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1 Introduction
[UNDER CONSTRUCTION !] In data science and in many applications such as quantum field
theories, we have to handle datasets with a large number of attributes, and often labels and attributes
demonstrating a dataset are not independent. It is convenient to represent datasets with D many
attributes as vectors in the Euclidean space of D dimensions, where D though is very large. In many
applications, D is larger than the size of the sample data. Often datasets in applications are located
in a lower dimensional sub-manifolds, so there is a question of reducing dimensions in datasets.
This course does not address this kind of questions, nor to address anything about learning from
data or about regenerating datasets. Rather, we attempt to develop an array of mathematical tools
to address the question of describing the distributions of datasets. The main tool we shall develop
in this course is the Ornstein-Uhlenbeck (OU) diffusion process, although we shall only study this
model from a deterministic dynamic point-view. We however would like to point out that this
OU process plays a crucial role in the recent year AI revolution, namely the regenerative diffusion
model in this new phase of AI technology.

Prerequisite: It is essential that you have good computational skills from (1) Prelims Calculus,
(2) A2.1 Metric Spaces, (3) First half of A8 Probability, and (4) A4 Integration.

Main tools: We shall introduce a few new concepts on the way, but no one of them is particu-
larly new, and they are introduced mainly for convenience. We shall mainly use the computational
tools developed in elementary calculus such as finding derivatives using various rules, finding
some simple integrals, a little bit algebra for helping organizing your computations and etc. A4
Integration is required to backup and to justify your computations. You shall enjoy the powerful
techniques developed in this course, and you shall appreciate the results established in this course
like the isoperimetric inequalities both for Gaussian measures and for the Lebesgue measures. You
shall be able to appreciate the main method developed in this course, i.e. the method of stochastic
quantization in its simplest form.

About this course: This is not a course about data science, it is a course which is quite useful
for understanding datasets. It is a probability course with strong flavor of analysis. While I hope
in near future these tools shall be used widely in data science.

The standard one dimensional normal distribution, even in high-dimensional probability, re-
mains to play an important role as in elementary Probability Theory. The Gaussian distribution
function

Φ(x) =
� x

−∞

1√
2π

e−
x2
2 dx for x ∈ R

whose probability density function (PDF) is its derivative: Φ ′(x) = 1√
2π

e−
x2
2 . Clearly its second

derivative Φ ′′(x) = −xΦ ′(x). Φ is strictly increasing on (−∞,∞) taking values in (0,1), whose
inverse function Φ−1 : (0,1) 7→ (−∞,∞) is also strictly increasing. A fundamental fact about
normal distribution is that the tail probability

1−Φ(r) =
�

∞

r

1√
2π

e−
x2
2 dx

decays to zero in a speed like e−r2/2 as r → ∞.
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In fact we have more precise quantitative decay estimates.

Exercise. For r > 0 we have(
r+

1
r

)−1

Φ
′(r)≤ 1−Φ(r)<

1
r

Φ
′(r).

[Hint: Observe that
�

∞

r

1√
2π

e−
x2
2 dx <

�
∞

r

x
r

1√
2π

e−
x2
2 dx

=

�
∞

r

(
1+

1
x2

)
1√
2π

e−
x2
2 dx

<

(
1+

1
r2

)�
∞

r

1√
2π

e−
x2
2 dx.

You may read page 4 in H. P. McKean: Stochastic Integrals. Academic Press New York and
London (1969), or any other books on probability.]

Therefore we conclude that

1−Φ(r) =
�

∞

r

1√
2π

e−
x2
2 dx ≤ min

{
1
2
,

1√
2π

1
r

e−
r2
2

}
for any r > 0.

Suppose X has a normal distribution with mean zero and variance σ2, then for every r > 0

P [X > r] =
�

∞

r

1√
2πσ2

e−
x2

2σ2 dx

= σ

�
∞

r/σ

1√
2π

e−
x2
2 dx

≤ min
{

σ

2
,

σ2
√

2π

1
r

e−
r2

2σ2

}
∼ exp

(
− r2

2σ2

)
which maybe called the Gaussian decay rate. We shall later on prove that

P [X > r]≤ exp
(
− r2

2σ2

)
for every r > 0.

In this course, we shall develop an array of mathematical tools for establishing effective tail
estimates for high-dimensional probability distributions. In contrast with the traditional probabil-
ity theory and classical stochastic analysis, where the concepts such as independence, martingale
property, Markov property, play dominated roles, in High-Dimensional Probability, we seek for
tools which can be used for handling distributions of random fields which do not possess these
properties. These tools shall be particularly useful for the study of distributions of datasets with
large numbers of attributes with complex (dependent) structures.
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Let us collect several notions, notations and a few elementary facts which shall be used in this
course.

Suppose (X ,d) is a metric space, then the topology on X defined by the metric d is the collec-
tion of all open subsets, that is all subset U which have the following property: for every x ∈ U ,
there is a positive number r (depending on x in general though) such that the open ball centered at x
with radius r, Bx(r) is a subset of U . A metric space is separable if it has a countable dense subset.
A metric space is complete if every Cauchy sequence has a limit. A complete and separable metric
space is called a Polish space.

The σ -algebra generated by open subsets, i.e. the smallest σ -algebra on X , containing all
open subsets (and therefore all closed subsets as well) is called the Borel σ -algebra, denoted by
B(X). By saying a measure on a metric space, we mean a measure on the Borel σ -algebra on a
metric space, unless otherwise specified. In particular, any continuous function on a metric space
is measurable (with respect to the Borel σ -algebra), cf. A4 Integration.

Most distributions one has to deal with in applications are probability measures on sample
spaces with additional space structures, such as linear structures you studied in Linear Algebras.
The most convenient way to introduce a distance on a vector space X is through a norm. We recall
that a function x 7→ ∥x∥ from a vector space X 7→ [0,∞) if ∥x∥= 0 only for x = 0, ∥λx∥= |λ |∥x∥
for every scalar λ and x∈X , and the triangle inequality holds: ∥x+ y∥≤ ∥x∥+∥y∥ for any x,y∈X .
The topology (i.e. the collection of open sets) on X is defined by the induced distance d(x,y) =
∥x− y∥ (for x,y ∈ X). In this way we call (X ,∥·∥) is a normed (linear, or vector) space, that is, a
vector space equipped with a norm. Such normed space is called a Banach space if it is complete
as a metric space (cf. A2.1 Metric Spaces).

A scalar (or inner) product on X is a mapping ⟨·, ·⟩ from the product space X ×X to C,which
sends an ordered pair (x,y) to a number ⟨x,y⟩ which satisfies the following properties: ⟨x,y⟩= ⟨y,x⟩
for every pair x,y ∈ X , ⟨x,x⟩ ≥ 0 for every x and = 0 only for x = 0, the mapping x 7→ ⟨x,y⟩ is
linear (in x) for every y, and y 7→ ⟨x,y⟩ is conjugate linear (in y) for every x, i.e. ⟨x,y1 + y2⟩ =
⟨x,y1⟩+ ⟨x,y2⟩ and ⟨x,λy⟩ = λ̄ ⟨x,y⟩ for any number λ , and x,y ∈ X . ∥x∥ =

√
⟨x,x⟩ for x ∈ X

defines a norm on X , the norm ∥·∥ induced by the scalar product. A Banach space whose norm is
induced by a scalar product is called a Hilbert space.

2 Measures, integration and probability distributions

In this section we give a quick review about the foundation of probability theory.

2.1 Measures and Lebesgue’s integration

We shall not develop Lebesgue’s theory of integration in detail, which the reader may learn from a
standard textbook such as Halmos [9]. We shall however introduce the notations, notions and the
fundamental results sufficient enough so that the reader may follow the main content of the book
without need to refer to more theoretical approach of the measure theory.

A measurable space (E,F ) consists of two objects, a space (simply a non-empty set) E, and
a σ -algebra F on E. By a σ -algebra on E we mean a collection F of some subsets of E which
satisfies the following properties: the empty set ï¿œ and the whole space E belong to the collection
F , if A,B ∈ F , then A\B ∈ F , and if Ai ∈ F (where i = 1,2, . . .), then

⋃
∞
i=1 Ai ∈ F .
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Clearly, the collection which contains only the empty set and the whole space is a σ -algebra,
which is called the trivial σ -algebra on any space. On the other hand, the totality of all subsets of
E is a σ -algebra, which shall be the default choice of a σ -algebra when E is a finite or countable
space, unless otherwise specified.

If C is a non-empty collection of some subsets of E, then

σ(C ) =
⋂

{F : C ⊂ F and F is σ -algebra on E}

is indeed a σ -algebra, which is the smallest σ -algebra containing C , called the σ -algebra generated
by C .

Example 2.1. Let S be a metric space. Then the Borel σ -algebra on S, denoted by B(S), is the
σ -algebra generated by the collection of all open (hence closed) subsets of S. Unless it is said
otherwise, the default σ -algebra on a metric space is the Borel σ -algebra B(S).

Definition 2.2. Suppose (E1,F1) and (E2,F2) are two measurable spaces, and F : E1 7→ E2 is a
mapping. Then F is called a measurable mapping (or called a measurable function) if F−1(F2)⊂
F1. That is, for every A ∈ F2, the pre-image F−1(A) ∈ F1.

We shall add several comments about this definition.

Remark 2.3. 1) The concept of measurable mappings (functions) between two spaces depends on
their carried σ -algebras.

2) F−1(F2), which is collection of all F−1(A) (where A runs through F2), is itself a σ -algebra
on E1, called the pull-back σ -algebra of F2 by the mapping F. F−1(F2) is the smallest σ -algebra
F on E1 such that F is measurable (with respect to the σ -algebra F on E1 and F2 on E2, and
therefore F−1(F2) is also called the σ -algebra on E1 generated by the mapping F.

3) A measurable mapping F : E1 7→ E2, where (Ei,Fi) (where i = 1,2) are measurable spaces,
is also called an E2-valued random variable.

4) Let (E,F ) be a measurable space, and let S be a metric space. Then a mapping F : E 7→ S
is called an S-valued random variable if F is measurable with respect to the σ -algebra F and the
Borel σ -algebra B(S), i.e. F−1(A) ∈ F for every Borel measurable subset A ⊂ S.

5) It is convenient to introduce two symbols ∞ and −∞ in R of real numbers, with the convention
that −∞ < a < ∞ for any real number a, 0 ·∞ = 0, a ·∞ = ∞ if a > 0, and ∞ ·∞ = ∞. Let [−∞,∞] =
R∪{−∞,∞}. Then the Borel σ -algebra B([−∞,∞]) is the σ -algebra generated by {−∞}, {∞}
and B(R). A [−∞,∞] -valued measurable function on a measurable space (E,F ) (where the
generalized real line [−∞,∞] carries the Borel σ -algebra) is called a (generalized) real random
variable on (E,F ).

Proposition 2.4. Let (E,F ) be a measurable space, and let f , fn : E 7→ [−∞,∞] be (generalized)
real functions (for n = 1,2, . . .).

1) f is measurable if and only if f−1(−∞), f−1(∞) and { f < a} are measurable for every
number a.

2) If f is measurable, then f+ = max{ f ,0} and f− = max{− f ,0} are non-negative and mea-
surable.

3) Suppose fn are measurable (for n = 1,2, . . .), then supn fn, infn fn, limsup fn and liminf fn
are measurable.
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Let (E,F ) be a measurable space. An outer measure µ on (E,F ) is a function defined on F
taking values in [0,∞] such that µ(ï¿œ) = 0, and

µ

(
∞⋃

i=1

Ai

)
≤

∞

∑
i=1

µ (Ai)

for any Ai ∈ F (where i = 1,2, . . .). An outer measure µ is called a measure if in addition µ is
countably additive:

µ

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

µ (Ai)

for any disjoint measurable Ai (where i = 1,2, . . .).
If µ is an outer measure on (E,F ), then A ∈ F is called µ-measurable if

µ(B) = µ(B∩A)+µ(B∩Ac) for any B ∈ F .

According to a theorem of Caratheodory’s, the collection Mµ of all µ-measurable subsets is a sub
σ -algebra of F , and µ restricted on Mµ is a measure.

If µ is a measure (E,F ), then the triple (E,F ,µ) is called a measure space. µ is called a
finite measure if µ(E)< ∞, and it is σ -finite if there is a sequence An ∈ F (for n = 1,2, . . .) such
that

⋃
∞
i=1 Ai = E and µ(An)< ∞ for every n = 1,2, . . ..

A measure µ with total mass 1, that is, µ(E) = 1, is called a probability, a probability distribu-
tion, a probability measure, or simply a distribution on (E,F ).

Let us now work with a σ -finite measure space (E,F ,µ). The integration theory over this
measure space can be constructed as the following. A non-negative function ϕ : E 7→ [0,∞] is
called F -simple if ϕ = ∑

k
i=1 ci1Ai for some positive integer k, some Ai ∈ F and some ci ∈ [0,∞].

For such a simple function, its integral

�
E

ϕdµ =
k

∑
i=1

ciµ(Ai)

which may be infinity though. If f : E 7→ [0,∞] is measurable, then its integral
�

E
f dµ = sup

{�
E

ϕdµ : ϕ F -simple, and ϕ ≤ f
}

where sup I = ∞ if I is not bounded from above. An non-negative, F -measurable function is
integrable (with respect to the measure µ) if its integral

�
E f dµ < ∞. For a general (i.e. not

necessary non-negative) F -measurable function f , then f = f+− f− and | f | = f++ f−, where
both f+ and f− are non-negative and F -measurable. If

�
E f±dµ < ∞, then f is called integrable

(w.r.t. the measure µ) and its integral
�

E
f dµ =

�
E

f+dµ −
�

E
f−dµ.

The totality of all F -measurable and µ-integrable functions is denoted by L1(E,F ,µ). For sim-
plicity, if f is measurable, and if f is non-negative or integrable, then its integral

�
E f dµ is also

denoted by
�

E f (x)µ(dx),
�

f dµ , or by µ( f ) if no confusion arises.
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Suppose p > 0 is a constant, and f is F -measurable, then | f |p is F -measurable, and define
∥ f∥p =

(�
E | f |

pdµ
)1/p (which may be infinity). If p = ∞, then

∥ f∥
∞
= inf{C ≥ 0 : | f | ≤C µ almost surely }

For p ∈ (0,∞], Lp(E,F ,µ) denotes the totality of all F -measurable functions f such that ∥ f∥p <
∞.

For discussions involving functions in Lp(E,F ,µ), two measurable functions f and g are
identified as the same element (in any Lp-space) as long as { f ̸= g} has µ-measure zero.

Theorem 2.5. Let p∈ [1,∞], and dp( f ,g)= ∥ f −g∥p for any two measurable functions on (E,F ,µ).
1) Lp(E,F ,µ) is a linear space, and dp is a metric on Lp(E,F ,µ).
2) The metric space Lp(E,F ,µ) equipped with the metric dp is complete.

Lp(E,F ,µ) is called the Lp-space over the measure space (E,F ,µ). It is a very important
fact that for every p ≥ 1, f 7→ ∥ f∥p is a norm on the Lp-space. In particular if p ≥ 1, then

∥ f +g∥p ≤ ∥ f∥p +∥g∥p for any f ,g ∈ Lp(E,F ,µ),

which is called the Minkowski inequality. This inequality can be proved by using the convexity of
the power function xp on (0,∞) if p ≥ 1. The detail of the proof is left as an exercise (see Problem
Sheet 1).

Let us now review several important results in the integration theory.
Recall that a real function ρ defined on an interval (a,b) (not necessary bounded) is convex if

ρ(λ s+(1−λ )t)≤ λρ(s)+(1−λ )ρ(t) (2.1)

for any s, t ∈ (a,b) and λ ∈ [0,1]. A function ρ is concave if −ρ is convex.

Theorem 2.6. (Jensen’s inequality) Let (E,F ,µ) be a finite measurable space. If ρ is convex on
(a,b) and f is measurable and takes values in (a,b), then

ρ

(
1

µ(E)

�
E

f dµ

)
≤ 1

µ(E)

�
E

ρ( f )dµ (2.2)

as long as both f and ρ( f ) are integrable.

Theorem 2.7. (The Hölder inequality) If f and g are two measurable functions on a σ -finite
measure space (E,F ,µ), then

�
E
| f g|dµ ≤

(�
E
| f |pdµ

) 1
p
(�

E
|g|qdµ

) 1
q

(2.3)

if p > 1 and 1
p +

1
q = 1. In particular if f ∈ Lp(E,µ) and g ∈ Lq(E,µ) then f g ∈ L1(E,µ). The

case where p = q = 2 is called the Cauchy-Schwartz inequality.

Proof. If one of the integral on the right-hand side vanishes, then f or g equals zero almost surely,
which forces that f g= 0 almost surely too, thus both sides of the inequality are zero. The inequality
is trivial in this case. Thus let us assume both integrals on the right-hand side are greater than zero
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(but may be ∞). For this case, if one of the integral on the right-hand side is ∞, the the right-hand
side is infinity, so the inequality is surely true and of course is also trivial. Therefore we may
assume that

0 < ∥ f∥p =

(�
E
| f |pdµ

) 1
p

< ∞

and

0 < ∥g∥q =

(�
E
|g|qdµ

) 1
q

< ∞.

For this case, by replacing f by f/∥ f∥p and g/∥g∥q, we may further assume that ∥ f∥p = ∥g∥q = 1.
Now we use the elementary inequality

st ≤ 1
p

sp +
1
q

tq

for any non-negative s, t [This inequality follows by inspecting the function ϕ(x) = x− 1
pxp − 1

q
(for x ≥ 0) and showing the maximum ϕ(1)≤ 0].

The Hölder inequality may be stated as the following convenient form

�
E
| f |α |g|1−αdµ ≤

(�
E
| f |dµ

)α(�
E
|g|dµ

)1−α

(2.4)

where α ∈ (0,1) is a constant, f ,g are µ-integrable.
A special case for probabilities is worthy of mention.

Corollary 2.8. Let (Ω ,F ,P) be a probability space. Then

(E|X |)p ≤ E(|X |p)

for every p ≥ 1, X is p-th integrable. Equivalently

E(|X |α)≤ (E|X |)α

for every constant α ∈ (0,1), and X is integrable.

Exercise 2.9. Suppose X > 0 and Y are two measurable functions on a σ -finite measure space
(E,F ,µ). Then

µ

(
Y 2

X

)
≥ (µ (|Y |))2

µ(X)
. (2.5)

Here we use also µ( f ) to denote the integral
�

E f dµ .

Proof. In fact by Cauchy-Schwartz inequality

µ (|Y |) = µ

(√
X
|Y |√

X

)
≤
√

µ(X)

√
µ

(
Y 2

X

)
which yields (2.5).
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It should be understood that the main task in probability theory (i.e. statistical mechanics) is to
give a good description of the distribution of a random variable. For a real random variable X , we
are interested in its distribution function FX(t) = P [X ≤ t], which is a reason we are so interested
in tail estimates such as P [X ≥ t].

Theorem 2.10. Let ρ : (0,∞) 7→ [0,∞) be right-continuous and increasing with its right-hand
limit at 0: ρ(0+) = 0. Let mρ denote the Lebesgue–Stieltjes measure associated with ρ (cf. A4
Integration), i.e. mρ is the unique measure on ([0,∞),B([0,∞))) such that mρ((s, t]) = ρ(t)−ρ(s)
for any t > s ≥ 0, and mρ({0}) = 0.

Let X and Y be two non-negative measurable functions on a σ -finite measure space (E,F ,µ).
1) It holds that �

E
ρ(X)dµ =

�
∞

0
µ[X ≥ λ ]mρ(dλ ). (2.6)

2) Suppose that there is a constant C > 0 such that µ [X ≥ λ ]≤Cµ [Y ≥ λ ] for all λ > 0. Then�
E ρ(X)dµ ≤C

�
E ρ(Y )dµ .

