,y) = 2T o2 (y-Z7ly+x-Z7x—2dx- 7 y)
ant the conclusion follows immediately. [

Lemma 5.3. We have

qz(s,x,y)qz(t,y,z) = q;(s—|—t,x,z)qz(T(s,t),cs’,(x,z),y)

where T =T (s,t) and cs;(x,z) are given by

and

e N )
csp(X,2) = 20 1 ((€* = 1)e'x+ (¥ —1)e'z)

for s,t >0 and x,y,z € RP.
Therefore the Chapman-Kolmogorov equality holds

/]RD QE(SaXa)’)QZ(tayaZ)GE()’)dy = C]Z(S‘H,xaz)

for any s,t >0 and x,z € RP.
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D
2

Proof. Leta(t) = (1—e )7 and

y- X ly4x. X x—2elx- X271y
I(tﬂx7y) = ezt_l :

Then g5 (s,x,y) = a(s) ' exp (—%I(s,x,y)), and

qz(s,%y)qs(t,y,2) _ als+1) (
2

1
gr(s+t,x,2)  a(s)a(t) —5 Ulsxy) +1(t,y,2) —1(S+t,x,z))) :

Let us calculate J = I(s,x,y) +1(t,y,z) —I(s+1,x,z). By definition T = T'(s,7) > 0 is given b

LS N S e +e* -2
el —1 -1 e2—1 (e2—1)(e2—1)
Hence
E R TR
e 425 -2 e2[_|_62s_2
and

a(s+1) B e2(+s) 1 %_ ( 2T )12) B 1
a(s)a(t) \(eB—-1)(e¥—1)) \eT—1)  a(T)

Moreover, one can verify that

1 _ _ _
J:m(y-f 1y—ZeTc'E ly—l—c-E lc)

and therefore

t 1 1
qz(s,%,y)qx(t,%,2) _ exp (——I(T,C,y))
gs(s+1,x,2) a(T) 2

which completes the proof. [

In what follows we will work with a fixed symmetric, positive definite D X D matrix X, and we
will use y(dx) to denote the Gaussian measure Gy (x)dx on (RP, 2(RP)). Let LP(y) denote the
LP-space over the probability space (RP, Z(RP), y).

Proposition 5.4. The OU semi-group (Q;);>0 possesses the following properties.
1) For everyt > 0, Q; is symmetric:

[, r0estran = [ s
RD RDP
for any f and g belonging to Lz(y). In particular, y is an invariant measure of Q. That is
Qi f(x)y(dx) = [ f(x)y(dx)
RD RP
2) (Qr)r>0 is a semi-group: QsQ; = Qy4s for any s,t > 0, where Qo = I is the identity operator.
3) For every t >0, Qy is a contraction on LP(y), in the sense that ||Qf||1r(y) < I fll1r(y) for

every p> 1 and f € LP(y).
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Proof. 1) follows from the fact that gx (,x,y) = gx(t,y,x):

[ewestran = [ [ ewsmastrarave

- / £0) Qs () 7(dy)-

2) follows from Lemma 5.3

0.0.f( / / g5 (5,2.9)qx (1,3,2) £ () ¥(d2) ¥(dy)

= [asts+ix2s0 ( / qz<T<s,r>,cs,z<x,z>,y>y<dy>) Y(d2)
- Qt+sf<x)

which proves the semi-group property.
We only need to prove 3) for bounded and continuous function f. Then, by using Holder’s
inequality,

P
y(dx)

1051 = [ | [ 10astex)tas)
< / / FO)NP g (6. 2,9) Y(dy) Y(d)
- / / )P g (1,30 Y(dy) Y(d)

- / )1 7(dy)

where the inequality follows from the Holder’s inequalty to f and constant function 1 with prob-
ability measure m(dy) = gx(t,x,y)y(dy) for each x, and the last equality follows from Fubini’s
theorem by integrating the variable x first to give 1. [

Using the fact that the space Cj,(R”) of bounded and continuous functions is dense in L?(R?)
for every p > 1, the following proposition follows immediately.

Proposition 5.5. Suppose that f € LP(y),

lim '

[ ja —0
im0~ [ 1 YHW

ltii%lHQl‘f_fHLP(y) =

and

Remark 5.6. Let t,s > 0. Consider two linear mappings T,S : RP x RP — RP defined by
T(x,y)=e 'x+V1—e 2y

and

V1—e 2 V1—e 28
\/l—e z+s \/1_6 t+sZ
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for x,y,z € RP. Then

[, fermdran = [ fema
RD xRP RD
and similarly
[, festar@re) = [ s
RP xRP RP
for any Borel measurable function f. The proof is left as an exercise.
We next establish the most remarkable property of the OU semi-group (Q;);>0.

Proposition 5.7. 1) For every t > 0 it holds that

d ., (df
ﬁQtf—e Qt(ﬁ)

for any C' function f whose partial derivatives % are y-integrable, where i =1,...,D.

Proof. Suppose f is differentiable with a compact support, then we may differentiate Q, f(x) under
integration to obtain

0 t J -t -
5 0= [, gaf (e VI pay

. df 7 _
_ t t —2t
B /RD ¢ ox (e x l=e y) r(dy)

which completes the proof. ]

Theorem 5.8. (Domination inequality) The following domination inequality holds
VYO VO] <70, (VVI-IV) (5.7)

for every C! function f andt > 0. The domination inequality implies the following weak domina-
tion inequality

VO f-ZVQif <e ¥ Qi (Vf-ZV)
for every C! function f andt > 0.
Proof. The proof relies on the Cauchy-Schwartz inequality |a-Xb| < Va-Xavb-Xb forany a,b €
RP (its proof is left as an exercise). By an approximation procedure, we may prove the domination

inequality for C'-function f with bounded derivatives. For simplicity, use f; to denote the partial
derivative % f- By the Mehler formula

aixiQtf(x) =e! /RDfi (e_tx+ 1 —efzty) Y(dy)
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fori=1,...,D, and Fubini’s theorem, we have
VO.f-ZVO/ f= €2t/ / Vile'x+V1—e2y) - ZVf(e 'x+1—e2z)y(dy)y(dz)
RP JRD
-2
=¢ t//vaD \/Vf'zvf’e*’)ﬁmy\/Vf’zvf|e*’x+ lfe*Z’Z’}/(dy)Y(dZ)
2
=e ¥ ( / Vet VT —e2y) ZV (et /1 —e—ny>y<dy>)
RD
2
- (o (vorEv7)

which yields (5.7). ]

We next goal is to identify the infinitesimal generator of Q;, which is the elliptic differential
operator L = Ay —x- V.

Proposition 5.9. The infinitesimal generator of the Ornstein-Uhlenbeck semi-group (Q;)i>0 is
L= Ay —x-V, in the following sense. If f is continuous with at most polynomial growth, then
u(t,x) = Q:f(x) belongs to C'?((0,%0) x RP) and solves the following initial value problem of the
parabolic equation:

(L— %) u(t,x) =0, limu(t,x) = f(x).

t10

Therefore %Q, = LQ; fort > 0. This fact may be denoted as formally Q; = '~

Proof. According to Lemma 5.2 the transition probability density function

1 ( 1y~2_1y+x~2_1x—2e’x~2_1y>
)2

qZ(taxvy) =

(1 _efzz 2 €2t — 1
so that X X [ |
D oy Ly Xy +x- X x—2e'x- X7y
lnqg(t,x,y):—aln(l—e )—5 o :
Thus
d e ex- X1y
=1 t =-D
at an( "x7y) 1_672[ 62[ _ l
e’ —1 -1 t -1
+m(y-2 y+x-X ' x—2ex-X y)
J KXk — €'Yk
a—xilﬂﬁu(f’xa)’) = —lew
and

02 d X — €y
—gs(t,x,y) = — [ —0*=__—Egs(1,x,
g ) = e (ot s ny)
ik g1 ¥k — ey x;—e'y

eXr—1 e —1

1
=0 qz(t,x,y) = 05— qx(t,x,y).
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Hence

xp — €' yg

X'V‘Iz(taxay) _xlclk 62[—1 CZZ(IaxJ)
x- X (x—ely)
= dz(txy)
and X
(x—e'y) - Z7 (x—€y) D
AEC[E(tv)C?y) = ( (ezt_ 1)2 T (IE(I7X,Y)~
Therefore

1
= —x-Vgx(t,x,y).

a .271 _
(E_AZ) Clz(f7x;y):x ) <x ey)qz(t7x7y)

which implies that
d
(E — Ay +x-V) gs(t,x,y) =0.

