

Problem sheet 1

1. Given n positive numbers x_1, x_2, \dots, x_n such that $x_1 + x_2 + \dots + x_n \leq 1/3$, prove by induction that

$$(1 - x_1)(1 - x_2) \times \dots \times (1 - x_n) \geq 2/3.$$

[Hint: for the inductive step, consider $x_1, x_2, \dots, x_{n-1}, x_n + x_{n+1}$.]

2. Using the recursive definition of addition given in lectures, follow the steps below to show that addition on \mathbb{N} is commutative; that is, $x + y = y + x$ for all $x, y \in \mathbb{N}$.

- (i) First prove the result for $y = 0$ and all x by inducting on x .
- (ii) Next prove the result for $y = 1$ and all x .
- (iii) Prove the general result by inducting on y .

3. (i) Let A , B , and C be subsets of a set S . Write out a proof that

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

- (ii) Let D , E , and F be subsets of a set S . Use (i) and De Morgan's laws to show that

$$D \cup (E \cap F) = (D \cup E) \cap (D \cup F).$$

4. Let A and B be finite sets.

- (i) Assuming for this part that A and B are disjoint, and adopting the recursive definition of cardinality given in lectures, use induction on $|B|$ to show that $A \cup B$ is finite and that

$$|A \cup B| = |A| + |B|.$$

- (ii) Show that for general A and B , $A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$. Deduce that

$$|A| + |B| = |A \cup B| + |A \cap B|.$$

5. Which of the following relations on \mathbb{N} are reflexive, which are symmetric, which are transitive?

- (i) the relation $a|b$ (read as 'a divides b').
 - (ii) the relation $a \nmid b$ (does not divide).
 - (iii) a, b are related if a, b leave the same remainder after division by 2021.
 - (iv) a, b are related if $\text{hcf}(a, b) > 2021$.
- [$\text{hcf}(a, b)$ denotes the highest common factor, or greatest common divisor, of a and b . It is the largest natural number that divides both a and b .]

6. How many partitions are there of a set of size 1? of size 2? of size 3? of size 4? of size 5?

7. Let $S = \{(m, n) : m, n \in \mathbb{Z}, n \geq 1\}$.

- (i) Show that \sim defined by

$$(m_1, n_1) \sim (m_2, n_2) \quad \text{if and only if} \quad m_1 n_2 = m_2 n_1$$

is an equivalence relation on S .

(ii) The set of equivalence classes is denoted S/\sim . Show that \oplus and \otimes defined by

$$\begin{aligned}\overline{(m_1, n_1)} \oplus \overline{(m_2, n_2)} &= \overline{(m_1n_2 + m_2n_1, n_1n_2)} \\ \overline{(m_1, n_1)} \otimes \overline{(m_2, n_2)} &= \overline{(m_1m_2, n_1n_2)}\end{aligned}$$

are well-defined binary operations on S/\sim . What set is S/\sim a model for?