Proof. The proof follows from the construction of mρ and the Fubini theorem (cf. A4 Integration).
Indeed�

E
ρ(X(ω))µ(dω) =

�
E
(ρ(X(ω))−ρ(0+))µ(dω) =

�
E

mρ((0,X(ω)])µ(dω)

=

�
E

[�
(0,X(ω)]

mρ(dλ )

]
µ(dω) =

�
E

[�
∞

0
1[λ≤X(ω)]mρ(dλ )

]
µ(dω)

=

�
E×(0,∞)

1[X(ω)≥λ ]mρ(dλ )µ(dω)

=

�
(0,∞)

µ({X ≥ λ})mρ(dλ )

where we have used the fact that mρ((s, t]) = ρ(t)−ρ(s) for any t ≥ s ≥ 0 by definition.

Theorem 2.11. If f is a non-negative, Borel measurable function on RD, then
�
RD

f (x)dx =
�

∞

0
Leb({ f > t})dt (2.7)

where Leb denotes the Lebesgue measure on RD.

Proof. We may observe that, if ρ is increasing, continuous and ρ(0+) = 0 in Lemma 2.10, then
µ[X ≥ λ ] can be replaced by µ[X > λ ]. In fact

�
RD

f (x)dx =
�

∞

0
Leb({ f ≥ t})dt.

Since t 7→ Leb({ f > t}) is decreasing so that

{t ≥ 0 : Leb({ f > t}) ̸= Leb({ f ≥ t})}

is at most countable, and therefore is a null subset with respect to the Lebesgue measure. Therefore
(2.7) follows immediately.
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Theorem 2.12. Suppose X and A are two non-negative random variables on a probability space,
and suppose

P [X ≥ λ ]≤ 1
λ
E [A : X ≥ λ ] for any λ > 0.

Then, for any p > 1

E [X p]≤
(

p
p−1

)p

E [Ap] . (2.8)

Proof. We can assume that X is bounded, otherwise we use min{X ,n} (for n = 1,2, . . .) instead
and take limit as n → ∞. Let ρ(t) = t p for t > 0. Then, by (2.6) [with ρ(t) = t p for t > 0]

E [X p] =

�
∞

0
P [X ≥ λ ]mρ(dλ )≤

�
∞

0

1
λ
E [A : X ≥ λ ]ρ ′(λ )dλ

≤ p
�

∞

0
E [A : X ≥ λ ]λ p−2dλ .

Using Fubini’s theorem for the last integration, we obtain that

E [X p]≤ pE
[

A
� X

0
λ

p−2dλ

]
=

p
p−1

E
[
AX p−1] .

Apply Hölder’s inequality to obtain that

E [X p]≤ p
p−1

(E [Ap])
1
p (E [X p])

1
q

where 1
p +

1
q = 1. Rearranging the inequality to complete the proof.

The previous results, which though are very useful, can be stated in terms of Riemann inte-
grals (if one is happy with Riemann integrals rather than abstract integration), the usefulness of
Lebesgue’s integration however lies in its powerful capability of handling orders of taking various
limits as stated in the following fundamental theorem below, which is the core part of Lebesgue’s
integration.

Theorem 2.13. Let (E,F ,µ) be a σ -finite measure space. Let fn be measurable on E (where
n = 1,2, . . .).

1) (Fatou’s lemma) If fn are non-negative, then�
E

liminf
n→∞

fndµ ≤ liminf
n→∞

�
E

fndµ.

2) (Monotone Convergence Theorem, MCT) If fn is an increasing sequence of non-negative
and measurable functions, then �

E
lim
n→∞

fndµ = lim
n→∞

�
E

fndµ.

3) (Dominated Convergence Theorem) Suppose fn → f almost surely and | fn| ≤ g (for every
n) for some integrable function g, then all fn and f are integrable and�

E
f dµ = lim

n→∞

�
E

fndµ.

Item 3), the Dominated Convergence Theorem, is the theoretical foundation for justifying our
differentiation and taking limits under integration, though very often one should carefully check
the control condition required in this theorem, such details though are often omitted.
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3 General concentration inequalities
Let us begin with a very general concentration principle of high-dimensional distributions, which
is not quantitative as we wish and therefore it has a very limited value.

Lemma 3.1. Let (E,ρ) be a Polish space, and P be any probability measure on (E,B(E)). Then
for every ε > 0 there is a compact subset K ⊂ E, such that P [E \K]< ε .

Proof. Since E is separable, for every δ > 0, E can be covered by countable many balls with radius
δ . Therefore, for every n, there is a sequence of closed balls B(n)

i of radius 1
2n (where i = 1,2, . . .)

such that ∪iB
(n)
i = E for each n. By construction

lim
k→∞

P

(
k⋃
i

B(n)
i

)
= P

(⋃
i

B(n)
i

)
= P(E) = 1.

Hence for each n, there is kn such that

P

(
kn⋃
i

B(n)
i

)
> 1− ε

2n .

Let K = ∩∞
n=1 ∪

kn
i B(n)

i . K is totally bounded by definition and is also closed. Since E is complete,
therefore K is compact. Since

P(Kc)≤
∞

∑
n=1

P

[(
kn⋃
i

B(n)
i

)c]
<

∞

∑
n=1

ε

2n = ε

and therefore P(K)> 1− ε .

3.1 One-dimensional distributions
The most familiar estimates are perhaps those derived from the Markov inequality. Recall that if
X is a real and integrable random variable on a probability space (Ω ,F ,P), then for every λ > 0
we have

P [X ≥ λ ] = E
[
1{X≥λ}

]
≤ E

[
X
λ

1{X≥λ}

]
=

1
λ
E
[
X1{X≥λ}

]
In particular, if X is non-negative

P [X ≥ λ ]≤ 1
λ
E [X ] for λ > 0 (3.1)

which is called the Markov inequality.
There are variations of the Markov inequality. Suppose φ : R→ (0,∞) is increasing, then

P [X ≥ λ ] = P [φ(X)≥ φ(λ )]≤ E
[

φ(X)

φ(λ )
1{X≥λ}

]
=

1
φ(λ )

E [φ(X) : X ≥ λ ]

11



which of course yields that

P [X ≥ λ ]≤ 1
φ(λ )

E [φ(X) : X ≥ λ ] (3.2)

for any λ and increasing, positive function φ . In particular

P [|X −µ| ≥ λ ]≤ 1
λ pE [|X −µ|p] for λ > 0 (3.3)

for any µ and p ≥ 0. The inequality reduces to the Chebyshev inequality where µ = E [X ] and
p = 2. Similarly if ψ : R→ (0,∞) is decreasing, then

P [X ≤ λ ] = P [ψ(X)≥ ψ(λ )]≤ E
[

ψ(X)

ψ(λ )
1{X≤λ}

]
.

Therefore

P [X ≤ λ ] = P [ψ(X)≥ ψ(λ )]≤ E
[

ψ(X)

ψ(λ )

]
for any λ and any positive and decreasing function ψ .

Proposition 3.2. (Chernoff’s inequality) Suppose E
[
eλX
]

exists for all λ , then

P [X ≥ t]≤ e−I+X (t) for every t ∈ R, (3.4)

where
I+X (t) = sup

λ≥0

{
λ t − lnE

[
eλX
]}

. (3.5)

Proof. φ(x) = eλx (where λ ≥ 0) is increasing, therefore

P [X ≥ t]≤ 1
eλ t

E
[
eλX
]
= e−(λ t−lnE[eλX ])

for every t and λ ≥ 0. However the left-hand side is independent of λ ≥ 0, therefore

P [X ≥ t]≤ e−supλ≥0(λ t−lnE[eλX ])

which completes the proof.

The function I+X (which takes non-negative values, but maybe infinity) is called the Cramér
transform of (the distribution of) X . We will revisit this function later on.

Example. Let X has a normal distribution N(0,σ2). Then

E
[
eλX
]
=

�
∞

−∞

1√
2πσ2

exp
(
− x2

2σ2 +λx
)

dx

=

�
∞

−∞

1√
2πσ2

exp
(
−(x−σ2λ )2

2σ2 +
σ2λ 2

2

)
dx

= exp
(

σ2λ 2

2

)

12



so that

P [X ≥ t]≤ e−supλ≥0

(
λ t−σ2λ2

2

)
where the sup is achieved at λ = t

σ2 , and therefore

P [X ≥ t]≤ exp
(
− t

2σ2

)
.

3.2 The Cramér theorem
Let X1,X2, . . . be an independent identically distributed sequence of (real) random variables on
a probability space (Ω ,F ,P), with a common distribution µ which is a probability measure on
(R,B(R)). Assume that X1 is integrable, and let a = E [X1] =

�
R xµ(dx). Then the strong law of

large numbers says
1
n

n

∑
i=1

Xi → a almost surely.

That is to say, the distribution of the average 1
n ∑

n
i=1 Xi is concentrated about the mean value a, and

tends to Dirac’s delta measure δa at a as n → ∞. This result is at the core of probability, statistics
and AI technology. In this section, we give more precise information about the concentration of
the distribution µn of 1

n ∑
n
i=1 Xi.

The distribution µn of 1
n ∑

n
i=1 Xi (for n = 1,2, . . .) is a probability measure on (R,B(R)), by

definition

µn(A) = P

[
1
n

n

∑
i=1

Xi ∈ A

]
for A ∈ B(R).

Let us assume that the exponential moment of X = X1 is finite, that is, E(eλX) < ∞ for every
λ . For simplicity, let ψX(λ ) = lnE(eλX). The Legendre transform of ψX is defined by

IX(x) = sup
λ∈R

{λx−ψX(λ )} for x ∈ R.

IX takes values in [0,∞].
Now we are in a position to state the first example of large deviation principle.

Theorem 3.3. (H. Cramèr) Suppose E(eλX) < ∞ for every λ , then 1
n ∑

n
i=1 Xi (for n = 1,2, . . .)

satisfies the large deviation principle (LDP) with the rate function IX , in the sense that

limsup
n→∞

1
n

logP

[
1
n

n

∑
i=1

Xi ∈ F

]
≤− inf

x∈F
IX(x) (3.6)

for every closed subset F ⊂ R, and

liminf
n→∞

1
n

logP

[
1
n

n

∑
i=1

Xi ∈ G

]
≥− inf

x∈G
IX(x) (3.7)

for every open subset G ⊂ R.

We divide the proof of this theorem into several steps.
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Lemma 3.4. 1) The function λ 7→ E(eλX) is smooth and log-convex, that is λ → ψX(λ ) is convex.
2) IX is a convex, and Kc = {x : IX(x)≤ c} is compact for every c.
3) IX(a) = 0 where , and IX ↑ on (a,∞) and IX ↓ on (−∞,a).
4) We have

inf
(x,y]

IX = IX(y) if x < y ≤ a

and
inf
[x,y)

IX = IX(x) if a ≤ x < y .

Proof. 1) We only need to show that logE(eλX) is convex. For every α ∈ (0,1)

E(e(αλ1+(1−α)λ2)X) =

�
eαλ1xe(1−α)λ2x

µ(dx)

≤
(�

eλ1x
µ(dx)

)α(�
eλ2x

µ(dx)
)1−α

(µ is the distribution of X = X1), where the inequality follows from Hölder inequality with p = 1
α

.
Therefore λ 7→ logE(eλX) is convex.

2) IX is non-negative, and is convex as it is the supremum of the linear functions. In particular
IX is continuous on {x : IX(x)< ∞}. We show that for every c > 0

Kc = {x ∈ R : IX(x)≤ c}

is compact. Since IX is continuous on {IX < ∞}, so Kc is closed, thus we only need to show that
Kc is bounded. If x ∈ Kc then

±x−ψX(±1)≤ c

which implies that
|x| ≤ c+ |ψX(1)|+ |ψX(−1)|

for every x ∈ Kc. Hence Kc is bounded.
3) Since − lnx is convex on (0,∞), by Jensen’s inequality

logE(eλX) = log
�

eλx
µ(dx)

≥ λ

�
xµ(dx) = λa

which implies that
λa−ψX(λ )≤ 0 for all λ

Therefore we must have IX(a) = 0 so a is the global minimum of IX . The other claims then follows
immediately as Iµ is convex.

Lemma 3.5. 1) We have
xλ −ψX(λ )≤ (x−a)λ (3.8)

for any x and λ . Here we recall that ψX(λ ) = lnE(eλX).
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2) We have
IX(x) = sup

λ≥0
{λx−ψX(λ )} for x ≥ a (3.9)

and
IX(x) = sup

λ≤0
{λx−ψX(λ )} for x ≤ a . (3.10)

Proof. By the proof of 3) in the previous lemma, (3.8) follows from Jensen’s inequality. In partic-
ular, λx−ψX(λ )≤ 0 for any x and λ such that (x−a)λ ≤ 0. Therefore

IX(x) = sup
λ :(x−a)λ≥0

{λx−ψX(λ )}

for any x, which implies (3.9, 3.10) immediately.

Lemma 3.6. Let µ be the distribution of X = X1 and a = EX. Then

µ ([x,∞))≤ exp(−IX(x)) = exp
(
− inf

[x,∞)
IX

)
for x ≥ a

and

µ ((−∞,x])≤ exp(−IX(x)) = exp
(
− inf

(−∞,x]
IX

)
for x ≤ a .

Proof. Indeed we have already proven the first inequality: if λ ≥ 0 and x ≥ a

µ ([x,∞)) =

�
z≥x

µ(dz)≤
�

z≥x

eλ z

eλx
µ(dz)≤

�
R

eλ z

eλx
µ(dz) = e−(λx−ψX (λ ))

which yields that

µ ([x,∞))≤ exp

{
− sup

λ≥0
(λx−ψX(λ ))

}
= exp{−IX(x)} .

Similarly we may prove the case where x ≤ a.

After having established the elementary facts we are now in a position to prove the LDP bounds.

Proof of upper bound (3.6). If F = /0 or a ∈ F then inf Iµ = 0 so that infF Iµ = 0 the bound
is trivial in this case. Therefore we assume that a /∈ F . If F ⊂ [a,∞), then F ⊂ [y,∞) where
y = inf{z : z ∈ F}. Hence

inf
F

IX = IX(y) = sup
λ≥0

{λy−ψX(λ )} . (3.11)

For every λ > 0

P

[
1
n

n

∑
i=1

Xi ∈ F

]
≤ P

[
1
n

n

∑
i=1

Xi ≥ y

]
≤
�
{ 1

n ∑
n
i=1 Xi≥y}

e
1
n λ ∑

n
i=1 Xi

eλy
dP

≤
�

Ω

e
1
n ∑

n
i=1 λXi

eλy
dP=

�
Ω

∏
n
i=1 e

λ

n Xi

eλy
dP

= e−λy
n

∏
i=1

�
Ω

e
λ

n XidP= e−λy
(
E
(

e
λ

n X
))n

.
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Taking log both sides to obtain that

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ F

]
≤−

{
λ

n
y− lnMµ

(
λ

n

)}
for every λ ≥ 0. It thus follows that

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ F

]
≤− sup

λ≥0
{λy−ψX (λ )}=−IX(y)

=− inf
F

IX =−IX(minF).

We thus have proven the upper bound for the case that F ⊂ [a,∞).
Similarly we may show that

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ F

]
≤− inf

F
IX =−Iµ (maxF) if F ⊂ (−∞,a] .

Finally for an arbitrary closed set F in R, let F1 = F ∩ (−∞,a] and F2 = F ∩ [a,∞). Then

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ F

]
≤ 1

n
ln

(
P

[
1
n

n

∑
i=1

Xi ∈ F1

]
+P

[
1
n

n

∑
i=1

Xi ∈ F2

])

so that

limsup
n→∞

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ F

]
≤ max

k=1,2

{
limsup

n→∞

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ Fk

]}
≤ max{−IX (maxF1) ; − IX (minF2)}
= −min{IX (maxF1) ; IX (minF2)}
≤ − inf

F
IX

which is the upper bound for large deviations.

Proof of lower bound (3.7) Let G be an open subset of R. We are going to show that for every
x ∈ G,

liminf
n→∞

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ G

]
≥−IX(x) .

Obviously we only need to prove the previous inequality for those x ∈ G such that IX(x)< ∞.
We consider two cases.
Firstly let us consider the case that the supremum IX(x) of supλ (λx−ψX(λ )) is not achievable.

Then x ̸= a (as IX(a) = 0 which is achieved when λ = 0). Without loss of generality, let us assume
that x > a. Then we may choose a sequence of λn > 0 such that λn → ∞ and λnx−ψX(λn)→ IX(x)
as n → ∞.
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By Lebesgue’s dominated convergence theorem

lim
n→∞

�
(−∞,x)

eλn(z−x)
µ(dz) = 0

and therefore

lim
n→∞

�
[x,∞)

eλn(z−x)
µ(dz) = lim

n→∞

�
R

eλn(z−x)
µ(dz)

= lim
n→∞

e−{λnx−log
�
R exp(λnz)µ(dz)}

= exp(−IX(x))< ∞. (3.12)

On the other hand, for any δ > 0 we have
�
[x+δ ,∞)

eλn(z−x)
µ(dz)≥ eδλn µ([x+δ ,∞))

so that

µ([x+δ ,∞)) ≤ e−δλn

�
[x+δ ,∞)

eλn(z−x)
µ(dz)

≤ e−δλn

�
R

eλn(z−x)
µ(dz)

≤ e−δλne−{λnx−log
�
R eλnzµ(dz)} .

Letting n → ∞ we conclude that

µ([x+δ ,∞))≤ e− limn→∞{λnx−log
�
R eλnzµ(dz)} lim

n→∞
e−δλn = 0

for every δ > 0. Therefore µ((x,∞)) = 0. Hence by (3.12)

lim
n→∞

�
[x,∞)

eλn(z−x)
µ(dz) = µ({x}) = exp(−IX(x)) .

Now

P

[
1
n

n

∑
i=1

Xi ∈ G

]
≥ P

[
1
n

n

∑
i=1

Xi = x

]
≥ P [Xi = x for all i = 1, . . . ,n]

= (P [X1 = x])n

and therefore

liminf
n→∞

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ G

]
≥ lnP [X1 = x] = ln µ({x}) =−IX(x) .

Similarly one may handle the case that x < a.
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Next we consider the case that x ∈ G and there is λ0 such that IX(x) = λ0x−ψX(λ0). Then
(x−a)λ0 ≥ 0 (see (3.8)), and λ0 is a critical point of the function λ 7→ λx−ψX(λ ), so its partial
derivative w.r.t. λ at λ0 vanishes. Hence

x =

�
R zeλ0zµ(dz)�
R eλ0zµ(dz)

. (3.13)

Without losing generality, assume that x≥ a so that λ0 ≥ 0. Choose δ > 0 such that (x−δ ,x+δ )⊂
G. Then

P

[
1
n

n

∑
i=1

Xi ∈ G

]
≥ P

[∣∣∣∣∣1n n

∑
i=1

Xi − x

∣∣∣∣∣< δ

]

≥ E

{
eλ0 ∑

n
i=1 Xi

enλ0(x+δ )
:

∣∣∣∣∣1n n

∑
i=1

Xi − x

∣∣∣∣∣< δ

}

= e−nλ0(x+δ )E

{
eλ0 ∑

n
i=1 Xi;

∣∣∣∣∣1n n

∑
i=1

Xi − x

∣∣∣∣∣< δ

}
= e−nλ0(x+δ )

�
Rn

eλ0 ∑
n
i=1 zi1{| 1

n ∑
n
i=1 zi−x|<δ}µ(dz1) · · ·µ(dzn)

Define a new probability measure v on R by

ν(dz) =
eλ0z�

R eλ0zµ(dz)
µ(dz)

which is a probability measure on (R,B(R)). Then the previous inequality may be written as

P

[
1
n

n

∑
i=1

Xi ∈ G

]
≥ e−nλ0(x+δ )

(�
R

eλ0z
µ(dz)

)n�
Rn

1{| 1
n ∑

n
i=1 zi−x|<δ}v(dz1) · · ·v(dzn)

= e−nλ (x+δ )

(�
R

eλ0z
µ(dz)

)n

P

{∣∣∣∣∣1n n

∑
i=1

Yi − x

∣∣∣∣∣< δ

}

where Yi are i.i.d distribution ν , so that its mean (see equation (3.13))

E [Yi] =

�
R

ziv(dzi) =

�
R

zieλ0zi�
R eλ0zµ(dz)

µ(dzi)

=
1�

R eλ0zµ(dz)

�
R

zieλ0zi µ(dzi)

= x.