Suppose f is continuous with at most polynomial growth, then

u(x,1) / fly 6]2 (z,x,y)¥(dy)
= /RDf(y) (AZC]Z(I,X,)/> —x-qu(t,x,y))}/(dy)

= s [ FOhas(txn) @)=V [ f0as(tn)ra)
= (Ax —x-V)u(x,1)
which completes the proof. [

Since Q; is symmetric on L?(), so we expect its infinitesimal generator L = Ay —x -V is also
symmetric on L?(y), which is the context of the following lemma.

Lemma 5.10. (Integration by parts) The differential operator L = Ay —x-V is symmetric on Lz(}/),
in the sense that

Y(©)Le(x)y(dx) = | @(x)Ly(x)y(dx)
RD RD
= —/ Vo - ZVyy(dx) (5.8)
RD
for any C*-functions @, y, whose first and second derivatives belong to Lz(y).
Proof. By using the identity
J il 1
37 n0z(x Z o/lx (5.9)
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we obtain that

99(x)
/RD ; RPN

Y (x) _ 9 (de
ox) ’)/(dX)— _/éD;leJaxj <axl‘GZ ‘l’dx
. “8lnGg 8(p
= _/RD <qu)—|—§6”—axj ﬁ) wGrdx

= —/RD (AZ(P—;Xi%) yy(dx),

which implies (5.8) as X = (0;;) is symmetric. O

Remark 5.11. /Not examinable] You may wonder where the Mehler formula comes from. Let
us give its derivation. Recall that we wish to define a Markov semi-group Q; whose invariant
measure is the Gaussian measure Y(dx). From the theory of diffusion processes [to be learned
in SDE course, C8.1], we first identify the infinitesimal generator L of Q;, which must satisfy the
equality:

/—wL(pdy:/ Vo -XVydy.
RD RD

Now integration by parts gives

/ V(p-ZVy/dy:/ G2V -Vydx = —/ ydiv(GsEV@)dx
RD RD RD
which gives that
1
Lo = G—div(G;Zqu) =Ayp—x-Vo.
p)

This is exactly the generator we have already seen. The diffusion process, whose transition proba-
bility function gives the semi-group Q;, can be constructed as the solution to the following stochas-
tic differential equation

dX, = V2X2dB, — X,dt, Xo=x

which can be solved explicitly
t
X, =e 'x+ e_t/ \/EZ%esst
0

which implies that the distribution of X; has a normal distribution with a mean e 'x and co-
variance matrix (1 — e_Z’) X. Therefore

Ouf(x) =E[f(X;)[Xo =]
= . f(y)dN (e*’x, (1 — efzt) 2)

l—e 2
[ f . d
/RD o (27m(1 — e=2))% \/detZ '

which leads to the Mehler formula.
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5.2 Entropy and the logarithmic Sobolev inequality

Recall that y(dx) is the central Gaussian measure with Gaussian density Gy (x) on Z(RP). The
entropy functional Ent (associated with the measure y(dx)) is defined by

Ent(h) = / hlnhdy — ( / hdy> In ( / hdy) (5.10)
RD RD RD

for every non-negative 4 € L'(y), where slns is assigned to be 0 = lim, 10sIns at s = 0. Since
s — slns is convex on (0, ), according to the Jensen inequality, Ent(#) > O for every non-negative
heL'(y).

Theorem 5.12. (L. Gross) For every f € W2 (y), that is, both f and its derivative belong to L*(Y),
it holds that

Ent(f?) gz/ (Vf-ZVf)dy. (5.11)

RD

Proof. By approximation property, we may assume that f € C2. Since |V|f|| = |V f| almost surely
(with respect to the Lebesgue measure),

/ (VF-ZVf)dy= / (VIS V| f]) dy
RD RD

Thus we may assume that f is non-negative. By replace f by f + € for any constant € > O then
send € | 0, we can further assume that f is bounded by a positive constant.
Let y(s) = slns and consider one variable function

Fo= [ w@()dr= [ o(f)me Ry

for t € (0,00). Then lim, o F(t) = [ f*1n f2dy,

lim F(r) = ( /R ) f2dy) In ( /R ) fzdy)

and therefore

2N 1 ) B “d
Ent(f )_111£F(t)—}l>r£1°F(t) _—/0 EF(t)dt. (5.12)
On the other hand
PO == [ V() 5y
_ / v (Q(/2) LOi(2)dy

L9 @) -xva )y

= | V(&) V() - EVQi(f7)dy

RD
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where the third equality follows from Lemma 5.10. Since y/(s) = Ins+ 1 and y"(s) = 1, we

deduce that ’
d 1

_4 N 2
F(t) = O )VQ,(f) IVQ,(f2)dy fort > 0. (5.13)

dt
By the domination inequality

VY02 2V0(12) <70, (VY ZV )
=2¢70, (If1v/Vf - ZV7)
<27\ O (fH)VQ: (Vf-ZVS)

where the last inequality follows from Cauchy-Schwartz inequality. Rearrange the previous in-
equality we deduce that

o
o (£?)

VO, (1) -ZVQ,(f) <4e 20, (Vf-ZVf).

Together with (5.13)

d
th(z) —2’/ O, (Vf-ZVf)dy= 4e—2f/]R Vf-EVfdy

and, by integrating the inequality over (0,0) to obtain that

Ent(f?) g/ 4e—2fdt/ Vf-ZVfdy:2/ Vf-EZVfdy
0 RP RD
and therefore the proof is complete. 0

Remark 5.13. If f € C?, then the logarithmic Sobolev inequality may be written as

Eni(f?) < —2 /R fLfdy.

Exercise 1. In this exercise we are going to prove the hyper-contractivity of the Ornstein-
Uhlenbeck semi-group. Let y(dx) = Gx(x)dx, and let ¢ : (0,00) — [1,00) be differentiable, to
be chosen later. Let f be a positive, bounded and continuous function on R”. Consider two

1
functions on (0,): F(t) = [(Q; f) )dy and G(t) = HQtfHUK,)(Y). Then G(t) = F(t)4" and
InG(t) = -~ InF(t). Therefore

q(t)
o L (A0
G =605 ( g "FOT F<r>)

and
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Let us now choose function g which increasing, i.e. ¢'(¢) > 0. Applying the logarithmic Sobolev

inequality
qlt

Ent ((Qtf)qm> < Z/RDV(Qtf)(z) 2V (Qtf)@ dy

in the previous equality, one deduces that

40 q'(1) / a1} a)
F'(r) < F(t)InF 2 V(O f)? -ZV(0:f) = d
W< LFomrO 288 [ vionT sy a
—q(t) /RDWQ,f)q(’“ IVQ,fdy
! 1
= PO+ (300~ 0 -1) [ @0 2vor-£v0.say
q(t) 2 RD
The best choice of ¢ for the previous inequality is given as solutions to
1
54 (1) = (q(t) = 1)) = 0. (5.14)
Suppose ¢(r) > 1 is a solution of (5.14). Then
iy o 4
F'(r) < o) F(t)InF(r)

and

(1) = G(1)—— (_‘/@ InF(r) + Fl(f))

a0\ q0) F (1)
R NN
<60 (= PO+ gm0

=0.

Therefore t — G(t) is decreasing, so that G(¢) < G(0). The solution to (5.14) with ¢(0) = p for a
given p > 1 is g(t) = 1 + (p — 1)e*. Therefore

HQtf”Lq(t)(y) < Hf”Lp(fy) foreveryt > 0and f € LP(y)

where ¢(t) = 1+ (p — 1)e*. This is called the hypercontractivity of the Ornstein-Uhlenbeck semi-
group (Qr)r>0-

5.3 Poincaré inequality

The variance of f (with respect to the Gaussian measure y(dx) = Gz (x)dx)

var(f) = [ (f—/RDde)de
Lo (L)

The following inequality is called the Poincaré inequality.
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Theorem 5.14. Let y(dx) = Gx(x)dx be the Gaussian measure. Then

/RD (f - /RDf dy>2dy < /]R (Vf-ZVf)dy

for any C'-function f such that |V f|? is y-integrable.
Proof. Let F(t) = [zp (Q:f)*dy. Then lim;_,oF(t) = Jgp f7dy and

= () - ([ )

var(f) = _/Ooo %F(t)dt.

Therefore

Next calculate the derivative

d . d,
P == [ ey
d
= _Z/RD QthQtde
——2 [ ofLofey

2 [ vos-rvosay
RD

Using the weak domination inequality we thus deduce that
d

——F(0) < 2% /RD Q: (Vf-ZVf)dy=2e /RD Vf-ZVfdy.

Integrating the previous inequality over (0,o0) to get that

Var(f)§/0 ZeZ’dt/RD(Vf-ZVf)dy:/RD(Vf-ZVf)dy.

Thus we have completed the proof. [

5.4 The concentration inequality

In this section we prove the major concentration inequality for Gaussian measure ¥(dx) = G (x)dx.
If g is a function on RP, we shall use ||g||., to denote the supremum norm of g, that is, ||g||.. =

SUPyerp |g(x)]-

Theorem 5.15. Let y(dx) = Gy (x)dx be a centered Gaussian measure on (RP | (RP)), and let f
be a C'-function with bounded derivatives. Then

AZ
[ e [x <f— / fdyﬂéexp(?\lvf-EVwa) (5.15)
RD RD

for every A € R, where

IVf-ZVfl.. = Sﬂgg(VfEVf)

is the supremum norm of Vf - XV f over RP.
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Proof. By considering f(x) — fRD fdy instead, without losing generality we may assume that
Jan fdy=0. Let y(s) = e**. Then y' = Ay and y" = A%y. Consider

Fr) = /R y(0f)dy= /R ep(AQ.)dy fori >0

lim F (1) :/ exp <l/fdy> dy=1
[—yo0 RD

“d
F(z)—l_—/ —F(t)dt fort>0.

As before we differentiate under integration, and use the equation that %Qt f = LQ:f, to obtain
that

Then

and therefore

~r0 == [ Swena=-[ vengerdr
- [ v(@nLose.
Next perform integration in the last integral, to get that
PO = [ V(@) xvo.fay
= [ v @nvos-svose

=22 [ wi@nvor-rvoay
Since y is positive, we may use the weak domination inequality
VOIf Z0if e Qi (Vf - IVf) < |[Vf V.
we thus conclude that

d

GFO RV 2velL [ wiedy
= A2 |V VS| F (1),

1.e.
1 d 2 2
- < .
a0 SF(t) <R |VF-XVS.

for ¢ > 0. Integrating the inequality over [¢,0) to obtain that
InF(t) —InF (o) /w ! dF(t)dt
n —InF (o) = — —_——
. F(t)dt

<a? / et |VS 2V = 5 VS 2V
t
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Letting ¢ | 0 we conclude that

12
[ew(3(r- [, rar) )or<eso (557210 ).
RP RP

The second inequality follows from Markov inequality. [
We next prove the well-known Borell’s inequality for family of Gaussian random variables.

Corollary 5.16. Let Y = (Y,---,Yp) be an RP-valued random variable with the standard normal
distribution N(0,1) (where I is the identity matrix), and let f : RP s R be Lipschitz continuous.

(a) We have
B (AUO-EF0) < oxo (21712 s 16
(e ) <exp( S I712 (5.16)
forany A € R.
(b) The following Gaussian estimate holds:
2
P(f(Y)-Ef(Y)|>r) <2exp| ———— (5.17)
211 £ 11z

for every r > Q.

Proof. Let f¢ be constructed in Lemma 7.12 for every € > 0. By Theorem 5.15,

2 2
B(exp A (1Y)~ EA()) < exp (5 1912 ) <exp (5 (1l +22)

for every € > 0. Letting € | 0 we obtain (5.16). The Gaussian estimate (5.17) follows from (5.16)
as we have seen in Section 1. [

Theorem 5.17. (Borell’s inequality). Let X = (Xi,---,Xp) be a random variable with central
Gaussian distribution with co-variance matrix X = (0;;). Then

P|| sup X'—E sup X'

i=1,...D i=1,...D

2
>r| <2exp (-ﬁ) (5.18)
i

for every r > 0.

Proof. Let Y = (Y1,---,Yp) be a random variable in R” with the standard normal distribution
N(0,1), as in the previous corollary. Then Z = Z%Y has the same distribution as that of X, where

51— (pij) is a positive square root of . Let f(x) = max;—i ... p (Zle pikxk). For given x, y, there
are i and j such that

D D
fx) =Y puxi and f(y) =) pjw
k=1 k=1
(where i, j depend on x,y of course), so that

D D D D
FEO—f0) =Y paxc— Y, Pk < Y Pk — Y, PikVk
k=1 k=1 k=1 k=1
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and similarly
D D
FO)=fx) <Y pjyvi— Y., Pjwxes
k=1 k=1
which implies that

D

/() = ()] < max Y. o vk — xx)
=1

< max 21x—
_i:17...,D\/kX"]p’k|x Y]

= max +/0j|lx—y|.
i=1,.D

Thus f is Lipschitz continuous with Lipschitz constant less than max; ,/0;;. Therefore, according
to (5.17)
]-_P) [

sup X'—E sup X'
i=1,....D i=1,....D

>r

=P(f(2)-Ef(Z)| > r)

2
<2 _ .
= <exp ( 2sup; Gi,')

O

Remark 5.18. (a) As long as Esup,; X; is finite (in this case the family of centered Gaussian random
variables (X;) is called bounded), then the Borell’s inequality is still valid in exactly the same form,
by letting D — oo. That is, if (X;)sen is a family of centered Gaussian random variables, where A
is any countable set, such that Esup,c X; < oo, then

7|

for every r > 0, where oy = var(X;).

(b) It remains to control the quantity IEsup,c X;. This can be done by using the technique of
metric entropy, a topic we left for your own study. The reader may refer to the small book by R. J.
Adler [1].

2

> r} < 2exp (—r—) (5.19)

X; —EsupX
sup X; sup X; 2 SUp,n O

teA teA

5.5 Estimates of exponential type

In this section we introduce another idea for deriving typical Gaussian type exponential decay
estimates, which is in a matter of transport distributions, an idea which is quite useful. It yields
interesting results, though it does not lead to better results as we have developed so far.

Lemma 5.19. Let X = (X");—...p and Y = (Y');_y.... p be two independent random variables
with the same distribution y(dx) = Gz (x)dx, where X is symmetric, positive definite. Let X (t) =
X sint +Y cost and %X(t) = Xcost —Ysint fort € R. Then for every t, X(t) and %X(r) have
independent, and have the same distribution y(dx).
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Proof. For each t we have
E[X(1)'X(t))] =E [(X'sint +Y'cost) (X'sint +Y/ cost)]
= sin’(E [Xin] +cos’ 1 [Yin}
hence X (¢) has distribution y as well. Let Z(¢) = £X (). Then
E [X(t)iZ(t)j} =E [(Xisint +Yicost) (Xj cost —Y/ sint)]
= sintcost (E [X'X/] —~E [Y'Y/])
+cos’ 1 [Yin] —sin’7E [YjX’]
=0
which implies X and Z are independent. ]
Let begin with the following general Gaussian estimate.

Theorem 5.20. Let f : RP +— R" be a C'-function, and ¥ : R" — R be a convex function. Then

[ [wow-sonmaman< [, [ v (Evsw ) raora 620
and
/RD‘P (f(x) —/RDfdy> Y(dx) < /RD /RDlp <§Vf(x) .y> (dx)y(dy) (5.21)

where f = (f1, -+, fu) and Vf(x)-y=(Vfi(x)-y,--- ,an(x)-y)foranyx,yERD.

Proof. By considering f — fRD fidy instead, without losing generality, we assume that fRD fidy=
Ofori=1,...,n. Let X and Y be independent random variables with the same distribution 7y, and
X(t) = Xsint + Y cost. Then

700 =100 = [* Lrx@)a

0
3 d
:/0 V(X (1) X (1)dr

and therefore

W (F(X)— f(Y) =P ( | vreea: %X(r)dr)

0

Since ¥ is convex, applying Jensen’s inequality (with respect to the%dt on [0,%]), to obtain

w (00— < 2 [ (E9rixo)- Sx) ) o

T

Taking expectation both sides of the inequality to deduce that

E[¥ (£(X)— f(V))] < = /0 ‘g ['ff (§Vf<x<r>> - ixm)] d. (5.22)

T dt

45



By Lemma 5.19, both (X,Y), and (X (7)
so that

, th (1)) (for every ) has the same distribution Y ® 7,

B (00 -/ = [ @ - so)rarien

E{ ( VX)) )} /RD/RD X)) 7(dx)y(dy)

for every ¢, so the first inequality follows.
To prove the second inequality, we use Jensen’s inequality again, to deduce that

w0010 ) = (100~ [ )

RD

for every x. Integrating out the variable x, we then deduce that

L[ ruw-sonrema = [ w(se- [ ar)va.