By the strong law of large numbers

P

{∣∣∣∣∣1n n

∑
i=1

Yi − x

∣∣∣∣∣< δ

}
→ 1 as n → ∞
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and therefore the previous estimate yields that

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ G

]
≥ −λ0(x+δ )+ψX(λ0)

+
1
n

logP

{∣∣∣∣∣1n n

∑
i=1

Yi − x

∣∣∣∣∣< δ

}
→ −λ0(x+δ )+ψX(λ0) as n → ∞ .

Therefore

liminf
n→∞

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ G

]
≥ −(λ0x−ψX(λ0))−δλ0

= −IX(x)−δλ0 ∀δ > 0.

By letting δ ↓ 0 we obtain

liminf
n→∞

1
n

lnP

[
1
n

n

∑
i=1

Xi ∈ G

]
≥−IX(x) for every x ∈ G.

Thus we have completed the proof of Cramér’s theorem.
The proof is complete.

4 Gaussian distributions
Unfortunately it is a rather challenging problem for describing the distributions of general high-
dimensional datasets. Here we give a detailed study of a class of random datasets with high-
dimensional Gaussian distributions. The approach we have adapted is a primary version called
stochastic quantization.

4.1 High-dimensional normal distributions
Let X = (X1, · · · ,XD) be a (random) data set of D dimensions. Suppose X has a normal distribution,
hence its distribution can be determined by its mean vector µ = (µi) and its co-variance matrix
Σ = (σi j), where µi = E [Xi] and σi j = E

[
(Xi −µi)(X j −µ j)

]
(for i, j = 1, · · · ,D). More precisely,

the law of X is a probability measure on RD with a probability density function (pdf) GΣ (x− µ)
with respect to the Lebesgue measure on RD, where

GΣ (x) =
1

(2π)D/2
√

detΣ
exp
(
−1

2
x ·Σ−1x

)
for x ∈ RD,

which is a central Gaussian density with co-variance matrix Σ . Here Σ−1 denotes the inverse of
Σ . We will write Σ−1 = (σ i j), so that ∑l σ ilσl j = δi j for any i, j ≤ D. Σ = (σi j) defines a scalar
product on RD: ⟨x,y⟩

Σ−1 = x ·Σ−1y for x,y ∈ RD and its a Hilbert norm ∥x∥
Σ−1 =

√
x ·Σ−1x. The

Gaussian density

GΣ (x) =
1

(2π)D/2
√

detΣ
exp
(
−1

2
∥x∥2

Σ−1

)
for x ∈ RD. (4.1)
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By means of change of variables we may see that
�
RD GΣ (x)dx = 1.

Lemma 4.1. The norm distance

∥x− y∥
Σ−1 = sup

{
f (x)− f (y) : f ∈C1 such that ∇ f ·Σ∇ f ≤ 1

}
.

Note that, since Σ is a constant matrix, therefore the right-hand side is translation invariant.

The proof is left as an exercise.

Remark 4.2. A centered Gaussian random variable X = (X1, · · · ,XD) is symmetric, that is, X and
−X have the same distribution.

The distribution of a centered Gaussian random is parameterized by the co-variance matrix Σ ,
which is positive definite and symmetry, so that |σi j| ≤ σiσ j where σ2

i = σii is the variance of Xi,
where i, j = 1, · · · ,D. Since GΣ is positive, it is a good idea to look at its logarithm

lnGΣ (x) =−D
2

ln(2π)− 1
2

lndetΣ − 1
2

x ·Σ−1x.

To calculate its derivatives with respect to variables σi j (for i < j) and σii = σ2
i (for i = 1, · · · ,D),

we shall calculate its differential with respect to Σ .

Lemma 4.3. Let Σ(ε) (for ε > 0 but small enough so that Σ(ε) remains positive definite) be a
variation such that Σ(0) = Σ and d

dε

∣∣
ε=0 Σ(ε) = A, where A is a symmetric matrix. Then

d
dε

∣∣∣∣
ε=0

lnGΣ(ε)(x) =−1
2

tr(Σ−1A)+
1
2

x ·Σ−1AΣ
−1x for x ∈ RD.

Proof. Clearly we have

d
dε

∣∣∣∣
ε=0

lnGΣ(ε)(x) =−1
2

d
dε

∣∣∣∣
ε=0

lndetΣ(ε)− 1
2

x · d
dε

∣∣∣∣
ε=0

Σ(ε)−1x. (4.2)

Now observe that

d
dε

∣∣∣∣
ε=0

lndetΣ(ε) =
D

∑
i=1

d
dε

∣∣
ε=0 λi(ε)

λi
= tr

(
Σ
−1 d

dε

∣∣∣∣
ε=0

Σ(ε)

)
= tr

(
Σ
−1A

)
,

(which is called Jacobi’s formula), and

0 =
d

dε

∣∣∣∣
ε=0

(
ΣΣ

−1)= Σ
d

dε

∣∣∣∣
ε=0

Σ
−1 +AΣ

−1

which yields that
d

dε

∣∣∣∣
ε=0

Σ
−1 =−Σ

−1AΣ
−1.

Using these equations in (4.2) we prove the lemma.
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Corollary 4.4. Let Σ = (σi j) be symmetric and positive. Then

∂

∂σii
GΣ =

1
2

∂ 2

∂x2
i

GΣ for i = 1, . . . ,D (4.3)

and
∂

∂σi j
GΣ =

∂ 2

∂x j∂xi
GΣ for i ̸= j. (4.4)

Proof. Set A = (akl) where aii = 1 otherwise akl = 0 (i.e. akl = δkiδli) in Lemma 4.3. Then

tr(Σ−1A) = σ
klalk = σ

kl
δliδki = σ

ii

and

x ·Σ−1AΣ
−1x = xkσ

kbabcσ
clxl = xkσ

ki
σ

ilxl =

(
D

∑
k=1

σ
kixk

)2

hence
∂

∂σii
lnGΣ (x) =

1
2

(
D

∑
k=1

σ
kixk

)2

− 1
2

σ
ii.

Similarly, if i ̸= j, we set in Lemma 4.3, A = (akl) where ai j = a ji = 1 (for i ̸= j) and otherwise
akl = 0. That is, akl = δkiδl j +δliδk j , we deduce that

∂

∂σi j
lnGΣ (x) =

D

∑
k=1

σ
kixk

D

∑
k=1

σ
l jxl −σ

i j.

On the other hand, we may differentiate GΣ in the space variables x = (x1, · · · ,xD) to obtain

∂

∂xi
GΣ (x) =−GΣ (x)

D

∑
l=1

σ
ilxl

and
∂ 2

∂x j∂xi
GΣ (x) = GΣ (x)

(
D

∑
k=1

σ
jkxk

D

∑
l=1

σ
ilxl −σ

i j

)
.

Comparing the previous equations our corollary follows immediately.

Remark 4.5. Jacob’s formula holds for any matrix valued function:

d
dε

detΓ (ε) = tr
(

adj(Γ (ε))
d

dε
Γ (ε)

)
where adj(Γ (ε)) denotes the adjugate matrix of Γ (ε). If Γ (ε)−1 exists, then

Γ (ε)−1 =
1

detΓ (ε)
adj(Γ (ε))

that we have learned from linear algebra, so that for this case

d
dε

detΓ (ε) = detΓ (ε)tr
(

Γ (ε)−1 d
dε

Γ (ε)

)
which is Jacobi’s formula for differentiation of determinants.
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Theorem 4.6. (Joag-Dev, Pelman and Pitt 1983) Let f : RD 7→ R be a C2-function whose deriva-
tives are at most polynomial growth. Let

h(σi j) =

�
RD

f (x)GΣ (x)dx

where Σ = (σi j) is symmetric and positive definite (so h is considered as a function of σi j for i≤ j).
Suppose that k < l is a pair, such that ∂ 2

∂xk∂xl
f ≥ 0 on RD. Then h is increasing in the variable σkl .

Proof. By an inspection, we are justified for differentiating σkl under the integration, to obtain that

∂

∂σkl
h =

�
RD

f (x)
∂

∂σkl
GΣ (x)dx =

�
RD

f (x)
∂ 2

∂xk∂xl
GΣ (x)dx,

where the second equality follows from (4.4). Integration by parts twice, we then deduce that

∂

∂σkl
h =

�
RD

GΣ (x)
∂ 2

∂xk∂xl
f (x)dx ≥ 0

and the conclusion follows immediately.

Theorem 4.7. (Slepian’s Inequality) If X = (X1, · · · ,XD) and Y = (Y1, · · · ,YD) are two centered
Gaussian vectors. Suppose that EX2

i = EY 2
i and E|Xi −X j|2 ≤ E|Yi −Yj|2 for any i, j = 1, . . . ,D.

Then

P
[

sup
i

Xi ≥ t
]
≤ P

[
sup

i
Yi ≥ t

]
for all t, and

E
[

sup
i

Xi

]
≤ E

[
sup

i
Yi

]
.

Proof. The assumptions imply that the variances E
[
XiX j

]
≥ E

[
YiYj

]
for any i, j. Let t > 0. Since

1(−∞,t] is non-negative, and decreasing, we may choose a sequence of functions hn which are C1,
decreasing, non-negative, such that hn and their derivatives are uniformly bounded, and h(n) →
1(−∞,t] as n → ∞. Let fn(x1, · · · ,xD) = hn(x1) · · ·hn(xD). Then

∂ 2 fn

∂xi∂x j
(x) = h′n(xi)h′n(x j) ∏

k ̸=i, j
hn(xk)≥ 0

for any i ̸= j. Since EX2
i = EY 2

i for every i, by Theorem 4.6, we have

E [ fn(X1, · · · ,XD)]≥ E [ fn(Y1, · · · ,YD)] .

Letting n → ∞, we obtain that

P
[

sup
i

Xi ≤ t
]
≥ P

[
sup

i
Xi ≤ t

]
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which is equivalent to the first inequality. To show the second inequality, we observe that

E
[

sup
i

Xi

]
= E

[(
sup

i
Xi

)+
]
−E

[(
sup

i
Xi

)−
]

=

�
∞

0
P

[(
sup

i
Xi

)+

> t

]
dt −

�
∞

0
P

[(
sup

i
Xi

)−
> t

]
dt

=

�
∞

0
P
[

sup
i

Xi > t
]

dt −
�

∞

0
P
[
−sup

i
Xi > t

]
dt

=

�
∞

0
P
[

sup
i

Xi > t
]

dt −
�

∞

0
P
[

sup
i

Xi <−t
]

dt

=

�
∞

0
P
[

sup
i

Xi > t
]

dt −
� 0

−∞

P
[

sup
i

Xi < t
]

dt

≤
�

∞

0
P
[

sup
i

Yi > t
]

dt −
� 0

−∞

P
[

sup
i

Yi < t
]

dt

= E
[

sup
i

Yi

]
which completes the proof.

4.1.1 Sudakov-Fernique’s inequality

Let X = (X1, · · · ,XD) and Y = (Y1, · · · ,YD) be two independent D-dimensional centered Gaussian
random vectors, whose co-variance matrices are Σ = (σi j) and Σ̃ = (σ̃i j) respectively. Let X(t) =
X sin t +Y cos t where t ∈ (−∞,∞) is a real parameter, and let Σ(t) denote the co-variance matrix
for every t.

Lemma 4.8. The following facts hold true.
1) For every t, X(t) and d

dt X(t) are centered Gaussian with the co-variance matrices Σ(t) =
(σi j(t)) and Σ(t + π

2 ) respectively, where

σi j(t) = σi j sin2 t + σ̃i j cos2 t

for every t and i, j = 1, . . . ,D.
2) The co-variance between X(t) and d

dt X(t) are given by

E
(

Xi(t)
d
dt

X j(t)
)
=

1
2

sin(2t)
(
σi j − σ̃i j

)
for every t, and i, j = 1, . . . ,D.

The proof follows from direct computation.

Lemma 4.9. Consider the probability density GΣ(t)(x). Then

∂

∂ t
GΣ(t) = sin(2t)∆Σ GΣ(t)(x)− sin(2t)∆

Σ̃
GΣ(t)(x)

for all t.
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Proof. By chain rule we have

∂

∂ t
GΣ(t) = ∑

i< j

∂

∂σi j
GΣ(t)

d
dt

σi j(t)+∑
i

∂

∂σii
GΣ(t)

d
dt

σii(t)

= ∑
i< j

∂ 2

∂xi∂x j
GΣ(t)

d
dt

σi j(t)+
1
2 ∑

i

∂ 2

∂xi∂xi
GΣ(t)

d
dt

σii(t)

=
1
2

D

∑
i, j=1

∂ 2

∂xi∂x j
GΣ(t)

d
dt

σi j(t)

=
1
2

sin(2t)
D

∑
i, j=1

(
σi j − σ̃i j

) ∂ 2

∂xi∂x j
GΣ(t)

=
1
2

sin(2t)(∆Σ −∆
Σ̃
)GΣ(t)

=
1
2

sin(2t)
(
∆Σ GΣ(t)−∆

Σ̃
GΣ(t)

)
which completes the proof.

Let h be a C1 function on RD with bounded derivatives, and let us consider the function

φ(t) =
�
RD

h(x)GΣ(t)(x)dx for t ∈ R.

Then

d
dt

φ(t) =
�
RD

h(x)
∂

∂ t
GΣ(t)(x)dx

=
1
2

sin(2t)
(�

RD
h(x)∆Σ GΣ(t)(x)dx−

�
RD

h(x)∆
Σ̃

GΣ(t)(x)dx
)

=
1
2

sin(2t)
(
−
�
RD

∇h(x) ·Σ∇GΣ(t)(x)dx+
�
RD

∇h(x) · Σ̃∇GΣ(t)(x)dx
)

where the second equality follows from integration by parts. On the other hand

∇GΣ(t)(x) =−GΣ(t)(x)Σ(t)−1x

so by substituting this into the previous equation for the differentiation of φ , we deduce that

d
dt

φ(t) = sin(2t)
�
RD

∇h(x) ·
(
(Σ − Σ̃)Σ(t)−1x

)
GΣ(t)(x)dx

Since
Σ(t) = sin2 tΣ + cos2 tΣ̃ = sin2 t(Σ − Σ̃)+ Σ̃

so that

(Σ − Σ̃)Σ(t)−1 =
1

sin2 t

(
I − Σ̃Σ(t)−1)
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Lemma 4.10. Let hD(x1, · · · ,xD) = max{x1, · · · ,xD}. Then

hD(x1, · · · ,xD) = max{xi,hD−1(x1, · · · , x̂i, · · · ,xD)}

=
1
2
(xi +hD−1(x1, · · · , x̂i, · · · ,xD)+ |xi −hD−1(x1, · · · , x̂i, · · · ,xD)|)

and therefore
∂

∂xi
hD =

1
2
+

1
2

xi −hD−1(x1, · · · , x̂i, · · · ,xD)

|xi −hD−1(x1, · · · , x̂i, · · · ,xD)|

4.2 Heat kernel
The heat kernel on RD equipped with the metric Σ is defined by

pΣ (t,x,y) =
1

(4πt)D/2
√

detΣ
exp
(
− 1

4t
(y− x) ·Σ−1(y− x)

)
(4.5)

for t > 0, x,y ∈ RD. By definition, GΣ (x) = pΣ (
1
2 ,0,x) and pΣ (t,x,y) = G2tΣ (y− x).

For every pair t > 0 and x ∈ RD, PΣ (t,x,dy) = pΣ (t,x,y)dy is a probability measure on RD

(with the Borel σ -algebra B(RD)), that is,

A 7→ PΣ (t,x,A) =
�

A
pΣ (t,x,y)dy

for A ∈ B(RD) defines clearly a probability on (RD,B(RD)). The mapping PΣ : (t,x,A) 7→
PΣ (t,x,A), for t > 0, x ∈ RD and A ∈ B(RD) is a transition probability kernel from (RD,B(RD))
to (0,∞)×RD with its Borel σ -algebra in the following sense:

1) for every pair t > 0 and x ∈ RD, PΣ (t,x, ·) is a probability measure on B(RD),

2) For every A ∈ B(RD), the function (t,x) 7→ PΣ (t,x,A) is Borel measurable on (0,∞)×RD.

Indeed, the function (t,x) 7→ PΣ (t,x,A) smooth in t > 0 and x ∈ RD for this example.

Proposition 4.11. For every x ∈ RD, the probability measures PΣ (t,x,dy) converge weakly, as
t ↓ 0, to Dirac measure δx(dy). That is

lim
t↓0

�
RD

pΣ (t,x,y) f (y)dy = f (x) for any x ∈ RD

for every bounded and continuous function f .

Proof. Since Σ is positive definite and symmetry, so that there is a square root Σ
1
2 of Σ , a sym-

metric positive definite matrix such that Σ
1
2 Σ

1
2 = Σ . Making change of variable: y =

√
2tΣ

1
2 z+ x,

whose Jacobi is detΣ
1
2 = (2t)

D
2
√

detΣ . Therefore
�
RD

pΣ (t,x,y) f (y)dy =
�
RD

1
(2π)D/2 exp

(
−1

2
|z|2
)

f
(√

2tΣ
1
2 z+ x

)
dz

→
�
RD

1
(2π)D/2 exp

(
−1

2
|z|2
)

f (x)dz = f (x)

as t ↓ 0, where the limit taking under integration is justified by Lebesgue’s dominated convergence
theorem [cf. A4: Integration].
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In view of this lemma, we may define for each t > 0 an operator Pt which maps a function f
to another function Pt f , by the following formula:

Pt f (x) =
�
RD

f (y)pΣ (t,x,y)dy =
�
RD

f (y)PΣ (t,x,dy) for x ∈ RD

as long as the right-hand side is well defined. For example, for any f which is non-negative
and is measurable, for f in Lp(RD) for any p ≥ 1, for f which is bounded and measurable, i.e.
f ∈ L∞(RD).

Remark 4.12. If f is measurable and non-negative, then Pt f is also non-negative. Therefore the
operator Pt preserves the positivity.

Remark 4.13. If f is bounded and measurable, then, according to the theorem of taking derivatives
under integration (cf. A4 Integration), the function u(t,x)≡Pt f (x) is smooth in both variables t > 0
and x ∈ RD.

Remark 4.14. Suppose X is a random variable in RD with a normal distribution N(m,Σ), then
with the definitions above, E [ f (X)] = P2 f (m).

By a slightly complicated but completely elementary computation, we prove the following
lemma.

Proposition 4.15. The heat kernel {pΣ (t,x,y) : t > 0} possesses the following properties.
1) pΣ (t,x,y) is positive, smooth for t > 0, x,y in RD, and pΣ (t,x,y) = pΣ (t,x,y) for any t > 0

and x,y.
2) The following equality holds:

pΣ (s,x,z)pΣ (t,z,y) = pΣ (s+ t,x,y)pΣ

(
2st

t + s
,

t
t + s

x+
s

t + s
y,z
)

(4.6)

for any s > 0, t > 0 and x,y,z ∈ RD.
3) Chapman-Kolmogorov’s equality holds:

�
RD

pΣ (s,x,z)pΣ (t,z,y)dz = pΣ (s+ t,x,y) (4.7)

for any s > 0, t > 0 and x,y ∈ RD.

Proof. 1) is obvious by the expression (4.5). Clearly (4.7) follows by integrating (4.6) and the fact
�
RD

pΣ

(
2st

t + s
,a,z

)
dz = 1

for every a ∈RD. To show 2) we use the polar identity for the scalar product ⟨x,y⟩
Σ−1 which yields

that

∥∥∥∥z− x√
2s

∥∥∥∥2

Σ−1
+

∥∥∥∥y− z√
2t

∥∥∥∥2

Σ−1
=

∥∥∥∥∥∥ z−a√
2st
t+s

∥∥∥∥∥∥
2

Σ−1

+

∥∥∥∥ y− x√
2t +2s

∥∥∥∥2

Σ−1

where a = t
t+sx+ s

t+sy, and the equality (4.6) follows immediately.

26



Proposition 4.16. The family of operators Pt for t > 0 together with P0 = I the identity operator
forms a semi-group of linear operators, denoted by (Pt)t≥0, in the following sense.