Therefore the second inequality follows from the first inequality. [

Corollary 5.21. Let y(dx) = Gy (x)dx. Suppose f : RP — R is a C'-function, and p > 1. Then

/RD f—/RDdep
D

Cp= (g)p/RD Py(dy), Iyl = 4] Y ()

i=1

ay<C, /R Vipdy (5.23)

where

Proof. We apply Theorem 5.20 to convex function W(x) = |x|”. Then

ADéDW(gi(X)-y)Y(w)Y(dy //|Vf )y y(dx) y(dy)

< Cp/ IVf1Pdy
RD

which yields the conclusion. 0

If p =2, then estimate (5.23) becomes a variation of the Poincaré inequality:

/RDf—/RDfow2
am (R Lo - (3

while the variance var(f) is dominated by the quadratic form [ Vf-Vfdy, instead of [ Vf-ZVfdy.

dy < G / v £y
RD

where
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Corollary 5.22. Suppose f is Lipschitz continuous from RP — R with Lipschitz constant C. Then

/RD‘”‘P (a f—/RDde

where A is the largest eigenvalue of X. The right hand-side is finite as long as o < %

2
T
) ar [ exo(FachbP) Giv)ay
RD

Proof. Let ¥(t) = exp(ait?) where a > 0 is a constant. Then
W (1) = 20exp(ar?) + (2ar)*exp(ou?) > 0

so ¥ is convex. We apply (5.21) with Y. Then
n r (235w
X .
¥ (- / ) - z 2N
Saf(y) = | Za (;_1‘, i y>

V[
<exp (VPP

and therefore, according to (5.21),

/RDCXP (0‘ f—/RDdeDdYS/RDeXp (gaC|y|2> ¥(dy).

For the integral on the right-hand side we make a change of variable Tiz= v, so that
T 2 T
exp (FoCHP) v(d) = | exp(FaCy-Zy) Gi(y)dy
RD RP

T
S/ exp (—a/lDC|y|2> Gi(y)dy
]RD 2

where now Gj(y) is the standard Gaussian density on RP and Ap is the largest eigenvalue. By a

standard computation we have

1

\/1—472C?A5

T
[, e (3arChi?) Gty <
RD 2

which completes the proof.

Corollary 5.23. If f is C', then

/R exp (f(x) - /}R ) fdv) Y(dy) < /]R exp (%2Vf-2Vf) ay

Proof. Let us apply (5.21) with ¥(¢) = ¢’ which is convex, to obtain that

/RD exp (f(x) - /RD de) Y(dx) < /RD /RD expg (i‘i 8£i?)yi) y(dx)y(dy)

T & df(x)
< /RD /RDCXP (5 L oy y) v(dx)y(dy).

1
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For every x (but fixed), Y = (Y?) has a distribution y. Then Z = 5 Tyb 9/Wyi is Gaussian random

i=1 " ox
variable whose variance is 5

var(Z) = %Vf-ZVf

/ exp(zz ) dy)—exp(%ZVf.EVf).

Hence (5.24) follows immediately. [

and therefore

5.6 Gaussian isoperimetric inequality

In this section we derive Lévy-Gromov’s isoperimetric function for centered Gaussian measure
Y(dx) = Gx(x)dx, following the approach put forward by D. Bakry and M. Ledoux [3] via the
Ornstein-Uhlenbeck semigroup (Q;);>0, Whose invariant measure is y(dx). B-L [3] aims to give a
general version of Lévy-Gromov’s isoperimetric inequality (for metric-measure spaces with posi-
tive curvature) by using Bakry-Emery’s I'; formulation (Ricci curvature) and the idea of quantiza-
tion. While the most useful case remains the isoperimetric inequality (independent of dimensions)
for Gaussian measures, which is going to be presented in this part.

Let us now introduce the isoperimetric function for Gaussian measure. Suppose & is a real
random variable with a standard normal distribution N (0, 1), then

O(r)=P[E <r]= /_:o \/lz_nexp (—%2) dx (5.25)

which strictly increasing, whose inverse (15 1:(0,1) + (—o0,0) is also increasing. The isopermet-

ric function is defined to be Z = @' o @~ on (0, 1), where the derivative @’ is nothing but just the
1-D standard Gaussian density, i.e. @'(x) = \/Lz? exp (—"72) Naturally we extend the definition of

% to [0,1] by setting
% (0)=0and Z (1) =

so that 7 is differentiable (of any degree) on (0, 1) and is continuous on [0, 1]. By chain rule and
use the fact that " (x) = —x®’, we have
1
g -1 . 1

and : |
m_ .+ _
U= sy =— (5.27)
In particular 7" < 0 on (0,1). Therefore x — % (x) is (strictly) concave on (0,1), symmetric
again the vertical line x = % at which it attains its maximum \/szﬂ Moreover

lim -2 )
0 /2Ind

X

= 1. (5.28)

Let us begin with several facts we shall use.
Recall that L = Ay — x -V is the infinitesimal generator of the Ornstein-Uhlenbeck semi-group
(Q¢)s>0, in the sense that %Qt =LQ, fort > 0.
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Lemma 5.24. Let ¥ be a C*-function on R. Then

L(¥(f) =¥ (fILf+¥"(/)VSf-ZVS (5.29)
for any C*>-function f on RP.

Proof. The equality may be called a chain rule for L, which follows immediately from the rules of

computing derivatives. Let f; and f;; denote the partial derivatives a f and 5

8 f respectively
for simplicity. Then

D D

) = .Zl o, (f)ij— lei'f’(f)z
i,j= i=

D

= X oy (¥(N1F),~¥'() L

i,j=1 i=1

D D D
=Y'(f) Y oiifi+¥"(f) Y oiififi—¥'(f) Y xifi
i=1 i=1 i=1

=W(fILf+¥"(f)Vf-EVS

which completes the proof. ]

Lemma 5.25. Let f : RP +— [0,1] be a C*-function whose derivatives have at most polynomial
growth. Let t > 0 be fixed but arbitrary, and consider G(s) = Qs (% (Qs—sf)), that is,

Glo) () = [ as(sx) % (Qr-sf5)7(d) (5.30)
fors € (0,t) and x € RP. [The argument (x,t) is suppressed if no confusion may arise]. Then
d
aG(S) = Qs (%" (Qi—sf)V(Qi—sf) - ZV(Qi—sf)) (5.31)

for every s € (0,1).

Proof. For simplicity we suppress the argument x in G(s)(x) which is fixed though arbitrary. By
differentiating in s under integration (which is allowed under our assumptions on f), we obtain

/ U (Qi—sf(y C]Z(S x,y)Y(dy)
_/RD qz(s,x,y)%/(Q;_sf(y))aQt—sf(y)?’(d)’)
- /R Y (Qi—sf (7))Lax(s,x,y)¥(dy)

d
- [ e % (@S ) 5. Qs FO)Y )
RD S
where we have used the fundamental equation that

d
3,9z (s,x,y) = Lgx(s,x,y)
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where L operates on the variable y, while x is fixed. Next for the first term we use the symmetry of
L, so that

h= [ (@) Lassx3)(d)
_ /R ax(s.50)L% (Qi-sf () 1(dy)
- /RD qs (5,5, )" (Qi—s f(¥))L(Qi—sf) () (dy)

+ [ sl n ) 2 Q) V(Qaf) EV (s T)

where the second equality from the chain rule for L. Substituting J; into the previous equation for
G'(s), and using the fundamental equation

d
EQrf = L(Qrf)

(with r =t — 5 > 0), we obtain that

G'(s) = /R 4 "(Qr—sf(9) (V(Qr—sf) - ZV(Qr—sf)) ()gz(s,-,y)¥(dy) (5.32)

for every s € (0,7), which is equivalent to (5.31). U

Lemma 5.26. Under the same assumptions as in Lemma 5.25. Let

F(s) = (Qs (% (Qi—s)))*  forse(0,1).
Then
F/(S) =20 (% (Q1-sf)) Os (%/,(Qt—sf)V<Qt—sf) -XV(Q,_sf))
fors € (0,1).
Proof. This follows from the previous lemma. Indeed F = G2, so that
F'(s) =2G(s)G ()
=20 (% (Q1-s1)) Qs (%" (Q1—sf)V(Qi—sf) - ZV(Qi—sf))
for every s € (0,1). O