1) For each t ≥ 0, Pt is linear: Pt( f +g) = Pt f +Ptg and Pt(c f ) = cPt f for any constant c, for
any measurable function f , g which are bounded, or non-negative.

2) For any s, t ≥ 0, it holds that Pt+s f =Pt(Ps f ) for any measurable function f which is bounded
or non-negative.

3) For each t > 0, Pt is self-adjoint, and Pt is a contraction in Lp(Rd) for every p ≥ 1.

The first item follows from the definition of Pt and the second item shows that Pt+s = Pt ◦Ps
(often shall write PtPs for simplicity), called the semi-group property. The family (Pt)t≥0 is the heat
semi-group on RD with the metric Σ . 3) follows from the symmetry that pΣ (t,x,y) = pΣ (t,y,x).
Indeed �

f Ptg =

� �
f (x)g(y)pΣ (t,x,y)dy

=

� �
f (x)g(y)pΣ (t,y,x)dy

=

�
gPt f

for any f ,g ∈ L2(RD).

Proposition 4.17. The Lebesgue measure is the invariant measure of (Pt)t>0, that is,
�
RD

Pt f (x)dx =
�
RD

f (x)dx for all t > 0

for any f ∈ L1(RD).

Remark 4.18. Let us recall, for a given p ≥ 1, that Lp(RD) denotes the normed space of all p-th
integrable functions (identified up to almost surely) with respect to the Lebesgue measure on RD

whose norm ∥·∥p defined by ∥ f∥p =
(�

RD | f (x)|pdx
) 1

p . Lp(RD) is complete and separable, so that
Lp(RD) is a Banach space. Similarly L∞(RD) is a separable Banach space to. As a matter of
fact, for every p ≥ 1, Pt can be extended to be a linear operator from Lp(RD) to Lp(RD) such that
Pt+s = Pt ◦Ps for any s, t > 0. Every Pt is a contraction on Lp(RD), i.e. ∥Pt f∥p ≤ ∥ f∥p for every
f ∈ Lp(RD). Moreover Pt f 7→ f in Lp(RD) as t ↓ 0.

4.3 Geometric properties of normal distributions
In this part we study the geometric aspects of the heat kernel pΣ (t,x,y). Firstly we observe that

ln pΣ (t,x,y) =−D
2

ln(4πt)− 1
2

lndetΣ − 1
4t
(y− x) ·Σ−1(y− x)

which allows us to work out the derivatives of pΣ with respect to all variables t > 0, x (equivalently
y too) and Σ = (σi j). In fact

∂

∂ t
ln pΣ (t,x,y) =−D

2t
+

1
4t2 (y− x) ·Σ−1(y− x), (4.8)
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∂

∂xi
ln pΣ (t,x,y) =

1
2t

D

∑
l=1

σ
il(yl − xl). (4.9)

We therefore have proved the following important fact.

Theorem 4.19. Let Σ = (σi j) be a positive definite and symmetric D × D matrix, and ∆Σ =

∑
D
i, j=1 σi j

∂ 2

∂x j∂xi
a differential operator of second order in RD. Then pΣ (t,x,y) is the fundamen-

tal solution to the heat operator ∂

∂ t −∆Σ in the following sense:(
∂

∂ t
−∆Σ

)
pΣ (t,x,y) = 0 for t > 0,x,y ∈ RD

(where ∆Σ either acts on the variable x or y with the other variables being fixed), and pΣ (t,x,y)dy→
δx weakly as t ↓ 0 for each x.

Proof. First we have the time derivative of pΣ is given by

∂

∂ t
pΣ (t,x,y) =

(
−D

2t
+

1
4t2 (y− x) ·Σ−1(y− x)

)
pΣ (t,x,y).

While the space derivative of pΣ (t,x,y) can be calculated as the following:

∂ 2

∂xi∂x j
ln pΣ (t,x,y) =− 1

2t
σ

i j

which reflects the fact that ln pΣ (t,x,y) is a quadratic polynomial of x,y. Therefore

∂ 2

∂xi∂x j
pΣ (t,x,y) =

∂

∂x j

(
pΣ (t,x,y)

∂

∂xi
ln pΣ (t,x,y)

)
=

∂

∂x j
pΣ (t,x,y)

∂

∂xi
ln pΣ (t,x,y)+ pΣ (t,x,y)

∂ 2

∂x j∂xi
ln pΣ (t,x,y)

=

(
∂

∂x j
ln pΣ (t,x,y)

∂

∂xi
ln pΣ (t,x,y)+

∂ 2

∂x j∂xi
ln pΣ (t,x,y)

)
pΣ (t,x,y)

=

(
1

4t2

D

∑
k,l=1

σ
ik

σ
jl(yl − xl)(yk − xk)−

1
2t

σ
i j

)
pΣ (t,x,y),

and therefore

∆Σ pΣ (t,x,y) =

(
1

4t2

D

∑
k,l=1

D

∑
i, j=1

σi jσ
ik

σ
jl(yl − xl)(yk − xk)−

1
2t

D

∑
i, j=1

σi jσ
i j

)
pΣ (t,x,y)

=

(
1

4t2 (y− x) ·Σ−1(y− x)− D
2t

)
pΣ (t,x,y)

=
∂

∂ t
pΣ (t,x,y).

This completes the proof.
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Corollary 4.20. Suppose that f is a bounded measurable function on RD. Let u(t,x) = Pt f (x) (for
t > 0 and x ∈ RD). Then u is smooth on (0,∞)×RD, and u solves the heat equation(

∂

∂ t
−∆Σ

)
u(t,x) = 0 in (0,∞)×RD. (4.10)

If in addition f is continuous, then u(t,x)→ f (x) as t ↓ 0 for every x ∈ RD.

Proof. Since u(t,x) =
�
RD f (y)pΣ (t,x,y)dy, all conclusions follow by using the theorem of differ-

entiation under intergrals.

The heat equation (4.10) may be written as ∂

∂ t Pt f = ∆Σ (Pt f ) for every bounded (or non-
negative) measurable function f , so by abusing notation, the last equation may be written as
∂

∂ t Pt = ∆Σ Pt for every t > 0. In this sense, we say ∆Σ is the infinitesimal generator of the heat
semi-group (Pt)t≥0, and formally write as Pt = e∆Σ t for t > 0.

Remark 4.21. The heat semigroup Pt (hence its heat kernel pΣ (t,x,y)) is uniquely determined by
the second-order differential operator ∆Σ , and equivalently determined by the quadratic form:�

RD
−ψ(x)∆Σ ϕ(x)dx =

�
RD

−ψ(x)σi j
∂ 2

∂x j∂xi
ϕ(x)dx

=

�
RD

σi j
∂ϕ

∂xi

∂ψ

∂x j
dx

for any ϕ,ψ belonging to W 2,1(RD).

Proposition 4.22. It holds that

∥∇ ln pΣ (t,x,y)∥2
Σ
− ∂

∂ t
ln pΣ (t,x,y) =

D
2t

(4.11)

for every t > 0, x,y ∈ RD, where ∥a∥2 = a ·Σa [Note that it is not ∥a∥2
Σ−1 ].

Proof. The verification is completely elementary. In fact

∂

∂ t
ln pΣ (t,x,y) =−D

2t
+

1
4t2 (y− x) ·Σ−1(y− x), (4.12)

and

∑
i, j

σi j
∂

∂xi
ln pΣ (t,x,y)

∂

∂x j
ln pΣ (t,x,y) =

1
4t2 (y− x) ·Σ−1(y− x) (4.13)

which completes the proof.

Exercise. [Hard] Suppose u(x, t) = Ptϕ where ϕ is a positive continuous function. Let f (x, t) =
lnu(x, t), X = ∇ ln f ·Σ∇ ln f and Y = ∂

∂ t ln f .

(1) Work out
(

∂

∂ t −∆Σ

)
X and

(
∂

∂ t −∆Σ

)
Y .

(2) Show that

X(x, t)−Y (x, t)≤ D
2t

for all x and t > 0.
[Hint: you may look at the paper by D. Bakry and Z. Qian: Harnack inequalities on a manifold

with positive or negative Ricci curvature, in Revista Matemática Iberoamericana (1999) Volume:
15, Issue: 1, page 143-179.]
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5 The Ornstein-Uhlenbeck semi-group
In the previous section we have studied a few properties of Gaussian measures on RD. In particular
we demonstrate that the Lebesgue measure is the invariant measure of heat semi–group Pt = et∆Σ

(for t ≥ 0) defined via the heat kernel pΣ (t,x,y). In this section we introduce a dynamical system
whose invariant measure is the Gaussian measure GΣ (x)dx. More precisely, we construct a semi-
group Qt (for t > 0) in analogs with the heat semigroup, such that GΣ (x)dx is the invariant measure
of (Qt)t>0.

For simplicity we use γ(dx) denote the Gaussian measure GΣ (x)dx on the Borel σ -algebra
B(RD), if no confusion may arise. Let Lp(γ) (for every p ∈ [1,∞]) denote the Lp-space over the
measure space (RD,B(RD),γ).

5.1 The Mehler formula
The simplest way to construct the Orenstein-Uhlenbeck semigroup Qt is to apply the Mehler for-
mula. For every t > 0 define linear operator Qt : f 7→ Qt f by setting

Qt f (x) =
�
RD

f
(

e−tx+
√

1− e−2ty
)

GΣ (y)dy (5.1)

for every t > 0 and x ∈ RD, where f is a Borel measurable function as long as the integral on the
right-hand is defined – for example f is bounded or f is non-negative. Clearly Qt1 = 1 for every
t > 0, and Qt f ≥ 0 as long as f is non-negative.

Making a change of variable one can rewrite the above formula as the following

Qt f (x) =
�
RD

f (y)
exp
(
− 1

2(1−e−2t)
(y− e−tx) ·Σ−1(y− e−tx)

)
(2π(1− e−2t))

D
2
√

detΣ

dy

=

�
RD

f (y)qΣ (t,x,y)GΣ (dy) (5.2)

where

qΣ (t,x,y) =
1

GΣ (y)

exp
(
− 1

2(1−e−2t)
(y− e−tx) ·Σ−1(y− e−tx)

)
(2π(1− e−2t))

D
2
√

detΣ

(5.3)

is called the transition probability density function of the OU semi-group.
Recall that the heat kernel associated a positive definite and symmetric Σ is given by

pΣ (t,x,y) =
1

(4πt)D/2
√

detΣ
exp
(
− 1

4t
(y− x) ·Σ−1(y− x)

)
so that

qΣ (t,x,y) = pΣ

(
1− e−2t

2
,e−tx,y

)
1

GΣ (y)
(5.4)

for every t > 0 and x,y ∈ RD. Here the Gaussian density GΣ (y) is inserted in the definition of the
probability density kernel qΣ , since we expect that the Gaussian measure GΣ (y)dy is the invariant
measure for Qt .
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Lemma 5.1. Suppose f is continuous and is of at most polynomial growth, then

lim
t↓0

Qt f (x) = f (x) and lim
t→∞

Qt f (x) =
�
RD

f (y)GΣ (dy) (5.5)

for every x ∈ RD.

This follows immediately from the Mehler formula (5.1).

Lemma 5.2. The transition probability function of the Orenstein-Uhlenbeck semi-group is given
by

qΣ (t,x,y) =
1

(1− e−2t)
D
2

exp
(
−1

2
y ·Σ−1y+ x ·Σ−1x−2etx ·Σ−1y

e2t −1

)
(5.6)

for every t > 0 and for any x,y. In particular q is symmetric: qΣ (t,x,y) = qΣ (t,y,x).

Proof. By (5.3) the transition probability density function

qΣ (t,x,y) =
1

(1− e−2t)
D
2

exp(−I(t,x,y))

where
I(t,x,y) =

1
2(1− e−2t)

(y− e−tx) ·Σ−1(y− e−tx)− 1
2

y ·Σ−1y.

Collecting the quadratic terms of y together we have

I(t,x,y) =
1
2

e−2t

1− e−2t

(
y ·Σ−1y+ x ·Σ−1x−2etx ·Σ−1y

)
ant the conclusion follows immediately.

Lemma 5.3. We have

qΣ (s,x,y)qΣ (t,y,z) = qΣ (s+ t,x,z)qΣ (T (s, t),cs,t(x,z),y)

where T = T (s, t) and cs,t(x,z) are given by

1
e2T −1

=
1

e2s −1
+

1
e2t −1

and

cs,t(x,z) =
eT

e2(t+s)−1

(
(e2t −1)esx+(e2s −1)etz

)
for s, t > 0 and x,y,z ∈ RD.

Therefore the Chapman-Kolmogorov equality holds
�
RD

qΣ (s,x,y)qΣ (t,y,z)GΣ (y)dy = qΣ (s+ t,x,z)

for any s, t > 0 and x,z ∈ RD.
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Proof. Let a(t) =
(
1− e−2t)D

2 and

I(t,x,y) =
y ·Σ−1y+ x ·Σ−1x−2etx ·Σ−1y

e2t −1
.

Then qΣ (s,x,y) = a(s)−1 exp
(
−1

2 I(s,x,y)
)
, and

qΣ (s,x,y)qΣ (t,y,z)
qΣ (s+ t,x,z)

=
a(s+ t)
a(s)a(t)

exp
(
−1

2
(I(s,x,y)+ I(t,y,z)− I(s+ t,x,z))

)
.

Let us calculate J = I(s,x,y)+ I(t,y,z)− I(s+ t,x,z). By definition T = T (s, t)> 0 is given b

1
e2T −1

=
1

e2s −1
+

1
e2t −1

=
e2t + e2s −2

(e2s −1)(e2t −1)
.

Hence

eT =

√
1+

(e2s −1)(e2t −1)
e2t + e2s −2

=

√
e2(t+s)−1

e2t + e2s −2

and

a(s+ t)
a(s)a(t)

=

(
e2(t+s)−1

(e2s −1)(e2t −1)

)D
2

=

(
e2T

e2T −1

)D
2

=
1

a(T )
.

Moreover, one can verify that

J =
1

e2T −1
(
y ·Σ−1y−2eT c ·Σ−1y+ c ·Σ−1c

)
and therefore

qΣ (s,x,y)qΣ (t,y,z)
qΣ (s+ t,x,z)

=
1

a(T )
exp
(
−1

2
I(T,c,y)

)
which completes the proof.

In what follows we will work with a fixed symmetric, positive definite D×D matrix Σ , and we
will use γ(dx) to denote the Gaussian measure GΣ (x)dx on (RD,B(RD)). Let Lp(γ) denote the
Lp-space over the probability space (RD,B(RD),γ).

Proposition 5.4. The OU semi-group (Qt)t≥0 possesses the following properties.
1) For every t > 0, Qt is symmetric:

�
RD

f (x)Qtg(x)γ(dx) =
�
RD

g(x)Qt f (x)γ(dx)

for any f and g belonging to L2(γ). In particular, γ is an invariant measure of Qt . That is
�
RD

Qt f (x)γ(dx) =
�
RD

f (x)γ(dx)

2) (Qt)t≥0 is a semi-group: QsQt = Qt+s for any s, t ≥ 0, where Q0 = I is the identity operator.
3) For every t > 0, Qt is a contraction on Lp(γ), in the sense that ∥Qt f∥Lp(γ) ≤ ∥ f∥Lp(γ) for

every p ≥ 1 and f ∈ Lp(γ).
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Proof. 1) follows from the fact that qΣ (t,x,y) = qΣ (t,y,x):�
g(x)Qt f (x)γ(dx) =

� �
g(x) f (y)qΣ (t,y,x)γ(dy)γ(dx)

=

�
f (y)Qtg(y)γ(dy).

2) follows from Lemma 5.3

QsQt f (x) =
� �

qΣ (s,x,y)qΣ (t,y,z) f (z)γ(dz)γ(dy)

=

�
qΣ (s+ t,x,z) f (z)

(�
qΣ (T (s, t),cs,t(x,z),y)γ(dy)

)
γ(dz)

= Qt+s f (x)

which proves the semi-group property.
We only need to prove 3) for bounded and continuous function f . Then, by using Hölder’s

inequality,

∥Qt f∥p
Lp(γ)

=

� ∣∣∣∣� f (y)qΣ (t,x,y)γ(dy)
∣∣∣∣p γ(dx)

≤
� �

| f (y)|p qΣ (t,x,y)γ(dy)γ(dx)

=

� �
| f (y)|p qΣ (t,y,x)γ(dy)γ(dx)

=

�
| f (y)|p γ(dy)

where the inequality follows from the Hölder’s inequalty to f and constant function 1 with prob-
ability measure m(dy) = qΣ (t,x,y)γ(dy) for each x, and the last equality follows from Fubini’s
theorem by integrating the variable x first to give 1.

Using the fact that the space Cb(RD) of bounded and continuous functions is dense in Lp(RD)
for every p ≥ 1, the following proposition follows immediately.

Proposition 5.5. Suppose that f ∈ Lp(γ),

lim
t→∞

∥∥∥∥Qt f −
�
RD

f dγ

∥∥∥∥
Lp(γ)

= 0

and
lim
t↓0

∥Qt f − f∥Lp(γ) = 0.

Remark 5.6. Let t,s > 0. Consider two linear mappings T,S : RD ×RD → RD defined by

T (x,y) = e−tx+
√

1− e−2ty

and

S(y,z) = e−s

√
1− e−2t√

1− e−2(t+s)
y+

√
1− e−2s√

1− e−2(t+s)
z
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for x,y,z ∈ RD. Then
�
RD×RD

f ◦T (x,y)γ(dx)γ(dy) =
�
RD

f (x)γ(dx)

and similarly �
RD×RD

f ◦S(y,z)γ(dy)γ(dz) =
�
RD

f (x)γ(dx)

for any Borel measurable function f . The proof is left as an exercise.

We next establish the most remarkable property of the OU semi-group (Qt)t>0.

Proposition 5.7. 1) For every t > 0 it holds that

∂

∂xi Qt f = e−tQt

(
∂ f
∂xi

)
for any C1 function f whose partial derivatives ∂ f

∂xi are γ-integrable, where i = 1, . . . ,D.

Proof. Suppose f is differentiable with a compact support, then we may differentiate Qt f (x) under
integration to obtain

∂Qt f
∂xi (x) =

�
RD

∂

∂xi f
(

e−tx+
√

1− e−2ty
)

γ(dy)

=

�
RD

e−t ∂ f
∂xi

(
e−tx+

√
1− e−2ty

)
γ(dy)

= e−tQt

(
∂ f
∂xi

)
which completes the proof.

Theorem 5.8. (Domination inequality) The following domination inequality holds√
∇Qt f ·Σ∇Qt f ≤ e−tQt

(√
∇ f ·Σ∇ f

)
(5.7)

for every C1 function f and t ≥ 0. The domination inequality implies the following weak domina-
tion inequality

∇Qt f ·Σ∇Qt f ≤ e−2tQt (∇ f ·Σ∇ f )

for every C1 function f and t ≥ 0.

Proof. The proof relies on the Cauchy-Schwartz inequality |a ·Σb| ≤
√

a ·Σa
√

b ·Σb for any a,b∈
RD (its proof is left as an exercise). By an approximation procedure, we may prove the domination
inequality for C1-function f with bounded derivatives. For simplicity, use fi to denote the partial
derivative ∂

∂xi
f . By the Mehler formula

∂

∂xi
Qt f (x) = e−t

�
RD

fi

(
e−tx+

√
1− e−2ty

)
γ(dy)
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for i = 1, . . . ,D, and Fubini’s theorem, we have

∇Qt f ·Σ∇Qt f = e−2t
�
RD

�
RD

∇ f (e−tx+
√

1− e−2ty) ·Σ∇ f (e−tx+
√

1− e−2tz)γ(dy)γ(dz)

≤ e−2t
� �

RD

√
∇ f ·Σ∇ f |e−tx+

√
1−e−2ty

√
∇ f ·Σ∇ f |e−tx+

√
1−e−2tzγ(dy)γ(dz)

= e−2t
(�

RD

√
∇ f (e−tx+

√
1− e−2ty) ·Σ∇ f (e−tx+

√
1− e−2ty)γ(dy)

)2

= e−2t
(

Qt

(√
∇ f ·Σ∇ f

))2

which yields (5.7).

We next goal is to identify the infinitesimal generator of Qt , which is the elliptic differential
operator L = ∆Σ − x ·∇.

Proposition 5.9. The infinitesimal generator of the Ornstein-Uhlenbeck semi-group (Qt)t≥0 is
L = ∆Σ − x ·∇, in the following sense. If f is continuous with at most polynomial growth, then
u(t,x) = Qt f (x) belongs to C1,2((0,∞)×RD) and solves the following initial value problem of the
parabolic equation: (

L− ∂

∂ t

)
u(t,x) = 0, lim

t↓0
u(t,x) = f (x).

Therefore ∂

∂ t Qt = LQt for t ≥ 0. This fact may be denoted as formally Qt = etL.

Proof. According to Lemma 5.2 the transition probability density function

qΣ (t,x,y) =
1

(1− e−2t)
D
2

exp
(
−1

2
y ·Σ−1y+ x ·Σ−1x−2etx ·Σ−1y

e2t −1

)
so that

lnqΣ (t,x,y) =−D
2

ln
(
1− e−2t)− 1

2
y ·Σ−1y+ x ·Σ−1x−2etx ·Σ−1y

e2t −1
.

Thus

∂

∂ t
lnqΣ (t,x,y) =−D

e−2t

1− e−2t +
etx ·Σ−1y

e2t −1

+
e2t

(e2t −1)2

(
y ·Σ−1y+ x ·Σ−1x−2etx ·Σ−1y

)
∂

∂xi
lnqΣ (t,x,y) =−σ

ik xk − etyk

e2t −1
and

∂ 2

∂x j∂xi
qΣ (t,x,y) =

∂

∂x j

(
−σ

ik xk − etyk

e2t −1
qΣ (t,x,y)

)
= σ

ik
σ

jl xk − etyk

e2t −1
xl − etyl

e2t −1
qΣ (t,x,y)−σ

i j 1
e2t −1

qΣ (t,x,y).
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Hence

x ·∇qΣ (t,x,y) =−xiσ
ik xk − etyk

e2t −1
qΣ (t,x,y)

=−x ·Σ−1(x− ety)
e2t −1

qΣ (t,x,y)

and

∆Σ qΣ (t,x,y) =
(
(x− ety) ·Σ−1(x− ety)

(e2t −1)2 − D
e2t −1

)
qΣ (t,x,y).

Therefore (
∂

∂ t
−∆Σ

)
qΣ (t,x,y) =

x ·Σ−1 (x− ety)
e2t −1

qΣ (t,x,y)

=−x ·∇qΣ (t,x,y).

which implies that (
∂

∂ t
−∆Σ + x ·∇

)
qΣ (t,x,y) = 0.

Suppose f is continuous with at most polynomial growth, then

∂

∂ t
u(x, t) =

�
RD

f (y)
∂

∂ t
qΣ (t,x,y)γ(dy)

=

�
RD

f (y)(∆Σ qΣ (t,x,y)− x ·∇qΣ (t,x,y))γ(dy)

= ∆Σ

�
RD

f (y)qΣ (t,x,y)γ(dy)− x ·∇
�
RD

f (y)qΣ (t,x,y)γ(dy)

= (∆Σ − x ·∇)u(x, t)

which completes the proof.

Since Qt is symmetric on L2(γ), so we expect its infinitesimal generator L = ∆Σ − x ·∇ is also
symmetric on L2(γ), which is the context of the following lemma.

Lemma 5.10. (Integration by parts) The differential operator L=∆Σ −x ·∇ is symmetric on L2(γ),
in the sense that

�
RD

ψ(x)Lϕ(x)γ(dx) =
�
RD

ϕ(x)Lψ(x)γ(dx)

=−
�
RD

∇ϕ ·Σ∇ψγ(dx) (5.8)

for any C2-functions ϕ , ψ , whose first and second derivatives belong to L2(γ).

Proof. By using the identity
∂

∂x j lnGΣ (x) =−
D

∑
l=1

σ
jlxl (5.9)
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we obtain that�
RD

∑
i, j

σi j
∂ϕ(x)

∂xi
∂ψ(x)

∂x j γ(dx) =−
�
RD

∑
i, j

σi j
∂

∂x j

(
∂ϕ

∂xi GΣ

)
ψdx

=−
�
RD

(
∆Σ ϕ +∑

i, j
σi j

∂ lnGΣ

∂x j
∂ϕ

∂xi

)
ψGΣ dx

=−
�
RD

(
∆Σ ϕ −∑

i
xi ∂ϕ

∂xi

)
ψγ(dx),

which implies (5.8) as Σ = (σi j) is symmetric.

Remark 5.11. [Not examinable] You may wonder where the Mehler formula comes from. Let
us give its derivation. Recall that we wish to define a Markov semi-group Qt whose invariant
measure is the Gaussian measure γ(dx). From the theory of diffusion processes [to be learned
in SDE course, C8.1], we first identify the infinitesimal generator L of Qt , which must satisfy the
equality: �

RD
−ψLϕdγ =

�
RD

∇ϕ ·Σ∇ψdγ.

Now integration by parts gives
�
RD

∇ϕ ·Σ∇ψdγ =

�
RD

GΣ Σ∇ϕ ·∇ψdx =−
�
RD

ψdiv(GΣ Σ∇ϕ)dx

which gives that

Lϕ =
1

GΣ

div(GΣ Σ∇ϕ) = ∆Σ ϕ − x ·∇ϕ.

This is exactly the generator we have already seen. The diffusion process, whose transition proba-
bility function gives the semi-group Qt , can be constructed as the solution to the following stochas-
tic differential equation

dXt =
√

2Σ
1
2 dBt −Xtdt, X0 = x

which can be solved explicitly

Xt = e−tx+ e−t
� t

0

√
2Σ

1
2 esdBs

which implies that the distribution of Xt has a normal distribution with a mean e−tx and co-
variance matrix

(
1− e−2t)Σ . Therefore

Qt f (x) = E [ f (Xt)|X0 = x]

=

�
RD

f (y)dN
(
e−tx,

(
1− e−2t)

Σ
)

=

�
RD

f (y)
exp
(
− 1

2(1−e−2t)
(y− e−tx) ·Σ−1(y− e−tx)

)
(2π(1− e−2t))

D
2
√

detΣ

dy

which leads to the Mehler formula.
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5.2 Entropy and the logarithmic Sobolev inequality
Recall that γ(dx) is the central Gaussian measure with Gaussian density GΣ (x) on B(RD). The
entropy functional Ent (associated with the measure γ(dx)) is defined by

Ent(h) =
�
RD

h lnhdγ −
(�

RD
hdγ

)
ln
(�

RD
hdγ

)
(5.10)

for every non-negative h ∈ L1(γ), where s lns is assigned to be 0 = lims↓0 s lns at s = 0. Since
s 7→ s lns is convex on (0,∞), according to the Jensen inequality, Ent(h)≥ 0 for every non-negative
h ∈ L1(γ).

Theorem 5.12. (L. Gross) For every f ∈W 2,1(γ), that is, both f and its derivative belong to L2(γ),
it holds that

Ent( f 2)≤ 2
�
RD

(∇ f ·Σ∇ f )dγ. (5.11)

Proof. By approximation property, we may assume that f ∈C2. Since |∇| f ||= |∇ f | almost surely
(with respect to the Lebesgue measure),

�
RD

(∇ f ·Σ∇ f )dγ =

�
RD

(∇| f | ·Σ∇| f |)dγ.

Thus we may assume that f is non-negative. By replace f by f + ε for any constant ε > 0 then
send ε ↓ 0, we can further assume that f is bounded by a positive constant.

Let ψ(s) = s lns and consider one variable function

F(t) =
�
RD

ψ
(
Qt( f 2)

)
dγ =

�
RD

Qt( f 2) lnQt( f 2)dγ

for t ∈ (0,∞). Then limt↓0 F(t) =
�

f 2 ln f 2dγ ,

lim
t→∞

F(t) =
(�

RD
f 2dγ

)
ln
(�

RD
f 2dγ

)
and therefore

Ent( f 2) = lim
t↓0

F(t)− lim
t→∞

F(t) =−
�

∞

0

d
dt

F(t)dt. (5.12)

On the other hand

− d
dt

F(t) =−
�
RD

ψ
′ (Qt( f 2)

) ∂

∂ t
Qt( f 2)dγ

=−
�
RD

ψ
′ (Qt( f 2)

)
LQt( f 2)dγ

=

�
RD

∇ψ
′ (Qt( f 2)

)
·Σ∇Qt( f 2)dγ

=

�
RD

ψ
′′ (Qt( f 2)

)
∇Qt( f 2) ·Σ∇Qt( f 2)dγ
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where the third equality follows from Lemma 5.10. Since ψ ′(s) = lns+ 1 and ψ ′′(s) = 1
s , we

deduce that
− d

dt
F(t) =

�
RD

1
Qt( f 2)

∇Qt( f 2) ·Σ∇Qt( f 2)dγ for t > 0. (5.13)

By the domination inequality√
∇Qt( f 2) ·Σ∇Qt( f 2)≤ e−tQt

(√
∇ f 2 ·Σ∇ f 2

)
= 2e−tQt

(
| f |
√

∇ f ·Σ∇ f
)

≤ 2e−t
√

Qt( f 2)
√

Qt (∇ f ·Σ∇ f )

where the last inequality follows from Cauchy-Schwartz inequality. Rearrange the previous in-
equality we deduce that

1
Qt( f 2)

∇Qt( f 2) ·Σ∇Qt( f 2)≤ 4e−2tQt (∇ f ·Σ∇ f ) .

Together with (5.13)

− d
dt

F(t)≤ 4e−2t
�
RD

Qt (∇ f ·Σ∇ f )dγ = 4e−2t
�
RD

∇ f ·Σ∇ f dγ

and, by integrating the inequality over (0,∞) to obtain that

Ent( f 2)≤
�

∞

0
4e−2tdt

�
RD

∇ f ·Σ∇ f dγ = 2
�
RD

∇ f ·Σ∇ f dγ

and therefore the proof is complete.

Remark 5.13. If f ∈C2, then the logarithmic Sobolev inequality may be written as

Ent( f 2)≤−2
�
RD

f L f dγ.

Exercise 1. In this exercise we are going to prove the hyper-contractivity of the Ornstein-
Uhlenbeck semi-group. Let γ(dx) = GΣ (x)dx, and let q : (0,∞) → [1,∞) be differentiable, to
be chosen later. Let f be a positive, bounded and continuous function on RD. Consider two

functions on (0,∞): F(t) =
�
(Qt f )q(t) dγ and G(t) = ∥Qt f∥Lq(t)(γ). Then G(t) = F(t)

1
q(t) and

lnG(t) = 1
q(t) lnF(t). Therefore

G′(t) = G(t)
1

q(t)

(
−q′(t)

q(t)
lnF(t)+

F ′(t)
F(t)

)
and

F ′(t) =
�
RD

d
dt

(Qt f )q(t) dγ

= q′(t)
�
RD

(Qt f )q(t) lnQt f dγ +q(t)
�
RD

(Qt f )q(t)−1 d
dt

Qt f dγ

=
q′(t)
q(t)

�
RD

(Qt f )q(t) ln(Qt f )q(t) dγ +q(t)
�
RD

(Qt f )q(t)−1 LQt f dγ

=
q′(t)
q(t)

[
Ent
(
(Qt f )q(t)

)
+F(t) lnF(t)

]
+q(t)

�
RD

(Qt f )q(t)−1 LQt f dγ.
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Let us now choose function q which increasing, i.e. q′(t) ≥ 0. Applying the logarithmic Sobolev
inequality

Ent
(
(Qt f )q(t)

)
≤ 2

�
RD

∇(Qt f )
q(t)

2 ·Σ∇(Qt f )
q(t)

2 dγ

in the previous equality, one deduces that

F ′(t)≤ q′(t)
q(t)

F(t) lnF(t)+2
q′(t)
q(t)

�
RD

∇(Qt f )
q(t)

2 ·Σ∇(Qt f )
q(t)

2 dγ

−q(t)
�
RD

∇(Qt f )q(t)−1 ·Σ∇Qt f dγ

=
q′(t)
q(t)

F(t) lnF(t)+q(t)
(

1
2

q′(t)− (q(t)−1))
)�

RD
(Qt f )q(t)−2

∇Q ft ·Σ∇Qt f dγ.

The best choice of q for the previous inequality is given as solutions to

1
2

q′(t)− (q(t)−1)) = 0. (5.14)

Suppose q(t)≥ 1 is a solution of (5.14). Then

F ′(t)≤ q′(t)
q(t)

F(t) lnF(t)

and

G′(t) = G(t)
1

q(t)

(
−q′(t)

q(t)
lnF(t)+

F ′(t)
F(t)

)
≤ G(t)

1
q(t)

(
−q′(t)

q(t)
lnF(t)+

q′(t)
q(t)

lnF(t)
)

= 0.

Therefore t → G(t) is decreasing, so that G(t)≤ G(0). The solution to (5.14) with q(0) = p for a
given p ≥ 1 is q(t) = 1+(p−1)e2t . Therefore

∥Qt f∥Lq(t)(γ) ≤ ∥ f∥Lp(γ) for every t ≥ 0 and f ∈ Lp(γ)

where q(t) = 1+(p−1)e2t . This is called the hypercontractivity of the Ornstein-Uhlenbeck semi-
group (Qt)t≥0.

5.3 Poincaré inequality
The variance of f (with respect to the Gaussian measure γ(dx) = GΣ (x)dx)

var( f ) =
�
RD

(
f −

�
RD

f dγ

)2

dγ

=

�
RD

f 2dγ −
(�

RD
f dγ

)2

.

The following inequality is called the Poincaré inequality.
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Theorem 5.14. Let γ(dx) = GΣ (x)dx be the Gaussian measure. Then
�
RD

(
f −

�
RD

f dγ

)2

dγ ≤
�
RD

(∇ f ·Σ∇ f )dγ

for any C1-function f such that |∇ f |2 is γ-integrable.

Proof. Let F(t) =
�
RD (Qt f )2 dγ . Then limt→0 F(t) =

�
RD f 2dγ and

lim
t→∞

F(t) =
�
RD

(�
RD

f dγ

)2

dγ =

(�
RD

f dγ

)2

.

Therefore
var( f ) =−

�
∞

0

d
dt

F(t)dt.

Next calculate the derivative

− d
dt

F(t) =−
�
RD

d
dt

(Qt f )2 dγ

=−2
�
RD

Qt f
d
dt

Qt f dγ

=−2
�
RD

Qt f LQt f dγ

= 2
�
RD

∇Qt f ·Σ∇Qt f dγ.

Using the weak domination inequality we thus deduce that

− d
dt

F(t)≤ 2e−2t
�
RD

Qt (∇ f ·Σ∇ f )dγ = 2e−2t
�
RD

∇ f ·Σ∇ f dγ.

Integrating the previous inequality over (0,∞) to get that

var( f )≤
�

∞

0
2e−2tdt

�
RD

(∇ f ·Σ∇ f )dγ =

�
RD

(∇ f ·Σ∇ f )dγ.

Thus we have completed the proof.

5.4 The concentration inequality
In this section we prove the major concentration inequality for Gaussian measure γ(dx) =GΣ (x)dx.

If g is a function on RD, we shall use ∥g∥
∞

to denote the supremum norm of g, that is, ∥g∥
∞
=

supx∈RD |g(x)|.
Theorem 5.15. Let γ(dx) = GΣ (x)dx be a centered Gaussian measure on (RD,B(RD)), and let f
be a C1-function with bounded derivatives. Then�

RD
exp
[

λ

(
f −

�
RD

f dγ

)]
≤ exp

(
λ 2

2
∥∇ f ·Σ∇ f∥

∞

)
(5.15)

for every λ ∈ R, where
∥∇ f ·Σ∇ f∥

∞
= sup

RD
(∇ f ·Σ∇ f )

is the supremum norm of ∇ f ·Σ∇ f over RD.
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Proof. By considering f (x)−
�
RD f dγ instead, without losing generality we may assume that�

RD f dγ = 0. Let ψ(s) = eλ s. Then ψ ′ = λψ and ψ ′′ = λ 2ψ . Consider

F(t) =
�
RD

ψ (Qt f )dγ =

�
RD

exp(λQt f )dγ for t ≥ 0

Then

lim
t→∞

F(t) =
�
RD

exp
(

λ

�
f dγ

)
dγ = 1

and therefore
F(t)−1 =−

�
∞

t

d
dt

F(t)dt for t ≥ 0.

As before we differentiate under integration, and use the equation that d
dt Qt f = LQt f , to obtain

that

− d
dt

F(t) =−
�
RD

d
dt

ψ (Qt f )dγ =−
�
RD

ψ
′ (Qt f )

d
dt

Qt f dγ

=−
�
RD

ψ
′ (Qt f )LQt f dγ.

Next perform integration in the last integral, to get that

− d
dt

F(t) =
�
RD

∇ψ
′ (Qt f ) ·Σ∇Qt f dγ

=

�
RD

ψ
′′ (Qt f )∇Qt f ·Σ∇Qt f dγ

= λ
2
�
RD

ψ (Qt f )∇Qt f ·Σ∇Qt f dγ

Since ψ is positive, we may use the weak domination inequality

∇Qt f ·ΣQt f ≤ e−2tQt (∇ f ·Σ∇ f )≤ e−2t ∥∇ f ·Σ∇ f∥
∞

we thus conclude that

− d
dt

F(t)≤ λ
2e−2t ∥∇ f ·Σ∇ f∥

∞

�
RD

ψ (Qt f )dγ

= λ
2e−2t ∥∇ f ·Σ∇ f∥

∞
F(t),

i.e.
− 1

F(t)
d
dt

F(t)≤ λ
2e−2t ∥∇ f ·Σ∇ f∥

∞

for t > 0. Integrating the inequality over [t,∞) to obtain that

lnF(t)− lnF(∞) =−
�

∞

t

1
F(t)

d
dt

F(t)dt

≤ λ
2
�

∞

t
e−2tdt ∥∇ f ·Σ∇ f∥

∞
=

λ 2

2
∥∇ f ·Σ∇ f∥

∞
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Letting t ↓ 0 we conclude that
�
RD

exp
(

λ

(
f −

�
RD

f dγ

))
dγ ≤ exp

(
λ 2

2
∥∇ f ·Σ f∥

∞

)
.

The second inequality follows from Markov inequality.

We next prove the well-known Borell’s inequality for family of Gaussian random variables.

Corollary 5.16. Let Y = (Y1, · · · ,YD) be an RD-valued random variable with the standard normal
distribution N(0, I) (where I is the identity matrix), and let f : RD 7→ R be Lipschitz continuous.

(a) We have

E
(

eλ ( f (Y )−E f (Y ))
)
≤ exp

(
λ 2

2
∥ f∥2

Lip

)
(5.16)

for any λ ∈ R.
(b) The following Gaussian estimate holds:

P(| f (Y )−E f (Y )|> r)≤ 2exp

(
− r2

2∥ f∥2
Lip

)
(5.17)

for every r > 0.

Proof. Let fε be constructed in Lemma 7.12 for every ε > 0. By Theorem 5.15,

E(exp [λ ( fε(Y )−E fε(Y ))])≤ exp
(

λ 2

2
∥∇ fε∥2

∞

)
≤ exp

(
λ 2

2
(∥ f∥Lip + ε)2

)
for every ε > 0. Letting ε ↓ 0 we obtain (5.16). The Gaussian estimate (5.17) follows from (5.16)
as we have seen in Section 1.

Theorem 5.17. (Borell’s inequality). Let X = (X1, · · · ,XD) be a random variable with central
Gaussian distribution with co-variance matrix Σ = (σi j). Then

P

[∣∣∣∣∣ sup
i=1,...,D

X i −E sup
i=1,...,D

X i

∣∣∣∣∣> r

]
≤ 2exp

(
− r2

2supi σii

)
(5.18)

for every r > 0.