Lemma 5.27. Suppose that f is a C' function with values in [0,1], and suppose both f and its
partial derivatives are y-integrable. Then

VVQ.) - IV(Q.) _ 1
U (O1f) T Ve —
Proof. We only need to show this for any C?-function f taking values in [0,1]. Let # > 0 and let
F(s) = (s (% (Qi—sf)))* for s € (0,1). Then F (1) = (Q;(% (f))). F(0) = (% (Q,f)), and

F(t)—F(O):/O %F(s)ds

for everyt > 0. (5.33)

= 2/()’ Os (% (Qi—5f)) Qs (%" (Q1—sf)V(Qr—sf) - ZV(Qs—sf)) ds. (5.34)
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Using the differential equation that 27" = —% in the previous equality, we obtain that

R R R A I

=3 (o (V¥ V0 7)) ds (5.35)

where the second inequality follows from the Cauchy-Schwartz inequality:

Qs<\/V Oi—sf) - ZV(Qr—sf) ) <VO (% (0 sf))\/ ( (thzéffﬁ)QtSf))

which implies that

0.(# @1 (NeTO=I) < (o (VWi )

By the domination inequality (cf. Theorem 5.8):

VV(Qif) - ZV(O,f) = /V(Os(Qi—sf)) - EV(Qs(Qi—sf))
< e_SQs <\/V Qt—sf) 'EV(Qt—sf)>

for every s € (0,7). Rearrange the inequality to obtain that that

(0. (V¥@ N ZV@ D)) = V(o) 2V(es) (5.36)

for any s € (0,¢). Substituting this into (5.35) we thus get that

F(1)—F(0) < -2 / PV(Q.f)- EV(0.)ds

0

= (¥~ )V(Q:f) - Z(VOf)
which yields that

V(0)EV(Qf) < o [(# (0N - (@ ()]

and therefore

VY@ ) EV(O.]) _ \/1 B (Q, %(f)))z
U (O f) T Vet —1 U (O f)
for every t > 0. This completes the proof. 0

Exercise. Let y be an increasing C! function on [0,), and f is a C! function on R” taking
values in [0, 1]. Prove that

V' (s (% (Qisf)))

A
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for any r > 0.
[Hint: For any t > 0 be any but fixed. Consider ¢(s) = v (Qs (% (Q;—sf))) for s € [0,t]. Then

V(@) - w0 = [ Folds

Compute ¢(s) and use Theorem 5.8 as in the proof of the previous lemma.]
We are now in a position to prove the isoperimetric inequality for Gaussian measures.

Theorem 5.28. (Isoperimetric inequality for Gaussian measures) Let f : R — [0, 1] be C'-function
and |V f| is y-integrable. Then

@/(/ fd}/)—/ %(f)dyg/ VVf-EVfdy. (5.37)
RD RD RD
Proof. Let us apply the approach we have tested in the previous sections. Consider

- [, % @nar

Then F(e0) = % ([go fdy) and F(0) = [pp % (f)dY, and

%(/RDde—/RD%(f)dy:/Ow%Ftdt

Next we compute the derivative: differentiating under integration gives
0= [ 5% @
= / "(Ouf ) Qtf dy.
RD
Using the equation %Q, f = LQ;f and performing integration by parts we obtain
- [ %@ togay
RD
—— [ v @) ey
—— [ %" @)@ TV sy

Since " = %, we therefore have
d V(O:f) EV(Q:f)
—F(t) = d
at /RD 7o

for every t > 0. Finally we apply the estimate we have proven in Lemma 5.27

N
U (O f) T Vet —1
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and deduce that
d
dt

f)-ZV(Qf)dy
ﬁ e"Qt VVfIV)dy
- /R NPTy

Integrating both sides of the previous inequality on (0,e) we therefor obtain that

u (/RDde> —/RD%mdys[ V%dt/ﬂ@Wdy
= | VI EVfay

which completes the proof. ]

If A € RP be a closed subset with a C'-boundary, then

Ys(DA) = liminf Y Ae) = 1(A4)
el0 €

where A = {x € RP : d(x,A) < e}, is called the Minkowski outer content of the boundary of A.
Here the distance d is the metric associated with X, i.e.

d(x,y) = sup {|f(x) = f(y)| : Vf-ZVf < 1}.

fect

Indeed d(x,y) = \/(x—y)- £~ 1(x—y) for any x,y € RP. Note that if € — y(A) is differentiable

(from right), then

Ys(0A) = di Y(Ae).

€ =0+

Corollary 5.29. Let y(dx) = Gx(x)dx be a central Gaussian measure with co-variance matrix X.
Then

% (Y(A)) < v5(dA)
for any closed subset A C RP with a C'-boundary.

Proof. Choose C'-functions f,, valued in [0, 1]which tends to 14. Then

w ([ )~ [ wtmiors [ VNI Rar

for every n. Since % (0) = % (1) = 0 so that

%(/RDfndy)e% / U (fn)dy—0

/RD V- ZVfdy — 15(0A)

which thus yields the isopermetric inequality. [

and
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Theorem 5.30. Suppose y(dx) = Gx(x)dx is a Gaussian measure on RP, and A C RP be Borel
measurable with C'-boundary. Then

YA) > @ (D7 (y(A)+1)  fort >0, (5.38)

where A = {x € RP : d(x,A) < €} for every € > 0, and the distance d is the metric associated
with X, i.e.
d(x,y) = sup {|f(x) = f(y)| : Vf-EVf < 1}.

fec!

It is a fact that d(x,y) = /(x—y) - £~ (x—y) for any x,y € RP.

Proof. The isoperimetric inequality may be written as
d
Ey(Ar> > U (y(Ar))

forr >0, 1i.e.
1 d

wran)ar’
Integrating the inequality over [0,¢] (for 7 > 0) to obtain that

/t 1 d 4,)d Y(A) p
—_ r r - S Z t
o %Ay dr’ ) X0

(A;)>1 forr>0.

On the other hand

Y(A
Y(A) ds - /7 Do (s) /7/ @
= l(V(At)) D (7’

and therefore
>~ (v(A)) — @7 (v(4)) =1
which yield the inequality (5.38). 0

As a consequence we deduce the following concentration estimate.

Theorem 5.31. Let y(dx) = Gz (x)dx be a centered Gaussian measure on RP. Let f : RP — R be
a function such that V- XV f < 1. Let m € RP such that y({f < m}) > 3. Then

7({f>m+r})§/w e Tdx (5.39)

for any r > 0.
Proof. Let A = {f <m}. Then y(A) > § = ®(0) which implies that ®~!(y(A)) > 0. Also the
condition that Vf- XV f < 1 implies that A, C {f < m+ r}, and therefore, (5.38) yields that

r

ﬁ
e Zdx

Y(if <m+r)) = o) = |

—0 V2T

and the conclusion follows immediately. [
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By an approximation procedure, we therefore have the following.

Proposition 5.32. Let X = (X1, ,Xp) be a D-dimensional random vector on (£ ,.% ,P) with the
standard normal distribution N(0,1) on RP, f : RP — R is Lipschitz such that || f|| Lip < L and let

m be a number such that P[f(X) < m] > 3. Then

P[f(x)>m+r]§/°°

for every r > 0.

Theorem 5.33. Let Y = (Y1,---,Yp) be a D-dimensional Gaussian random vector on (2,7 ,P)
with mean zero and co-variance matrix X = (0;;), and let m be a number such that P [sup;Y; < m] >
1

5. Then

2

= 1 2

< ——e 2dx (5.40)
SUPi:l‘~~r~,D Vi 2

for every r > 0, where o;; = E(Y?) is the variance of Y; fori=1,...,D.

P| sup Y;>m+r
i=1,-,D

Proof. As in the proof of Theorem 5.17, Y and X2X have the same distribution N (0,X) (where X
has the standard normal distribution N(0,7)). Apply Proposition 5.32 with

1
fx) = sup, /o Supy_ pijx;

L

where X2 = (pij) is a square root of . Then || f||;, < 1 (see the proof of the Borell inequality,
Theorem 5.17), and the concentration inequality (5.40) follows immediately. [

This theorem implies Borell’s inequality we have proved.

6 Brunn-Minkowski’s inequality, Isoperimetric inequality

In this part we demonstrate some special features of datasets lying in convex domains. The main
tool is the isoperimetric inequality for the Lebesgue measure on R”.