Proof. Let Y = (Y1, · · · ,YD) be a random variable in RD with the standard normal distribution
N(0, I), as in the previous corollary. Then Z = Σ

1
2Y has the same distribution as that of X , where

Σ
1
2 = (ρi j) is a positive square root of Σ . Let f (x) = maxi=1,··· ,D

(
∑

D
k=1 ρikxk

)
. For given x,y, there

are i and j such that

f (x) =
D

∑
k=1

ρikxk and f (y) =
D

∑
k=1

ρ jkyk

(where i, j depend on x,y of course), so that

f (x)− f (y) =
D

∑
k=1

ρikxk −
D

∑
k=1

ρ jkyk ≤
D

∑
k=1

ρikxk −
D

∑
k=1

ρikyk

43



and similarly

f (y)− f (x)≤
D

∑
k=1

ρ jkyk −
D

∑
k=1

ρ jkxk,

which implies that

| f (x)− f (y)| ≤ max
i

∣∣∣∣∣ D

∑
k=1

ρik(yk − xk)

∣∣∣∣∣
≤ max

i=1,··· ,D

√
∑
k=1

ρ2
ik|x− y|

= max
i=1,··· ,D

√
σii|x− y|.

Thus f is Lipschitz continuous with Lipschitz constant less than maxi
√

σii. Therefore, according
to (5.17)

P

[∣∣∣∣∣ sup
i=1,...,D

X i −E sup
i=1,...,D

X i

∣∣∣∣∣> r

]
= P(| f (Z)−E f (Z)|> r)

≤ 2exp
(
− r2

2supi σii

)
.

Remark 5.18. (a) As long as Esupi Xi is finite (in this case the family of centered Gaussian random
variables (Xi) is called bounded), then the Borell’s inequality is still valid in exactly the same form,
by letting D → ∞. That is, if (Xt)t∈Λ is a family of centered Gaussian random variables, where Λ

is any countable set, such that Esupt∈Λ Xt < ∞, then

P
[∣∣∣∣sup

t∈Λ

Xt −Esup
t∈Λ

Xt

∣∣∣∣> r
]
≤ 2exp

(
− r2

2supt∈Λ σtt

)
(5.19)

for every r > 0, where σtt = var(Xt).
(b) It remains to control the quantity Esupt∈Λ Xt . This can be done by using the technique of

metric entropy, a topic we left for your own study. The reader may refer to the small book by R. J.
Adler [1].

5.5 Estimates of exponential type
In this section we introduce another idea for deriving typical Gaussian type exponential decay
estimates, which is in a matter of transport distributions, an idea which is quite useful. It yields
interesting results, though it does not lead to better results as we have developed so far.

Lemma 5.19. Let X = (X i)i=1,··· ,D and Y = (Y i)i=1,··· ,D be two independent random variables
with the same distribution γ(dx) = GΣ (x)dx, where Σ is symmetric, positive definite. Let X(t) =
X sin t +Y cos t and d

dt X(t) = X cos t −Y sin t for t ∈ R. Then for every t, X(t) and d
dt X(t) have

independent, and have the same distribution γ(dx).
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Proof. For each t we have

E
[
X(t)iX(t) j]= E

[(
X i sin t +Y i cos t

)(
X j sin t +Y j cos t

)]
= sin2 tE

[
X iX j]+ cos2 tE

[
Y iY j]

= σi j

hence X(t) has distribution γ as well. Let Z(t) = d
dt X(t). Then

E
[
X(t)iZ(t) j]= E

[(
X i sin t +Y i cos t

)(
X j cos t −Y j sin t

)]
= sin t cos t

(
E
[
X iX j]−E

[
Y iY j])

+ cos2 tE
[
Y iX j]− sin2 tE

[
Y jX i]

= 0

which implies X and Z are independent.

Let begin with the following general Gaussian estimate.

Theorem 5.20. Let f : RD 7→ Rn be a C1-function, and Ψ : Rn 7→ R be a convex function. Then�
RD

�
RD

Ψ( f (x)− f (y))γ(dy)γ(dx)≤
�
RD

�
RD

Ψ

(
π

2
∇ f (x) · y

)
γ(dx)γ(dy) (5.20)

and �
RD

Ψ

(
f (x)−

�
RD

f dγ

)
γ(dx)≤

�
RD

�
RD

Ψ

(
π

2
∇ f (x) · y

)
γ(dx)γ(dy) (5.21)

where f = ( f1, · · · , fn) and ∇ f (x) · y = (∇ f1(x) · y, · · · ,∇ fn(x) · y) for any x,y ∈ RD.

Proof. By considering f i−
�
RD f idγ instead, without losing generality, we assume that

�
RD f idγ =

0 for i = 1, . . . ,n. Let X and Y be independent random variables with the same distribution γ , and
X(t) = X sin t +Y cos t. Then

f (X)− f (Y ) =
� π

2

0

d
dt

f (X(t))dt

=

� π

2

0
∇ f (X(t)) · d

dt
X(t)dt

and therefore

Ψ ( f (X)− f (Y )) =Ψ

(� π

2

0
∇ f (X(t)) · d

dt
X(t)dt

)
Since Ψ is convex, applying Jensen’s inequality (with respect to the 2

π
dt on [0, π

2 ]), to obtain

Ψ ( f (X)− f (Y ))≤ 2
π

� π

2

0
Ψ

(
π

2
∇ f (X(t)) · d

dt
X(t)

)
dt.

Taking expectation both sides of the inequality to deduce that

E [Ψ ( f (X)− f (Y ))]≤ 2
π

� π

2

0
E
[
Ψ

(
π

2
∇ f (X(t)) · d

dt
X(t)

)]
dt. (5.22)
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By Lemma 5.19, both (X ,Y ), and (X(t), d
dt X(t)) (for every t) has the same distribution γ ⊗ γ ,

so that

E [Ψ ( f (X)− f (Y ))] =
�
RD

�
RD

Ψ( f (x)− f (y))γ(dy)γ(dx)

and

E
[
Ψ

(
π

2
∇ f (X(t)) · d

dt
X(t)

)]
=

�
RD

�
RD

Ψ

(
π

2
∇ f (x) · y

)
γ(dx)γ(dy)

for every t, so the first inequality follows.
To prove the second inequality, we use Jensen’s inequality again, to deduce that

�
RD

Ψ ( f (x)− f (y))γ(dy)≥Ψ

(
f (x)−

�
RD

f dγ

)
for every x. Integrating out the variable x, we then deduce that

�
RD

�
RD

Ψ ( f (x)− f (y))γ(dy)γ(dx)≥
�
RD

Ψ

(
f (x)−

�
RD

f dγ

)
γ(dx).

Therefore the second inequality follows from the first inequality.

Corollary 5.21. Let γ(dx) = GΣ (x)dx. Suppose f : RD 7→ R is a C1-function, and p ≥ 1. Then

�
RD

∣∣∣∣ f −�
RD

f dγ

∣∣∣∣p dγ ≤Cp

�
RD

|∇ f |pdγ (5.23)

where

Cp =
(

π

2

)p
�
RD

|y|pγ(dy), |y|=

√
D

∑
i=1

(yi)2.

Proof. We apply Theorem 5.20 to convex function Ψ(x) = |x|p. Then
�
RD

�
RD

Ψ

(
π

2
∇ f (x) · y

)
γ(dx)γ(dy) =

(
π

2

)p
�
RD

�
RD

|∇ f (x) · y|p γ(dx)γ(dy)

≤Cp

�
RD

|∇ f |p dγ

which yields the conclusion.

If p = 2, then estimate (5.23) becomes a variation of the Poincaré inequality:

�
RD

∣∣∣∣ f −�
RD

f dγ

∣∣∣∣2 dγ ≤C2

�
RD

|∇ f |2dγ

where

C2 =
(

π

2

)2 D

∑
i=1

�
RD

(yi)2
γ(dy) =

(
π

2

)2
trΣ

while the variance var( f ) is dominated by the quadratic form
�

∇ f ·∇ f dγ , instead of
�

∇ f ·Σ∇ f dγ .
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Corollary 5.22. Suppose f is Lipschitz continuous from RD 7→ R with Lipschitz constant C. Then
�
RD

exp

(
α

∣∣∣∣ f −�
RD

f dγ

∣∣∣∣2
)

dγ ≤
�
RD

exp
(

π

2
αCλ |y|2

)
GI(y)dy

where λ is the largest eigenvalue of Σ . The right hand-side is finite as long as α < 2
π2C2λ 2 .

Proof. Let Ψ(t) = exp(αt2) where α ≥ 0 is a constant. Then

Ψ
′′(t) = 2α exp(αt2)+(2αt)2 exp(αt2)≥ 0

so Ψ is convex. We apply (5.21) with Ψ. Then

Ψ

(
π

2
α f ′(x)y

)
= exp

π

2
α

(
D

∑
i=1

∂ f (x)
∂xi yi

)2


≤ exp
(

π

2
α|∇ f |2|y|2

)
and therefore, according to (5.21),

�
RD

exp
(

α

∣∣∣∣ f −�
RD

f dγ

∣∣∣∣)dγ ≤
�
RD

exp
(

π

2
αC|y|2

)
γ(dy).

For the integral on the right-hand side we make a change of variable Σ
1
2 z = y, so that�

RD
exp
(

π

2
αC|y|2

)
γ(dy) =

�
RD

exp
(

π

2
αCy ·Σy

)
GI(y)dy

≤
�
RD

exp
(

π

2
αλDC|y|2

)
GI(y)dy

where now GI(y) is the standard Gaussian density on RD and λD is the largest eigenvalue. By a
standard computation we have�

RD
exp
(

π

2
αλDC|y|2

)
GI(y)dy ≤ 1√

1− α

2 π2C2λ 2
D

which completes the proof.

Corollary 5.23. If f is C1, then
�
RD

exp
(

f (x)−
�
RD

f dγ

)
γ(dx)≤

�
RD

exp
(

π2

8
∇ f ·Σ∇ f

)
dγ (5.24)

Proof. Let us apply (5.21) with Ψ(t) = et which is convex, to obtain that
�
RD

exp
(

f (x)−
�
RD

f dγ

)
γ(dx)≤

�
RD

�
RD

exp
π

2

(
D

∑
i=1

∂ f (x)
∂xi yi

)
γ(dx)γ(dy)

≤
�
RD

�
RD

exp

(
π

2

D

∑
i=1

∂ f (x)
∂xi yi

)
γ(dx)γ(dy).

47



For every x (but fixed), Y = (Y i) has a distribution γ . Then Z = π

2 ∑
D
i=1

∂ f (x)
∂xi Y i is Gaussian random

variable whose variance is

var(Z) =
π2

4
∇ f ·Σ∇ f

and therefore �
RD

exp

(
π

2

D

∑
i=1

∂ f (x)
∂xi yi

)
γ(dy) = exp

(
π2

8
∇ f ·Σ∇ f

)
.

Hence (5.24) follows immediately.

5.6 Gaussian isoperimetric inequality
In this section we derive Lévy-Gromov’s isoperimetric function for centered Gaussian measure
γ(dx) = GΣ (x)dx, following the approach put forward by D. Bakry and M. Ledoux [3] via the
Ornstein-Uhlenbeck semigroup (Qt)t≥0, whose invariant measure is γ(dx). B-L [3] aims to give a
general version of Lévy-Gromov’s isoperimetric inequality (for metric-measure spaces with posi-
tive curvature) by using Bakry-Emery’s Γ2 formulation (Ricci curvature) and the idea of quantiza-
tion. While the most useful case remains the isoperimetric inequality (independent of dimensions)
for Gaussian measures, which is going to be presented in this part.

Let us now introduce the isoperimetric function for Gaussian measure. Suppose ξ is a real
random variable with a standard normal distribution N(0,1), then

Φ(r) = P [ξ ≤ r] =
� r

−∞

1√
2π

exp
(
−x2

2

)
dx (5.25)

which strictly increasing, whose inverse Φ−1 : (0,1) 7→ (−∞,∞) is also increasing. The isopermet-
ric function is defined to be U = Φ ′ ◦Φ−1 on (0,1), where the derivative Φ ′ is nothing but just the
1-D standard Gaussian density, i.e. Φ ′(x) = 1√

2π
exp
(
−x2

2

)
. Naturally we extend the definition of

U to [0,1] by setting
U (0) = 0 and U (1) = 0

so that U is differentiable (of any degree) on (0,1) and is continuous on [0,1]. By chain rule and
use the fact that Φ ′′(x) =−xΦ ′, we have

U ′ = Φ
′′ ◦Φ

−1 1
Φ ′ ◦Φ−1 =−Φ

−1 (5.26)

and
U ′′ =− 1

Φ ′ ◦Φ−1 =− 1
U

. (5.27)

In particular U ′′ < 0 on (0,1). Therefore x → U (x) is (strictly) concave on (0,1), symmetric
again the vertical line x = 1

2 at which it attains its maximum 1√
2π

. Moreover

lim
x↓0

U (x)√
2ln 1

x

= 1. (5.28)

Let us begin with several facts we shall use.
Recall that L = ∆Σ − x ·∇ is the infinitesimal generator of the Ornstein-Uhlenbeck semi-group

(Qt)t>0, in the sense that d
dt Qt = LQt for t > 0.
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Lemma 5.24. Let Ψ be a C2-function on R. Then

L(Ψ( f )) =Ψ
′( f )L f +Ψ

′′( f )∇ f ·Σ∇ f (5.29)

for any C2-function f on RD.

Proof. The equality may be called a chain rule for L, which follows immediately from the rules of
computing derivatives. Let fi and fi j denote the partial derivatives ∂

∂xi
f and ∂ 2

∂xi∂x j
f respectively

for simplicity. Then

L(Ψ( f )) =
D

∑
i, j=1

σi jΨ( f )i j −
D

∑
i=1

xiΨ( f )i

=
D

∑
i, j=1

σi j
(
Ψ

′( f ) fi
)

j −Ψ
′( f )

D

∑
i=1

xi fi

=Ψ
′( f )

D

∑
i, j=1

σi j fi j +Ψ
′′( f )

D

∑
i, j=1

σi j f j fi −Ψ
′( f )

D

∑
i=1

xi fi

=Ψ
′( f )L f +Ψ

′′( f )∇ f ·Σ∇ f

which completes the proof.

Lemma 5.25. Let f : RD 7→ [0,1] be a C2-function whose derivatives have at most polynomial
growth. Let t > 0 be fixed but arbitrary, and consider G(s) = Qs (U (Qt−s f )), that is,

G(s)(x, t) =
�
RD

qΣ (s,x,y)U (Qt−s f (y))γ(dy) (5.30)

for s ∈ (0, t) and x ∈ RD. [The argument (x, t) is suppressed if no confusion may arise]. Then

∂

∂ s
G(s) = Qs

(
U ′′ (Qt−s f )∇(Qt−s f ) ·Σ∇(Qt−s f )

)
(5.31)

for every s ∈ (0, t).

Proof. For simplicity we suppress the argument x in G(s)(x) which is fixed though arbitrary. By
differentiating in s under integration (which is allowed under our assumptions on f ), we obtain

∂

∂ s
G(s) =

�
RD

U (Qt−s f (y))
∂

∂ s
qΣ (s,x,y)γ(dy)

−
�
RD

qΣ (s,x,y)U ′(Qt−s f (y))
∂

∂ s
Qt−s f (y)γ(dy)

=

�
RD

U (Qt−s f (y))LqΣ (s,x,y)γ(dy)

−
�
RD

qΣ (s,x,y)U ′(Qt−s f (y))
∂

∂ s
Qt−s f (y)γ(dy)

where we have used the fundamental equation that

∂

∂ s
qΣ (s,x,y) = LqΣ (s,x,y)
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where L operates on the variable y, while x is fixed. Next for the first term we use the symmetry of
L, so that

J1 =

�
RD

U (Qt−s f (y))LqΣ (s,x,y)γ(dy)

=

�
RD

qΣ (s,x,y)LU (Qt−s f (y))γ(dy)

=

�
RD

qΣ (s,x,y)U ′(Qt−s f (y))L(Qt−s f )(y))γ(dy)

+

�
RD

qΣ (s,x,y)U ′′ (Qt−s f (y))∇(Qt−s f ) ·Σ∇(Qt−s f )(y))γ(dy)

where the second equality from the chain rule for L. Substituting J1 into the previous equation for
G′(s), and using the fundamental equation

∂

∂ r
Qr f = L(Qr f )

(with r = t − s > 0), we obtain that

G′(s) =
�
RD

U ′′ (Qt−s f (y))(∇(Qt−s f ) ·Σ∇(Qt−s f ))(y)qΣ (s, ·,y)γ(dy) (5.32)

for every s ∈ (0, t), which is equivalent to (5.31).

Lemma 5.26. Under the same assumptions as in Lemma 5.25. Let

F(s) = (Qs (U (Qt−s f )))2 for s ∈ (0, t).

Then
F ′(s) = 2Qs (U (Qt−s f ))Qs

(
U ′′(Qt−s f )∇(Qt−s f ) ·Σ∇(Qt−s f )

)
for s ∈ (0, t).

Proof. This follows from the previous lemma. Indeed F = G2, so that

F ′(s) = 2G(s)G′(s)

= 2Qs (U (Qt−s f ))Qs
(
U ′′(Qt−s f )∇(Qt−s f ) ·Σ∇(Qt−s f )

)
for every s ∈ (0, t).

Lemma 5.27. Suppose that f is a C1 function with values in [0,1], and suppose both f and its
partial derivatives are γ-integrable. Then√

∇(Qt f ) ·Σ∇(Qt f )
U (Qt f )

≤ 1√
e2t −1

for every t > 0. (5.33)

Proof. We only need to show this for any C2-function f taking values in [0,1]. Let t > 0 and let
F(s) = (Qs (U (Qt−s f )))2 for s ∈ (0, t). Then F(t) = (Qt(U ( f )))2, F(0) = (U (Qt f ))2, and

F(t)−F(0) =
� t

0

d
ds

F(s)ds

= 2
� t

0
Qs (U (Qt−s f ))Qs

(
U ′′(Qt−s f )∇(Qt−s f ) ·Σ∇(Qt−s f )

)
ds. (5.34)
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Using the differential equation that U ′′ =− 1
U in the previous equality, we obtain that

F(t)−F(0) =−2
� t

0
Qs (U (Qt−s f ))Qs

(
∇(Qt−s f ) ·Σ∇(Qt−s f )

U (Qt−s f )

)
ds

≤−2
� t

0

(
Qs

(√
∇(Qt−s f ) ·Σ∇(Qt−s f )

))2
ds (5.35)

where the second inequality follows from the Cauchy-Schwartz inequality:

Qs

(√
∇(Qt−s f ) ·Σ∇(Qt−s f )

)
≤
√

Qs (U (Qt−s f ))

√
Qs

(
∇(Qt−s f ) ·Σ∇(Qt−s f )

U (Qt−s f )

)
which implies that

Qs (U (Qt−s f ))Qs

(
∇(Qt−s f ) ·Σ∇(Qt−s f )

U (Qt−s f )

)
≥
(

Qs

(√
∇(Qt−s f ) ·Σ∇(Qt−s f )

))2
.

By the domination inequality (cf. Theorem 5.8):√
∇(Qt f ) ·Σ∇(Qt f ) =

√
∇(Qs(Qt−s f )) ·Σ∇(Qs(Qt−s f ))

≤ e−sQs

(√
∇(Qt−s f ) ·Σ∇(Qt−s f )

)
for every s ∈ (0, t). Rearrange the inequality to obtain that that(

Qs

(√
∇(Qt−s f ) ·Σ∇(Qt−s f )

))2
≥ e2s

∇(Qt f ) ·Σ∇(Qt f ) (5.36)

for any s ∈ (0, t). Substituting this into (5.35) we thus get that

F(t)−F(0)≤−2
� t

0
e2s

∇(Qt f ) ·Σ∇(Qt f )ds

=−(e2t −1)∇(Qt f ) ·Σ(∇Qt f )

which yields that

∇(Qt f ) ·Σ∇(Qt f )≤ 1
e2t −1

[
(U (Qt f ))2 − (Qt(U ( f )))2

]
and therefore √

∇(Qt f ) ·Σ∇(Qt f )
U (Qt f )

≤ 1√
e2t −1

√
1−
(

Qt(U ( f ))
U (Qt f )

)2

for every t > 0. This completes the proof.

Exercise. Let ψ be an increasing C1 function on [0,∞), and f is a C1 function on RD taking
values in [0,1]. Prove that

ψ (Qt (U ( f )))−ψ (U (Qt f ))≤−(∇(Qt f ) ·Σ∇(Qt f ))
� t

0
e2s ψ ′ (Qs (U (Qt−s f )))

Qs (U (Qt−s f ))
ds

51



for any t > 0.
[Hint: For any t > 0 be any but fixed. Consider ϕ(s) = ψ (Qs (U (Qt−s f ))) for s ∈ [0, t]. Then

ψ (Qt (U ( f )))−ψ (U (Qt f )) =
� t

0

d
ds

ϕ(s)ds.

Compute ϕ(s) and use Theorem 5.8 as in the proof of the previous lemma.]

We are now in a position to prove the isoperimetric inequality for Gaussian measures.

Theorem 5.28. (Isoperimetric inequality for Gaussian measures) Let f :RD 7→ [0,1] be C1-function
and |∇ f | is γ-integrable. Then

U

(�
RD

f dγ

)
−
�
RD

U ( f )dγ ≤
�
RD

√
∇ f ·Σ∇ f dγ. (5.37)

Proof. Let us apply the approach we have tested in the previous sections. Consider

F(t) =
�
RD

U (Qt f )dγ.

Then F(∞) = U
(�

RD f dγ
)

and F(0) =
�
RD U ( f )dγ , and

U

(�
RD

f dγ

)
−
�
RD

U ( f )dγ =

�
∞

0

d
dt

F(t)dt.

Next we compute the derivative: differentiating under integration gives

d
dt

F(t) =
�
RD

d
dt

U (Qt f )dγ

=

�
RD

U ′ (Qt f )
d
dt

Qt f dγ.

Using the equation d
dt Qt f = LQt f and performing integration by parts we obtain

d
dt

F(t) =
�
RD

U ′ (Qt f )LQt f dγ

=−
�
RD

∇(U ′ (Qt f )) ·Σ∇(Qt f )dγ

=−
�
RD

U ′′ (Qt f )∇(Qt f ) ·Σ∇(Qt f )dγ.

Since U ′′ =− 1
U , we therefore have

d
dt

F(t) =
�
RD

∇(Qt f ) ·Σ∇(Qt f )
U (Qt f )

dγ

for every t > 0. Finally we apply the estimate we have proven in Lemma 5.27√
∇(Qt f ) ·Σ∇(Qt f )

U (Qt f )
≤ 1√

e2t −1
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and deduce that
d
dt

F(t)≤ 1√
e2t −1

�
RD

√
∇(Qt f ) ·Σ∇(Qt f )dγ

≤ 1√
e2t −1

�
RD

e−tQt(
√

∇ f ·Σ∇ f )dγ

=
e−t

√
e2t −1

�
RD

√
∇ f ·Σ∇ f dγ

Integrating both sides of the previous inequality on (0,∞) we therefor obtain that

U

(�
RD

f dγ

)
−
�
RD

U ( f )dγ ≤
�

∞

0

e−t
√

e2t −1
dt
�
RD

√
∇ f ·Σ∇ f dγ

=

�
RD

√
∇ f ·Σ∇ f dγ

which completes the proof.

If A ∈ RD be a closed subset with a C1-boundary, then

γS(∂A) = liminf
ε↓0

γ(Aε)− γ(A)
ε

where Aε =
{

x ∈ RD : d(x,A)< ε
}

, is called the Minkowski outer content of the boundary of A.
Here the distance d is the metric associated with Σ , i.e.

d(x,y) = sup
f∈C1

{| f (x)− f (y)| : ∇ f ·Σ∇ f ≤ 1} .

Indeed d(x,y) =
√
(x− y) ·Σ−1(x− y) for any x,y ∈ RD. Note that if ε 7→ γ(Aε) is differentiable

(from right), then

γS(∂A) =
d

dε

∣∣∣∣
ε=0+

γ(Aε).

Corollary 5.29. Let γ(dx) = GΣ (x)dx be a central Gaussian measure with co-variance matrix Σ .
Then

U (γ(A))≤ γS(∂A)

for any closed subset A ⊂ RD with a C1-boundary.

Proof. Choose C1-functions fn valued in [0,1]which tends to 1A. Then

U

(�
RD

fndγ

)
−
�
RD

U ( fn)dγ ≤
�
RD

√
∇ fn ·Σ∇ fndγ

for every n. Since U (0) = U (1) = 0 so that

U

(�
RD

fndγ

)
→ U (γ(A)) ,

�
RD

U ( fn)dγ → 0

and �
RD

√
∇ fn ·Σ∇ fndγ → γS(∂A)

which thus yields the isopermetric inequality.
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Theorem 5.30. Suppose γ(dx) = GΣ (x)dx is a Gaussian measure on RD, and A ⊂ RD be Borel
measurable with C1-boundary. Then

γ(At)≥ Φ
(
Φ

−1 (γ(A))+ t
)

for t ≥ 0, (5.38)

where Aε = {x ∈ RD : d(x,A) ≤ ε} for every ε > 0, and the distance d is the metric associated
with Σ , i.e.

d(x,y) = sup
f∈C1

{| f (x)− f (y)| : ∇ f ·Σ∇ f ≤ 1} .

It is a fact that d(x,y) =
√

(x− y) ·Σ−1(x− y) for any x,y ∈ RD.

Proof. The isoperimetric inequality may be written as

d
dr

γ(Ar)≥ U (γ(Ar))

for r ≥ 0, i.e.
1

U (γ(Ar))

d
dr

γ(Ar)≥ 1 for r ≥ 0.

Integrating the inequality over [0, t] (for t > 0) to obtain that
� t

0

1
U (γ(Ar))

d
dr

γ(Ar)dr =
�

γ(At)

γ(A)

1
U (s)

ds ≥ t

On the other hand
�

γ(At)

γ(A)

1
U (s)

ds =
�

γ(At)

γ(A)

1
Φ ′ ◦Φ−1(s)

ds =
�

γ(At)

γ(A)

d
ds

Φ
−1(s)ds

= Φ
−1 (γ(At))−Φ

−1 (γ(A))

and therefore
Φ

−1 (γ(At))−Φ
−1 (γ(A))≥ t

which yield the inequality (5.38).

As a consequence we deduce the following concentration estimate.

Theorem 5.31. Let γ(dx) = GΣ (x)dx be a centered Gaussian measure on RD. Let f : RD → R be
a function such that ∇ f ·Σ∇ f ≤ 1. Let m ∈ RD such that γ ({ f ≤ m})≥ 1

2 . Then

γ ({ f > m+ r})≤
�

∞

r

1√
2π

e−
x2
2 dx (5.39)

for any r ≥ 0.

Proof. Let A = { f ≤ m}. Then γ(A) ≥ 1
2 = Φ(0) which implies that Φ−1(γ(A)) ≥ 0. Also the

condition that ∇ f ·Σ∇ f ≤ 1 implies that Ar ⊂ { f ≤ m+ r}, and therefore, (5.38) yields that

γ ({ f ≤ m+ r})≥ Φ (r) =
� r

−∞

1√
2π

e−
x2
2 dx

and the conclusion follows immediately.
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By an approximation procedure, we therefore have the following.

Proposition 5.32. Let X = (X1, · · · ,XD) be a D-dimensional random vector on (Ω ,F ,P) with the
standard normal distribution N(0, I) on RD, f : RD 7→ R is Lipschitz such that ∥ f∥Lip ≤ 1, and let
m be a number such that P [ f (X)≤ m]≥ 1

2 . Then

P [ f (X)> m+ r]≤
�

∞

r

1√
2π

e−
x2
2 dx

for every r > 0.

Theorem 5.33. Let Y = (Y1, · · · ,YD) be a D-dimensional Gaussian random vector on (Ω ,F ,P)
with mean zero and co-variance matrix Σ =(σi j), and let m be a number such that P [supiYi ≤ m]≥
1
2 . Then

P

[
sup

i=1,··· ,D
Yi > m+ r

]
≤
�

∞

r
supi=1,··· ,D

√
σii

1√
2π

e−
x2
2 dx (5.40)

for every r > 0, where σii = E(Y 2
i ) is the variance of Yi for i = 1, . . . ,D.

Proof. As in the proof of Theorem 5.17, Y and Σ
1
2 X have the same distribution N(0,Σ) (where X

has the standard normal distribution N(0, I)). Apply Proposition 5.32 with

f (x) =
1

supi
√

σii
sup

i
∑

j
ρi jx j

where Σ
1
2 = (ρi j) is a square root of Σ . Then ∥ f∥Lip ≤ 1 (see the proof of the Borell inequality,

Theorem 5.17), and the concentration inequality (5.40) follows immediately.

This theorem implies Borell’s inequality we have proved.

6 Brunn-Minkowski’s inequality, Isoperimetric inequality

In this part we demonstrate some special features of datasets lying in convex domains. The main
tool is the isoperimetric inequality for the Lebesgue measure on RD.

As in the previous sections, if A ⊂ RD is a Borel measurable subset, then |A| denotes the
Lebesgue measure of A. If A is a box with sides parallel to axises, and if the length of the side
parallel to xi-axis is αi, then |A| = ∏

D
i=1 αi. If A and B are two Borel measurable sets of RD, then

A+B = {a+ b : a ∈ A,b ∈ B} and λA = {λx : x ∈ A} are Borel measurable too. In particular,
if a ∈ RD, then a+A = {a}+A is measurable and |a+A| = |A|, i.e. the Lebesgue measure is
translation invariant.

6.1 Prékopa-Leindler’s inequality

Let us begin with a lemma which is the Brunn-Minkowski inequality on R.
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Lemma 6.1. Let A,B be two Borel measurable subsets of R. Then

|A+B| ≥ |A|+ |B| (6.1)

and
|λA+(1−λ )B| ≥ λ |A|+(1−λ )|B| (6.2)

for every λ ∈ (0,1).

Proof. The second inequality follows from the first as |λA|= λ |A|. Let us prove the first inequality
for non-empty compact subsets A and B. Choose a and b such that Ã = {a}+ A ⊂ R−, B̃ =
{b}+B ⊂ R+ and Ã∩ B̃ = {0}. Then Ã∪ B̃ ⊂ Ã+ B̃ = a+b+A+B. Therefore

|A+B|= |Ã+ B̃| ≥ |Ã∪ B̃|= |Ã|+ |B̃|= |A|+ |B|

and the proof is complete.

Lemma 6.2. Let a,b are two positive numbers. Then

λa+(1−λ )b ≥ aλ b1−λ (6.3)

for any λ ∈ (0,1).

Proof. This follows from Jensen’s inequality. Since x 7→ lnx is concave (i.e. − lnx is convex) on
(0,∞), therefore

ln(λa+(1−λ )b)≥ λ lna+(1−λ ) lnb

and the inequality follows immediately.

Lemma 6.3. Let f and g be two non-negative, continuous functions on R, and let λ ∈ (0,1) be a
constant. Then �

R
h(x)dx ≥ λ

�
R

f (x)dx+(1−λ )

�
R

g(x)dx (6.4)

where h is defined by

h(x) = sup
y∈R

f
(

x− y
λ

)λ

g
(

y
1−λ

)1−λ

for x ∈ R.

Proof. To prove (6.4), we consider

A(t) = {x ∈ R : f (x)> t} , B(t) = {x ∈ R : g(x)> t} , C(t) = {x ∈ R : h(x)> t}

for every t > 0. By definition of hλ ( f ,g), we have

λA(t)+(1−λ )B(t)⊂C(t) (6.5)

for any t ≥ 0, and therefore

|C(t)| ≥ |λA(t)+(1−λ )B(t)|
≥ λ |A(t)|+(1−λ )|B(t)|,
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where the second inequality follows from Lemma 6.1. Integrating the previous inequality in t ∈
(0,∞) and using the dis-integration formula (2.7) we have

�
R

h(x)dx =
�

∞

0
|C(t)|dt ≥ λ

�
∞

0
|A(t)|dt +(1−λ )

�
∞

0
|B(t)|dt

= λ

�
R

f (x)dx+(1−λ )

�
R

g(x)dx

which completes the proof of (6.4).

Theorem 6.4. (Prékopa-Leindler Inequality) Let f and g be two non-negative Borel measurable
functions on RD and λ ∈ (0,1). Then

�
RD

h(x)dx ≥
(�

RD
f (x)dx

)λ (�
RD

g(x)dx
)1−λ

(6.6)

where h = hλ ( f ,g) defined by

hλ ( f ,g)(x) = sup
y∈RD

f
(

x− y
λ

)λ

g
(

y
1−λ

)1−λ

for x ∈ RD. (6.7)

Proof. [The proof is not examinable.] For simplicity we use h to denote hλ ( f ,g) if no confusion
may arise, and by a simple approximation procedure, we may assume that f and g are continuous.
Without losing generality we shall assume that

�
RD

f (x)dx > 0 and
�
RD

g(x)dx > 0,

as otherwise the inequality is trivial.
Let us prove (6.6) by using induction argument on the dimension D.
If D = 1, then (6.6) follows from (6.4) and (6.3). Indeed

�
R

h(x)dx ≥ λ

�
R

f (x)dx+(1−λ )

�
R

g(x)dx

≥
(�

R
f (x)dx

)λ (�
R

g(x)dx
)1−λ

.

Now assume that D > 2 and let λ ∈ (0,1). Suppose that (6.6) holds for any non-negative
functions f ,g on RD−1.

Let f (x),g(x) be two non-negative, continuous functions on RD (where x ∈ RD). Write x =
(x,xD) where x ∈ RD−1 and define

f0(x) =
�

∞

−∞

f (x,s)ds, g0(x) =
�

∞

−∞

g(x,s)ds.

By assumptions

hλ ( f ,g)(x,xD)≥ sup
s∈R

f
(

x− y
λ

,
xD − s

λ

)λ

g
(

y
1−λ

,
s

1−λ

)1−λ
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for every y ∈ RD−1. For any x,y ∈ RD−1 fixed but arbitrary, we apply Lemma 6.3, (6.4), with one
dimensional functions s 7→ f

(x−y
λ
,s
)λ

and s 7→ g
(

y
1−λ

,s
)

, to obtain that

�
∞

−∞

hλ ( f ,g)(x,s)ds ≥ λ

�
∞

−∞

f
(

x− y
λ

,s
)

ds+(1−λ )

�
∞

−∞

g
(

y
1−λ

,s
)

ds

≥
(�

∞

−∞

f
(

x− y
λ

,s
)

ds
)λ (� ∞

−∞

g
(

y
1−λ

,s
)

ds
)1−λ

where the second inequality follows from (6.3). Since y ∈ RD−1 is arbitrary, so that

�
∞

−∞

hλ ( f ,g)(x,s)ds ≥ sup
y∈RD−1

(�
∞

−∞

f
(

x− y
λ

,s
)

ds
)λ (� ∞

−∞

g
(

y
1−λ

,s
)

ds
)1−λ

= hλ ( f0,g0)(x) (6.8)

for every x ∈ RD−1. Using induction assumption with f0 and g0 which are non-negative functions
on RD−1, we thus obtain that

�
RD−1

hλ ( f0,g0)(x)dx ≥
(�

RD−1
f0(x)dx

)λ (�
RD−1

g0(x)dx
)1−λ

.

On the other hand, by (6.8) and Fubini’s theorem
�
RD

hλ ( f ,g)(x)dx =
�
RD−1

�
∞

−∞

hλ ( f ,g)(x,s)ds

≥
�
RD−1

hλ ( f0,g0)(x)dx

≥
(�

RD−1
f0(x)dx

)λ (�
RD−1

g0(x)dx
)1−λ

=

(�
RD

f (x)dx
)λ (�

RD−1
g(x)dx

)1−λ

and therefore (6.6) holds for any non-negative, continuous functions f and g. The proof is com-
plete.

Theorem 6.4 is formulated by H. Brascamp and E. H. Lieb [6] (this paper has an unusual long
title as if the JFA journal printed its Abstract as the title !) The original P-L inequality follows of
course from the above version immediately.

Theorem 6.5. (Pékopa-Leindler Inequality) Let f ,g and h be non-negative measurable functions
on RD and λ ∈ (0,1). Suppose

h(λx+(1−λ )y)≥ f (x)λ g(y)1−λ for any x,y ∈ RD. (6.9)

Then �
RD

h(x)dx ≥
(�

RD
f (x)dx

)λ (�
RD

g(x)dx
)1−λ

. (6.10)
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Proof. Under assumption, h(x)≥ hλ ( f ,g)(x) for every x, and therefore the P-L inequality follows
immediately from (6.6).

Definition 6.6. Let f be a non-negative function on RD. Then f is log-concave (i.e. logarithmically
concave) if

f (λx+(1−λ )y)≥ f (x)λ f (y)1−λ

for any λ ∈ [0,1] and x,y ∈ RD.

By definition, f is log-concave if and only if − ln f is convex on { f > 0}.

Exercise. Let ρ be log-concave on RD = RD1 ×RD2 (where D1 +D2 = D). Let

ρ1(x1) =

�
RD2

ρ(x1,x2)dx2

where xi ∈ RDi (i = 1,2). Show that ρ1 is log-concave too. [Hint: Use Theorem 6.4].

Theorem 6.7. If ρ is non-negative and log-concave on RD, then

�
λA+(1−λ )B

ρ(x)dx ≥
(�

A
ρ(x)dx

)λ (�
B

ρ(x)dx
)1−λ

for any Borel measurable subsets A,B ⊂ RD and for any λ ∈ (0,1).

Proof. We shall apply Theorem 6.4 to f = 1Aρ and g = 1Bρ . Since ρ is log-concave, for every
λ ∈ (0,1),

ρ

(
x− y

λ

)λ

ρ

(
y

1−λ

)1−λ

≤ ρ(x)

for any x and y. If x−y
λ

∈ A and y
1−λ

∈ B, than x ∈ λA+(1−λ )B, which implies that hλ ( f ,g) ≤
1λA+(1−λ )Bρ . Therefore according to (6.6) we have

�
RD

1λA+(1−λ )Bρ(x)dx ≥
�
RD

hλ ( f ,g)dx

≥
(�

RD
1Aρ(x)dx

)λ (�
RD

1Bρ(x)dx
)1−λ

which yields (6.11).

Lemma 6.8. Let Σ be a symmetric, positive definite D×D-matrix. Then the central Gaussian
kernel GΣ (x) is log-concave.

Proof. Recall that

lnGΣ (x) =−1
2

ln
(
(2π)D detΣ

)
− 1

2
x ·Σ−1x.

Hence we only need to show that x 7→ x ·Σ−1x is convex. Let x,y ∈RD be any two points. Consider

ϕ(λ ) = (λx+(1−λ )y) ·Σ−1(λx+(1−λ )y)
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for λ ∈ [0,1]. Then
ϕ
′(λ ) = 2(x− y) ·Σ−1(λx+(1−λ )y)

and
ϕ
′′(λ ) = 2(x− y) ·Σ−1(x− y)≥ 0

as Σ−1 is symmetric, positive definite. Hence ϕ is convex on [0,1], and therefore

ϕ(λ ) = ϕ(λ1+(1−λ )0)≤ λϕ(1)+(1−λ )ϕ(0)

for any λ ∈ (0,1). That is

−(λx+(1−λ )y) ·Σ−1(λx+(1−λ )y)≥−λx ·Σ−1x− (1−λ )y ·Σ−1y

which in turn yields that lnGΣ is concave.

As a consequence, we have the following result for Gaussian distributions.

Theorem 6.9. (Geometric form of the isoperimetric inequality for Gaussian measure) Let γ(dx) =
GΣ (x)dx be a centered Gaussian measure on B(RD) with co-variance matrix Σ . Then

γ (λA+(1−λ )B)≥ γ(A)λ
γ(B)1−λ (6.11)

for any Borel measurable subsets A,B ⊂ RD and for any λ ∈ (0,1).

This follows from the fact that x 7→ GΣ (x) is log-concave, Lemma 6.8.

Exercise. Let γ(dx) be the centered Gaussian measure GΣ (x)dx. Let A be a symmetric convex
subset of RD and a ∈ RD.