As in the previous sections, if A C R” is a Borel measurable subset, then |A| denotes the
Lebesgue measure of A. If A is a box with sides parallel to axises, and if the length of the side
parallel to x'-axis is o, then |A| = [T2, &. If A and B are two Borel measurable sets of R”, then
A+B={a+b:acA,be B} and AA = {Ax: x € A} are Borel measurable too. In particular,
if a € RP, then a +A = {a} + A is measurable and |a+A| = |A], i.e. the Lebesgue measure is
translation invariant.

6.1 Prékopa-Leindler’s inequality

Let us begin with a lemma which is the Brunn-Minkowski inequality on R.
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Lemma 6.1. Let A, B be two Borel measurable subsets of R. Then
[A+B| > |A| +|B| (6.1)

and
IAA+ (1 —=A)B| > A|A|+ (1 —1)|B| (6.2)

forevery A € (0,1).

Proof. The second inequality follows from the first as |AA| = A |A|. Let us prove the first inequality
for non-empty compact subsets A and B. Choose a and b such that A = {a} +A CR_, B =
{b}+BCR;and ANB = {0}. Then AUB CA+B=a+b+A+ B. Therefore

A+ B = |A+B| > JAUB| = A +|B] = |A| + |B]
and the proof is complete. 0
Lemma 6.2. Let a,b are two positive numbers. Then
Aa+(1—A)b>d*p' (6.3)
forany A € (0,1).

Proof. This follows from Jensen’s inequality. Since x — Inx is concave (i.e. —Inx is convex) on
(0,00), therefore
In(Aa+ (1—=A4)b) > Alna+ (1 —A)Inb

and the inequality follows immediately. [

Lemma 6.3. Let f and g be two non-negative, continuous functions on R, and let A € (0,1) be a
constant. Then

/R h(x)dx > A /R Fx)dx+(1-2) /R o(x)dx 6.4)

. r—y\* y !
(¥) = supf (T) g(—l—a)

Proof. To prove (6.4), we consider

where h is defined by

forx e R

Alt)={xeR:f(x)>t}, B(t)={xeR:gx)>r}, Ct)={xeR:h(x)>1t}
for every 7 > 0. By definition of h; (f,g), we have
AA(t)+ (1 —A)B(t) C C(¢) (6.5)
for any ¢ > 0, and therefore

C(1)] > |AA(1) + (1 - 2)B(1)]
> A1)+ (1=2)[B(1)],
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where the second inequality follows from Lemma 6.1. Integrating the previous inequality in # €
(0,0) and using the dis-integration formula (2.7) we have

/Rh(x)dx:/OM|C(t)|dt2fL/()oo|A(t)|dt+(1—).)/()M|B(t)|dt
=1/Rf(x)dx—|—(1—7t)/Rg(x)dx

which completes the proof of (6.4). [

Theorem 6.4. (Prékopa-Leindler Inequality) Let f and g be two non-negative Borel measurable
functions on RP and A € (0,1). Then

/R h(x)dr > ( RDf(mzx))L ( /R ) g(x)dx)l_l 6.6)

where h = h) (f,g) defined by

A -2
b (f.8)(x) = supf(’%) g(ﬁ) forx € EP. 6.7

yeRD

Proof. [The proof is not examinable.] For simplicity we use & to denote &, (f,g) if no confusion
may arise, and by a simple approximation procedure, we may assume that f and g are continuous.
Without losing generality we shall assume that

f(x)dx>0 and / g(x)dx >0,
RD RD

as otherwise the inequality is trivial.
Let us prove (6.6) by using induction argument on the dimension D.
If D =1, then (6.6) follows from (6.4) and (6.3). Indeed

/Rh(x)de/'L/Rf(x)dij(l—QL)/Rg(x)dx

(o) (o)

Now assume that D > 2 and let A € (0,1). Suppose that (6.6) holds for any non-negative
functions f,g on RP~1,

Let f(x),g(x) be two non-negative, continuous functions on R? (where x € R?). Write x =
(x,xp) where x € RP~! and define

Jo(x) :/_:f(X,s)ds, go(x) :/w g(x,s)ds.

—o0

By assumptions

X—Yy Xp—S

A -2
y s
h/l(fyg)(xaxD)Zilelﬁgf <T7 1 ) g(m’l—l)
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for every y € RP~1. For any x,y € RP~! fixed but arbitrary, we apply Lemma 6.3, (6.4), with one
dimensional functions s — f (> ,s))L and s — g (ﬁ,s), to obtain that

/_ ho(f, )(xsds>7t/ ( )ds—l—(l—?t)/_ig(ﬁ,s)ds
(o)) (L))

where the second inequality follows from (6.3). Since y € RP~! is arbitrary, so that

[nonmis ([0 (ol 230

= hy,(fo,80)(x) (6.8)

for every x € RP~1. Using induction assumption with fy and gy which are non-negative functions
on RP~! we thus obtain that

/RDlm(fo,go)(x)dxz ( RDIfO(x)dxy (/ngo(x)dx)l_l.

On the other hand, by (6.8) and Fubini’s theorem

/h,lf, dx/ /h;Lf, x,s)d

> /RD1 hy,(fo,g0)(x)dx

> ([ ) ([ aeoar)
() (o)

and therefore (6.6) holds for any non-negative, continuous functions f and g. The proof is com-
plete. [

Theorem 6.4 is formulated by H. Brascamp and E. H. Lieb [6] (this paper has an unusual long
title as if the JFA journal printed its Abstract as the title !) The original P-L inequality follows of
course from the above version immediately.

Theorem 6.5. (Pékopa-Leindler Inequality) Let f,g and h be non-negative measurable functions
onRP and X € (0,1). Suppose

h(Ax+(1=2)y) > f(x)*e(»)'™  foranyx,y e RP. (6.9)

/RDh(x)dx> < f(x)d ))L </RDg(x)dx)ll. (6.10)
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Proof. Under assumption, h(x) > hy (f,g)(x) for every x, and therefore the P-L inequality follows
immediately from (6.6). [

Definition 6.6. Let f be a non-negative function on RP. Then f is log-concave (i.e. logarithmically
concave) if

fAx+(1=2)y) > f)* f»)'
forany A € [0,1] and x,y € RP.

By definition, f is log-concave if and only if —In f is convex on {f > 0}.
Exercise. Let p be log-concave on RP = RPt x RP2 (where D + D, = D). Let

pi(x1) = [  plx1,x2)dx

RD2
where x; € RP (i = 1,2). Show that p1 is log-concave too. [Hint: Use Theorem 6.4].

Theorem 6.7. If p is non-negative and log-concave on RP, then

AA+(1—A)Bp(x>dx - (/A p(x)dx) l (/BP (x)dx) h

for any Borel measurable subsets A,B C RP and for any A € (0,1).

Proof. We shall apply Theorem 6.4 to f = 14p and g = 1pp. Since p is log-concave, for every

A €(0,1), ) .
p ()%) p (ﬁ)l_ <p()

for any x and y. If =* € A and % € B, than x € AA + (1 — A)B, which implies that /3 (f,g) <
13.4+(1-2)P- Therefore according to (6.6) we have

/1/1A+(1_/1)BP(X)(1XZ/ hy (f,g)dx
RDP RDP

> ([ o) ([ ocoar)

which yields (6.11). ]

Lemma 6.8. Let X be a symmetric, positive definite D x D-matrix. Then the central Gaussian
kernel Gx (x) is log-concave.

Proof. Recall that
1 1
InGy(x) = —5In ((2m)PdetX) — 5x-z—lx.

Hence we only need to show that x — x- X~ x is convex. Let x,y € RP be any two points. Consider
P(A) = (Ax+(1=2)y)-Z7 (Ax+ (1= 1))
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for A € [0,1]. Then
¢'(A) =2(x—y)- X~ (Ax+(1-A)y)

and
¢"(A)=2(x—y) - (x—y) >0

as X! is symmetric, positive definite. Hence ¢ is convex on [0, 1], and therefore
O(A) = (A1 +(1-2)0) < Ag(1) +(1-21)p(0)
forany A € (0,1). That is
—(Ax+(1=2)y)-Z M Ax+(1=2)y) > Ax-Z x—(1-L)y- 271y
which in turn yields that In Gy is concave. [l
As a consequence, we have the following result for Gaussian distributions.

Theorem 6.9. (Geometric form of the isoperimetric inequality for Gaussian measure) Let y(dx) =
Gy (x)dx be a centered Gaussian measure on B(RP) with co-variance matrix X. Then

7(AA+(1-1)B) = y(A) v(B)'* 6.11)
for any Borel measurable subsets A,B C R” and for any A € (0,1).

This follows from the fact that x — Gx(x) is log-concave, Lemma 6.8.

Exercise. Let y(dx) be the centered Gaussian measure Gx (x)dx. Let A be a symmetric convex
subset of R and a € RP.
(a) Prove that
Y(A+a) <y(A+ta)

for any ¢ € [0,1], and t — (A +ta) is non-increasing on [0, o).
[Hint: You may assume that X = I, otherwise consider £72A and X" 2a instead. Apply Theo-
rem 6.9 to A = %(t + 1), use the fact that Y(A +a) = y(A — a), and the fact that

A+ta=A(A+a)+(1—-21)(A—a)

in (6.11).]
(b) Suppose f is convex and f(x) = f(—x) for every x. Show that
fE)y(dx) < | f(x+a)y(d)
RP RP

for any a € RP, and conclude that r — [pp f(x+ta)y(dx) is non-decreasing.
[Hint: Apply (a) to level sets {f < c} for every c.]

(c) Prove that
[ vy < [ evalya)
RD RD

foranyaERD and p > 1.
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6.2 Brunn-Minkowski’s theorem

This is a deep result about the Lebesgue measure. Let begin with a weak version which is inde-
pendent of the dimension D.

Theorem 6.10. Suppose A, B are two Borel measurable subsets of RP and A € (0,1). Then
[AA+(1—-A)B| > |A*|B|' . (6.12)

Proof. It follows immediately from the Prékopa-Leindler inequality. Indeed, if f =14 and g = 15,
then 7 (f,8) = 1aa+(1—2)- Hence (6.6) gives (6.12). O

In fact this weak version, in which the dimension seems missing, is equivalent to the Brunn-
Minkowski inequality, and the dimension may be recovered from the scaling property: |AA| =
AP|A| for A € B(RP).

Theorem 6.11. Let A and B be two bounded Borel measurable subsets of RP. Then
A+B|? > |A|? +|B|>. (6.13)

Proof. We may assume that |A| > 0 and |B| > 0. Let A = |A|"'/PA and B = |B|"'/PB. Then
|A| = |B| = 1, and therefore by (6.12) we deduce that

AA+(1-A)B|>1 VA€ (0,1).

Set
|A|1/D
" AP
so that
PP
" AP B

The previous inequality may be written as

1 1 1
A+ B| = |
A|1/D - |B|1/D” " |A|1/D 4 |B|1/D (|A|1/D+|B|1/D)D

which yields (6.13). The proof is complete. [

A+B|>1

We are now in a position to prove the well-known isoperimetric inequality. To this end we shall
define the area measure. Suppose 2 C R? with a C! boundary €. Then the area of dQ is given
by

Q+eBi|— |
A(9Q) = limin 2 EBI =12
el0 £

where B is the unit ball in R? with center 0.

Theorem 6.12. (The isoperimetric inequality) Let Q C RP be a relatively compact region with a
C! boundary 0. Then

A(0Q) _ A(SP—1)
Q"5 |B|" b

where is the unit sphere in D-dimensional space RP. In particular if |Q| = |By|, then the
area of SP~ is smaller than that of dQ, which gives the name of the isopreimetric inequality when
D=2.

SD—I
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Proof. For every € > 0, by the Brunn-Minkowski inequality, we have

1 1\D i \D
Q+eBi| = (125 +]eBi|?) = (|Q1D+elBib)

so that
Q+€eB|— |2
A(&Q)zliminf' +eBi|— €]
el0 E
| 1\ D
(1215 +elBilp) — @l
> lim
e—0 E
=Dla|'s|Bi|?
A D—1
A8 g
[B1]'"p
and the proof is complete. ]

By an elementary computation, we know that the area of the Euclidean unit sphere SP~! in

RP equals rz(”D—D//ZZ), where I'(1/2) = /7, and therefore the volume of the unit ball By in RP is
%A(SD = %Fz(”D—D//;). If D =2, then the isoperimetric inequality becomes
A(dQ
2]
so that
L*—47A>0

where L and A are the length of the perimeter and the area of a region Q C R,

7 Appendix

In this part we collect several facts about properties of matrices, which are useful in dealing with
high-dimensional datasets.

7.1 Analysis of Lebesgue’s measure

[This part brings together a few useful facts in Analysis, which can be considered as a general
background or general knowledge. These facts can be obtained by using what you learned in
Prelim Analysis and Lebesgue’s Integration Theory (A4 Paper). The lecturer shall not present this
part in lectures, rather you may refer back when we need them through the course.]
The Lebesgue measure Leb on the Euclidean space R” is the unique measure on (R, Z(RP))
such that
Leb((al,bl] X oo X (aD,bD]) = (b] —al) s (bD —aD)

forany a; < b; (i=1,...,D), where %’(RD ) is the Borel G-algebra on RP| the smallest o-algebra
containing all open (hence as well closed) subsets. It is the D-fold product measure of one di-
mensional Lebesgue measure. The integral of a Borel measurable function f against the Lebesgue
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measure may be written as fRD f(x)dx. In applications to datasets, the dimension D is rather large,
and therefore it is not practical to evaluate an integral such as fRD f(x)dx unless for very sim-
ple functions. Therefore the density properties of nice functions in L”-spaces are very important,
which we shall review now.

If R C RP is a Borel subset, then the Lebesgue restricted on Z(R) is a called the Lebesgue
measure on (R, Z(R)), and we shall use L”(R) to denote the LP-space L” (R, %(R),Leb) for sim-
plicity, and the LP-norm of a function f on R may be denoted by ||f|, or || f{/»(g) if no confusion
may arise.

7.1.1 Density property

Let Q C R” be an open subset.
A Borel measurable function f is locally LP-integrable on 2, denoted by f € LI’ (), if for ev-
ery x € Q, there is a ball B(x, r) centered at x with r > 0 such that B(x,r) C Q and fB(x " If]17(y)dy <

oo, Clearly f € sz)c (Q) if and only if f is Borel measurable and f « |f1P(y)dy < oo for every compact
subset K C 2.

If m is an integer, then C™(£2) denote the linear space of all functions with continuous partial
derivatives up to m-order, and C*(Q) =(),,>1 C" (). Recall that if f is a function on , then
the closure of { f # 0} is called the support of f, denoted by supp(f). A function @ € C*(Q) is
called a test function on €, if its support supp(¢) is a compact subset of 2, i.e. supp(¢) C Q and
supp(f) is compact. The linear space of all test functions on £ shall be denoted by CZ ().

Example 7.1. The function ¢(x) = exp(1/(|x|? — 1)) for |x| < 1 and ¢(x) = 0 for |x| > 1 belongs
to Cz(RY), whose support supp(Q) is the closed unit ball at 0. @ is non-negative.

Definition 7.2. A non-negative function o € Cg(RP) with [pp ot(x)dx =1 is called a smoothing
function on RP.

Given a smoothing function & on R”, with a compact support supp(¢) inside the closed unit
ball centered at 0, define o (x) = £ P ot (x/€) for x € RP, for every € > 0. Then ¢t is a smoothing
function too, and supp(ag) C {x: |x| < €} for every € > 0. If f is local integrable, then

fe) = | F—y)oe(y)dy= / £(7) 0t (x — )y
RD RD

(for every x € RP) is well defined for every € > 0, which is called the convolution f and o,
denoted by fe = f x otc. Then, by using differentiation under integral, justified by Theorem 2.13,
we have the following simple facts:

1) fe € C*(RP) and ﬁf(x) = [wp f(y)ﬁag (x —y)dy for every € > 0 for any any indices

B =B Pp)

2) If f has a compact support, then suup(fe) C supp(f)e for every € > 0, where Ag = {x :
d(x,A) < e}, where d(x,A) =inf{|x—y| : y € A}.

3) If f is continuous on R?, then f; — f as € | 0 uniformly on every compact subset (hence
on any bounded subset) K C RP.

4) If f > 0 then fe > 0 for every € > 0. Similarly, if f < C for some constant, then f < C
for every € > 0. Hence if f € L”(RP), then f; € C,(RP) the space of all bounded and continuous
functions on R?, and || fe|.. < ||f]|., for each & > 0.
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We show that the function space CZ(RP) is dense in any L? (RP) space, and therefor Cg(Q) is
dense in L7 (Q) for every p € [1,0|. To this end we begin with the following fact.