(a) Prove that
γ(A+a)≤ γ(A+ ta)

for any t ∈ [0,1], and t 7→ γ(A+ ta) is non-increasing on [0,∞).
[Hint: You may assume that Σ = I, otherwise consider Σ− 1

2 A and Σ− 1
2 a instead. Apply Theo-

rem 6.9 to λ = 1
2(t +1), use the fact that γ(A+a) = γ(A−a), and the fact that

A+ ta = λ (A+a)+(1−λ )(A−a)

in (6.11).]

(b) Suppose f is convex and f (x) = f (−x) for every x. Show that
�
RD

f (x)γ(dx)≤
�
RD

f (x+a)γ(dx)

for any a ∈ RD, and conclude that t →
�
RD f (x+ ta)γ(dx) is non-decreasing.

[Hint: Apply (a) to level sets { f ≤ c} for every c.]

(c) Prove that �
RD

|x|pγ(dx)≤
�
RD

|x+a|pγ(dx)

for any a ∈ RD and p ≥ 1.
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6.2 Brunn-Minkowski’s theorem
This is a deep result about the Lebesgue measure. Let begin with a weak version which is inde-
pendent of the dimension D.

Theorem 6.10. Suppose A,B are two Borel measurable subsets of RD and λ ∈ (0,1). Then

|λA+(1−λ )B| ≥ |A|λ |B|1−λ . (6.12)

Proof. It follows immediately from the Prékopa-Leindler inequality. Indeed, if f = 1A and g = 1B,
then hλ ( f ,g) = 1λA+(1−λ )B. Hence (6.6) gives (6.12).

In fact this weak version, in which the dimension seems missing, is equivalent to the Brunn-
Minkowski inequality, and the dimension may be recovered from the scaling property: |λA| =
λ D|A| for A ∈ B(RD).

Theorem 6.11. Let A and B be two bounded Borel measurable subsets of RD. Then

|A+B|
1
D ≥ |A|

1
D + |B|

1
D . (6.13)

Proof. We may assume that |A| > 0 and |B| > 0. Let Ã = |A|−1/DA and B̃ = |B|−1/DB. Then
|Ã|= |B̃|= 1, and therefore by (6.12) we deduce that

|λ Ã+(1−λ )B̃| ≥ 1 ∀λ ∈ (0,1).

Set

λ =
|A|1/D

|A|1/D + |B|1/D

so that

1−λ =
|B|1/D

|A|1/D + |B|1/D
.

The previous inequality may be written as∣∣∣∣ 1
|A|1/D + |B|1/D

A+
1

|A|1/D + |B|1/D
B
∣∣∣∣= 1(

|A|1/D + |B|1/D
)D |A+B| ≥ 1

which yields (6.13). The proof is complete.

We are now in a position to prove the well-known isoperimetric inequality. To this end we shall
define the area measure. Suppose Ω ⊂ RD with a C1 boundary ∂Ω . Then the area of ∂Ω is given
by

A(∂Ω) = liminf
ε↓0

|Ω + εB1|− |Ω |
ε

where B1 is the unit ball in RD with center 0.

Theorem 6.12. (The isoperimetric inequality) Let Ω ⊂ RD be a relatively compact region with a
C1 boundary ∂Ω . Then

A(∂Ω)

|Ω |1− 1
D
≥ A(SD−1)

|B1|1−
1
D

where SD−1 is the unit sphere in D-dimensional space RD. In particular if |Ω | = |B1|, then the
area of SD−1 is smaller than that of ∂Ω , which gives the name of the isopreimetric inequality when
D = 2.
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Proof. For every ε > 0, by the Brunn-Minkowski inequality, we have

|Ω + εB1| ≥
(
|Ω |

1
D + |εB1|

1
D

)D
=
(
|Ω |

1
D + ε|B1|

1
D

)D

so that

A(∂Ω) = liminf
ε↓0

|Ω + εB1|− |Ω |
ε

≥ lim
ε→0

(
|Ω | 1

D + ε|B1|
1
D

)D
−|Ω |

ε

= D|Ω |1−
1
D |B1|

1
D

=
A(SD−1)

|B1|1−
1
D
|Ω |1−

1
D

and the proof is complete.

By an elementary computation, we know that the area of the Euclidean unit sphere SD−1 in
RD equals 2πD/2

Γ(D/2) , where Γ(1/2) =
√

π , and therefore the volume of the unit ball B1 in RD is
1
DA(SD−1) = 1

D
2πD/2

Γ(D/2) . If D = 2, then the isoperimetric inequality becomes

A(∂Ω)√
|Ω |

≥ 2
√

π

so that
L2 −4πA ≥ 0

where L and A are the length of the perimeter and the area of a region Ω ⊂ R2.

7 Appendix
In this part we collect several facts about properties of matrices, which are useful in dealing with
high-dimensional datasets.

7.1 Analysis of Lebesgue’s measure
[This part brings together a few useful facts in Analysis, which can be considered as a general
background or general knowledge. These facts can be obtained by using what you learned in
Prelim Analysis and Lebesgue’s Integration Theory (A4 Paper). The lecturer shall not present this
part in lectures, rather you may refer back when we need them through the course.]

The Lebesgue measure Leb on the Euclidean space RD is the unique measure on (RD,B(RD))
such that

Leb((a1,b1]×·· ·× (aD,bD]) = (b1 −a1) · · ·(bD −aD)

for any ai ≤ bi (i = 1, . . . ,D), where B(RD) is the Borel σ -algebra on RD, the smallest σ -algebra
containing all open (hence as well closed) subsets. It is the D-fold product measure of one di-
mensional Lebesgue measure. The integral of a Borel measurable function f against the Lebesgue
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measure may be written as
�
RD f (x)dx. In applications to datasets, the dimension D is rather large,

and therefore it is not practical to evaluate an integral such as
�
RD f (x)dx unless for very sim-

ple functions. Therefore the density properties of nice functions in Lp-spaces are very important,
which we shall review now.

If R ⊂ RD is a Borel subset, then the Lebesgue restricted on B(R) is a called the Lebesgue
measure on (R,B(R)), and we shall use Lp(R) to denote the Lp-space Lp(R,B(R),Leb) for sim-
plicity, and the Lp-norm of a function f on R may be denoted by ∥ f∥p or ∥ f∥Lp(R) if no confusion
may arise.

7.1.1 Density property

Let Ω ⊂ RD be an open subset.
A Borel measurable function f is locally Lp-integrable on Ω , denoted by f ∈ Lp

loc(Ω), if for ev-
ery x∈Ω , there is a ball B(x,r) centered at x with r > 0 such that B(x,r)⊂Ω and

�
B(x,r) | f |

p(y)dy<
∞. Clearly f ∈ Lp

loc(Ω) if and only if f is Borel measurable and
�

K | f |p(y)dy<∞ for every compact
subset K ⊂ Ω .

If m is an integer, then Cm(Ω) denote the linear space of all functions with continuous partial
derivatives up to m-order, and C∞(Ω) =

⋂
m≥1Cm(Ω). Recall that if f is a function on Ω , then

the closure of { f ̸= 0} is called the support of f , denoted by supp( f ). A function ϕ ∈ C∞(Ω) is
called a test function on Ω , if its support supp(ϕ) is a compact subset of Ω , i.e. supp(ϕ)⊂ Ω and
supp( f ) is compact. The linear space of all test functions on Ω shall be denoted by C∞

C (Ω).

Example 7.1. The function ϕ(x) = exp(1/(|x|2 −1)) for |x|< 1 and ϕ(x) = 0 for |x| ≥ 1 belongs
to C∞

C (Rd), whose support supp(ϕ) is the closed unit ball at 0. ϕ is non-negative.

Definition 7.2. A non-negative function α ∈ C∞
C (RD) with

�
RD α(x)dx = 1 is called a smoothing

function on RD.

Given a smoothing function α on RD, with a compact support supp(α) inside the closed unit
ball centered at 0, define αε(x) = ε−Dα (x/ε) for x ∈RD, for every ε > 0. Then αε is a smoothing
function too, and supp(αε)⊂ {x : |x| ≤ ε} for every ε > 0. If f is local integrable, then

fε(x) =
�
RD

f (x− y)αε(y)dy =
�
RD

f (y)αε(x− y)dy

(for every x ∈ RD) is well defined for every ε > 0, which is called the convolution f and αε ,
denoted by fε = f ⋆αε . Then, by using differentiation under integral, justified by Theorem 2.13,
we have the following simple facts:

1) fε ∈ C∞(RD) and ∂

∂xβ
f (x) =

�
RD f (y) ∂

∂xβ
αε(x− y)dy for every ε > 0 for any any indices

β = (β1, · · · ,βD).

2) If f has a compact support, then suup( fε) ⊂ supp( f )ε for every ε > 0, where Aε = {x :
d(x,A)≤ ε}, where d(x,A) = inf{|x− y| : y ∈ A}.

3) If f is continuous on RD, then fε → f as ε ↓ 0 uniformly on every compact subset (hence
on any bounded subset) K ⊂ RD.

4) If f ≥ 0 then fε ≥ 0 for every ε > 0. Similarly, if f ≤ C for some constant, then fε ≤ C
for every ε > 0. Hence if f ∈ L∞(RD), then fε ∈Cb(RD) the space of all bounded and continuous
functions on RD, and ∥ fε∥∞

≤ ∥ f∥
∞

for each ε > 0.
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We show that the function space C∞
C (RD) is dense in any Lp(RD) space, and therefor C∞

C (Ω) is
dense in Lp(Ω) for every p ∈ [1,∞]. To this end we begin with the following fact.

Lemma 7.3. Any continuous function on a closed subset of RD can be extend to be a continuous
function on RD.

Lemma 7.4. (Lusian Theorem) If f is a Borel measurable on Rd , then for every δ > 0, there is a
closed subset F such that 1) Leb(Fc)< δ , and 2) f is continuous on F.

Proof. For every k = 1,2, · · · and every integer n ∈ Z, set

En,k =

{
n
k
≤ f <

n+1
k

}
.

Then for every k, En,k are disjoint and
⋃

n En,k = RD, and therefore there is an positive integer nk
such that

Leb

 ⋃
|n|≤nk

En,k

c<
δ

2k+1 .

We then for each n = 0,±1, · · · ,±nk, choose a closed subset Fn,k ⊂ En,k such that

∑
|n|≤nk

Leb(En,k \Fn,k)<
δ

2k+1

and therefore

Leb

 ⋃
|n|≤nk

Fn,k

c<
δ

2k

for every k = 1,2, · · · . Let Fk =
⋃
|n|≤nk

Fn,k which is closed, where Fn,k are disjoint closed subset.
Define fk on Fk by fk(x) = n

k if x ∈ Fn,k. Then fk are continuous, and | f (x)− fk(x)| ≤ 1
k for every

x ∈ Fk. fk is continuous, so is continuous on F =
⋂

∞
k=1 Fk and fk → f uniformly on F . Therefore

f is continuous on F .

Corollary 7.5. If f is Borel measurable on RD, then for every δ > 0, there is a continuous function
g on RD such that Leb{ f ̸= g}< δ .

Theorem 7.6. Let p ∈ [1,∞). If f ∈ Lp(RD), then fε ∈ Lp(RD) for every ε > 0, and fε → f in
Lp(RD). Therefore C∞

C (RD) is dense in Lp(RD) for every p ∈ [1,∞).

Proof. First note that for every ε > 0, αε(y)dy is a probability measure, so that, using the Fubini
theorem

∥ fε∥p
p =

�
RD

∣∣∣∣�
RD

f (x− y)αε(y)dy
∣∣∣∣p dx

≤
�
RD

�
RD

| f (x− y)|p dxαε(y)dy

=

�
RD

�
RD

| f (x)|p dxαε(y)dy = ∥ f∥p
p
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which implies that fε ∈ Lp.
We may assume that f is bounded. For every δ > 0, according to the previous corollary there

is a bounded continuous function g such that Leb{ f ̸= g}< δ

(2∥ f∥
∞
+1)p . Then

∥ fε −gε∥p
p =

�
RD

∣∣∣∣�
RD

( f (x)−g(x))αε(x− y)dy
∣∣∣∣p dx

=

�
RD

�
RD

| f (x)−g(x)|pαε(x− y)dydx

=

�
RD

| f (x)−g(x)|pdx ≤ δ .

Therefore we may assume that f is continuous with a compact support, so that fε ∈ C∞
C (RD) for

all ε > 0, and

∥ fε − f∥p
p =

�
RD

∣∣∣∣�
RD

( f (x− y)− f (x))αε(y)dy
∣∣∣∣p dx

=

�
RD

∣∣∣∣�
RD

( f (x− εy)− f (x))α(y)dy
∣∣∣∣p dx

≤
�
RD

∣∣∣∣�
RD

( f (x− εy)− f (x))
∣∣∣∣p dxα(y)dy.

Since ∣∣∣∣�
RD

( f (x− εy)− f (x))
∣∣∣∣p dx ≤ 2p ∥ f∥p

p

and ∣∣∣∣�
RD

( f (x− εy)− f (x))
∣∣∣∣p dx → 0 as ε ↓ 0.

Therefore by Dominated Convergence Theorem,
�
RD

∣∣∣∣�
RD

( f (x− εy)− f (x))
∣∣∣∣p dxα(y)dy → 0 as ε ↓ 0

which yields that ∥ fε − f∥p → 0 as ε ↓ 0. The proof is complete.

7.1.2 Generalized derivatives, Sobolev spaces

Definition 7.7. Let Ω ⊂RD be an open set, and f ∈ L1
loc(Ω). We say a locally integrable function

fi is the generalized partial derivative with respect to xi (for i = 1, · · · ,D), if
�

Ω

fi(x)ϕ(x)dx =−
�

Ω

f (x)
∂

∂xi ϕ(x)dx, for any ϕ ∈C∞
C (Ω).

In this case fi is denoted by ∂

∂xi f (called the generalized derivative of f ), if no confusion may
arise, and we say the generalized derivative ∂

∂xi f is locally integrable. If in addition, ∂

∂xi f is p-th
integrable (where p ≥ 1), then we say the generalized derivative ∂

∂xi f ∈ Lp(Ω). The general-
ized gradient of f is defined to be naturally as ( ∂

∂x1 f , · · · , ∂

∂xD f ), denoted by ∇ f , and we say the
generalized gradient ∇ f is locally integrable (resp. belongs to the Lp-space).
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Remark 7.8. 1) Generalized derivatives of a locally integrable function f always exist as gen-
eralized functions (i.e. distributions). The proper treatment of this approach requires certain
preparation and therefore we do not give a general definition of generalized functions in this book,
the reader may refer to K. Yosida: Functional Analysis.

2) The locally integrable function fi in the definition, if exists, then it is unique up to almost
surely. We often say ∂

∂xi f = fi in the sense of distribution in this case.

This definition can be generalized to higher order generalized derivatives, which we shall not
discussed further, the reader may refer to standard textbooks such as .

Definition 7.9. Let f be a locally integrable function on an open subset Ω ⊂ RD. Then we say
f ∈ H1(Ω) (some authors use W 1,2(Ω) instead), if both f and its generalized gradient ∇ f belong
to the L2(Ω), that is, f ∈ L2(Ω) and the generalized derivatives ∂

∂xi f ∈ L2(Ω). For f ∈ H1(Ω),
its Sobolev norm is defined to be

∥ f∥H1(Ω) =

√�
Ω

| f |2(x)dx+
D

∑
i=1

∣∣∣∣ ∂

∂xi f (x)
∣∣∣∣2 dx.

Theorem 7.10. 1) H1(Ω) is a complete metric space under the distanced defined by the norm
∥·∥H1(Ω).

2) C∞(Ω) is dense in H1(Ω) under the ∥·∥H1(Ω)-norm distance.

The proof is left as exercise, see

Definition 7.11. Define H1
0 (Ω) to be the closure of C∞

C (Ω) under the the ∥·∥H1(Ω)-norm distance.

These results can be generalized to measures which are absolutely continuous with respect
to the Lebesgue measure. Suppose µ(dx) is a σ -finite measure on (RD,B(RD)) and µ(dx) is
absolutely continuous with the Lebesgue measure on Rd . That is, there is a non-negative Borel
measurable, locally integarable function ρ(x) such that µ(dx) = ρ(x)dx. For simplicity the Lp-
space over (RD,B(RD),µ) is denoted by Lp(µ). Similarly we shall use H1(µ) to denote the
space of all locally integrable functions f , such that both f and its generalized gradient ∇ f belong
to L2(µ), equipped with the norm

∥ f∥H1(µ) =
√
∥ f∥2

L2(µ)+∥∇ f∥2
L2(µ).

Then H1(µ) is a Banach space, and C∞
C (RD) is dense in H1(µ).

7.1.3 Lipschitz functions

Finally we shall recall several elementary facts about Lipschitz functions. Recall that a function f
on RD is Lipschitz, if | f (x)− f (y)| ≤C|x− y| for every x,y ∈ RD, where C ≥ 0 is a constant. The
least C is called the Lipschitz norm of f , denoted by ∥ f∥Lip. That is

∥ f∥Lip = sup
x ̸=y

| f (x)− f (y)|
|x− y|

.

Let α be a non-negative smoothing function and αε(x) = ε−Dα(x/ε) and fε = f ⋆αε for every
ε > 0.
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Lemma 7.12. Let f : RD 7→ R be Lipschitz continuous (with respect to the standard metric on RD

and R. Then fε → f as ε ↓ 0 uniformly on any bounded subset, and ∥∇ fε∥∞
≤ ∥ f∥Lip for every

ε > 0.

Proof. fε ∈ C∞(RD) for every ε > 0. Since f is continuous, so that fε → f uniformly on any
bounded subset of RD. Since

fε(x+ha)− fε(x) =
�
RD

( f (x+ha− y)− f (x− y))αε(y)dy

for every x and h ̸= 0, and f is Lipschitz continuous, so that∣∣∣∣ fε(x+ha)− fε(x)
h

∣∣∣∣≤ ∥ f∥Lip

�
RD

|a|αε(y)dy

= ∥ f∥Lip |a|

for every ε > 0 and h ̸= 0. Letting h → 0, we then obtain that

|∇ fε(x) ·a| ≤ ∥ f∥Lip |a|

for every a ∈ RD, which yields that |∇ fε(x)| ≤ ∥ f∥Lip for every x and for every ε > 0.

7.2 Inverting a square matrix
Let A = (ai j) be an n×n square matrix. Then its determinant

|A|= detA = ∑
σ∈Sn

(−1)σ a1σ1 · · ·anσn

where σ runs over the permutation group Sn of {1, · · · ,n}, and also σ = 0 or 1 according to the
parity of the arrangement σ = {σ1, . . . ,σn}.

For every pair (i, j), Λi j = (−1)i+ j times the determinant of the (n−1)×(n−1)-square matrix
with the i-th row, j-th column delated. Then

detA =
n

∑
i=1

ai jΛi j =
n

∑
j=1

ai jΛi j

(for every j, resp. for every i). It is known that A is invertible if and only if detA ̸= 0. In this case
the inverse of A, denoted by A−1, is given by

A−1 =
1

detA
(Λi j)

T ,

where T labels the transport.
Suppose we write a square matrix A in blocks:

A =

(
A11 A12
A21 A22

)
where A11 and A22 are square matrices (but not necessary having the same rank).
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1) Suppose A11 is invertible, then(
I 0

−A21A−1
11 I

)(
A11 A12
A21 A22

)(
I −A−1

11 A12
0 I

)
=

(
A11 0
0 A22 −A21A−1

11 A12

)
.

2) Suppose both A and A11 are invertible, then

A−1 =

(
A−1

11
(
I +A12B−1A21A−1

11
)

−A−1
11 A12B−1

−B−1A21A−1
11 B−1

)
where B = A22 −A21A−1

11 A12.

3) If A11 is invertible, then

det
(

A11 A12
A21 A22

)
= detA11 det

(
A22 −A21A−1

11 A12
)

and, similarly, if A22 is invertible,

det
(

A11 A12
A21 A22

)
= detA22 det

(
A11 −A12A−1

22 A21
)
.

Lemma 7.13. Suppose A and B are two square matrices, then the non-zero eigenvalues of AB and
BA are the same with the same multiplicity. In particular, tr(AB) = tr(BA).
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