Lemma 7.3. Any continuous function on a closed subset of RP can be extend to be a continuous
function on RP.

Lemma 7.4. (Lusian Theorem) If f is a Borel measurable on RY, then for every 8 > 0, there is a
closed subset F such that 1) Leb(F¢) < 0, and 2) f is continuous on F.

Proof. For every k =1,2,--- and every integer n € Z, set
n+1
En,k = { < f } .

Then for every k, E, i are disjoint and |J, E, x = RP, and therefore there is an positive integer 7
such that

Cc

Leb U En,k <

|| <my

0
2k+1"

We then for each n = 0,+1,- -+, £ny, choose a closed subset F,  C E,  such that

0
Z Leb(En7k\Fn7k) < W
|| <my
and therefore .
o
Leb || | Fue ] | < 5
|| <ng
forevery k =1,2,---. Let F}, = U|n| < Frk which is closed, where F, ; are disjoint closed subset.

Define f; on Fj by fi(x) = 7 if x € F, . Then f; are continuous, and |f(x) — fi(x)| < % for every
x € Fy. fi is continuous, so is continuous on F = (;_; F; and f; — f uniformly on F. Therefore
f is continuous on F. [

Corollary 7.5. If f is Borel measurable on RP, then for every § > 0, there is a continuous function
g on RP such that Leb{f # g} < 6.

Theorem 7.6. Let p € [1,). If f € LP(RP), then f. € LP(RP) for every € >0, and fe — f in
LP(RP). Therefore Cz(RP) is dense in LP(RP) for every p € [1,0).

Proof. First note that for every € > 0, a(y)dy is a probability measure, so that, using the Fubini

theorem
I fellt = / Jl- o] d

: /RD/ |f(x— )| dxae (y)dy
= [, [, or asoetes = i
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which implies that f € LP.
We may assume that f is bounded. For every 6 > 0, according to the previous corollary there
is a bounded continuous function g such that Leb{ f # g} < W. Then

p
(f(X) g(x)) ae(x—y)dy| dx

/RD /RD ()] 0te (x — y)dydx

— [ 11 —gtpax <
RD

Ife —gelll, =

Therefore we may assume that f is continuous with a compact support, so that fe € CZ (RP) for
all € > 0, and

p
=1l = [ [ (e = r) o)y a
p
=[], ta—en - acia] o
RD RD
p
< [, (ra—es) =7t asaay
Since »
[, —en) =] ar<2 sl
and

p
dx—0 aselO.

/ (flx—ey) — f(x))
RD

Therefore by Dominated Convergence Theorem,

Jo

which yields that || fe — f||, — 0 as € | 0. The proof is complete. O

p
dxa(y)dy -0 aselO

/ (flx—ey)— F(x))
RD

7.1.2 Generalized derivatives, Sobolev spaces

Definition 7.7. Let Q C RP be an open set, and f € LIOC(Q). We say a locally integrable function
fi is the generalized partial derivative with respect to x' (fori=1,---,D), if

/in(x)qo /f B (x)dx, forany @ € C5(Q2).

In this case f; is denoted by 57 ) (called the generalized derivative of f), if no confuszon may
arise, and we say the generallzed derivative % f is locally integrable. If in addition, 2 =7 is p-th
integrable (where p > 1), then we say the generalized derivative % f€LP(Q). The general-

ized gradient of f is defined to be naturally as (%f, e ,ﬁf), denoted by V f, and we say the
generalized gradient V f is locally integrable (resp. belongs to the LP-space).
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Remark 7.8. 1) Generalized derivatives of a locally integrable function f always exist as gen-
eralized functions (i.e. distributions). The proper treatment of this approach requires certain
preparation and therefore we do not give a general definition of generalized functions in this book,
the reader may refer to K. Yosida: Functional Analysis.

2) The locally integrable function f; in the definition, if exists, then it is unique up to almost
surely. We often say % f = fi in the sense of distribution in this case.

This definition can be generalized to higher order generalized derivatives, which we shall not
discussed further, the reader may refer to standard textbooks such as .

Definition 7.9. Let f be a locally integrable function on an open subset Q C RP. Then we say
f € H'(Q) (some authors use W'2(Q) instead), if both f and its generalized gradient V f belong
to the L*(Q), that is, f € L>(Q) and the generalized derivatives %f € L*(Q). For f ¢ H(Q),
its Sobolev norm is defined to be

D
||f||H1(.Q):\//Q \f!Z(X)dX+;

Theorem 7.10. 1) H'(Q) is a complete metric space under the distanced defined by the norm

2

%f(x) dx.

e (@)-
2) C=(R) is dense in H' (Q) under the (| 1 () -norm distance.

The proof is left as exercise, see
Definition 7.11. Define H} () to be the closure of Cz () under the the ||| (@)-horm distance.

These results can be generalized to measures which are absolutely continuous with respect
to the Lebesgue measure. Suppose p(dx) is a o-finite measure on (RP, Z(RP)) and u(dx) is
absolutely continuous with the Lebesgue measure on R?. That is, there is a non-negative Borel
measurable, locally integarable function p(x) such that p(dx) = p(x)dx. For simplicity the LP-
space over (RP, 2(RP),u) is denoted by LP(u). Similarly we shall use H'(u) to denote the
space of all locally integrable functions f, such that both f and its generalized gradient V f belong
to L?(u), equipped with the norm

11y = 3 112 + IV A1

Then H'(u) is a Banach space, and CZ(RP) is dense in H'(u).

7.1.3 Lipschitz functions

Finally we shall recall several elementary facts about Lipschitz functions. Recall that a function f
on R? is Lipschitz, if | f(x) — f£(y)| < C|x —y| for every x,y € RP, where C > 0 is a constant. The
least C is called the Lipschitz norm of f, denoted by || f||;,- That is

Hf”Lip = SUPM‘

XF£y ’X—y‘

Let & be a non-negative smoothing function and @ (x) = e Pa(x/¢€) and fe = f * a for every
€>0.
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Lemma 7.12. Let f : RP — R be Lipschitz continuous (with respect to the standard metric on RP
and R. Then fe — f as € | 0 uniformly on any bounded subset, and ||V fe||., < ||fHLip for every
e>0.

Proof. fe. € C*(RP) for every € > 0. Since f is continuous, so that fe — f uniformly on any
bounded subset of RP. Since

el ha) = o) = [ (Fla-+ha—y) = flx =)o)y
for every x and & # 0, and f is Lipschitz continuous, so that

Je(x+ha) — fe(x)
h

ﬂmm/mmw®
RD
— ol

for every € > 0 and & # 0. Letting 7 — 0, we then obtain that
Ve(x)-al < fllLip el

for every a € RP, which yields that |V fe(x)| < || f |Lip for every x and for every & > 0. O

7.2 Inverting a square matrix

Let A = (a;;) be an n x n square matrix. Then its determinant

|A| = detA = Z (—=1)°aig, -+ g,

oEeS,

where ¢ runs over the permutation group S, of {1,---,n}, and also 6 = 0 or 1 according to the
parity of the arrangement ¢ = {0y,...,0,}.

For every pair (i, j), A;; = (—1)""/ times the determinant of the (n— 1) x (n — 1)-square matrix
with the i-th row, j-th column delated. Then

n n
detA = Za,'inj = Z aUA,-j
i=1 =

(for every j, resp. for every i). It is known that A is invertible if and only if detA # 0. In this case
the inverse of A, denoted by A~!, is given by

ato ]

— (AT
detA< i)

where T labels the transport.
Suppose we write a square matrix A in blocks:

Ay Ap
A=
( Az A
where A; and A, are square matrices (but not necessary having the same rank).
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1) Suppose Ay is invertible, then

I 0\ /[ A An I —AjlAp \ _ [ An 0
—AnAy 1 Ay Axp 0 I 0 Axn—AnA[lAn )

2) Suppose both A and A are invertible, then

Al = (Anl (I+AnB ' AnAY) —AjAB™! )
—B_1A21A1_11 B!
where B = Ap» —A2]A1_11A12.
3) If Ay is invertible, then

Al A\ B -1
det< Ay Ay ) —detA”det(Azz A21A11A|2)

and, similarly, if A, is invertible,

Al A ~1
det =detAr»r det (A1 —A1245, Ar1) .
(A21 Ay 22 ( 11 12455 21)

Lemma 7.13. Suppose A and B are two square matrices, then the non-zero eigenvalues of AB and
BA are the same with the same multiplicity. In particular, tr(AB) = tr(BA).
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