

Problem sheet 2

1. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x) = \sin x$ for all real numbers x .
 - (i) What are $f([0, \pi])$, $f([0, 2\pi])$, $f([0, 3\pi])$?
 - (ii) What are $f^{-1}(\{0\})$, $f^{-1}(\{1\})$, $f^{-1}(\{2\})$?
 - (iii) Let $A = [0, \pi]$ and $B = [2\pi, 3\pi]$. Show that $f(A \cap B) \neq f(A) \cap f(B)$.
 - (iv) Let $A = [0, \pi]$. Find $f^{-1}(f(A))$ and $f(f^{-1}(A))$.
2. Let $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4, 5\}$.
 - (i) How many $f: A \rightarrow B$ are there?
 - (ii) How many $f: B \rightarrow A$ are there?
 - (iii) How many injective $f: A \rightarrow B$ are there?
 - (iv) How many injective $f: B \rightarrow A$ are there?
 - (v) How many surjective $f: A \rightarrow B$ are there?
 - (vi) How many surjective $f: B \rightarrow A$ are there?
3. Which of the following statements about natural numbers are true, which false?
 - (i) 2 is prime or 2 is odd.
 - (ii) 2 is prime or 2 is even.
 - (iii) If 2 is odd then 2 is prime.
 - (iv) If 2 is even then 2 is prime.
 - (v) For all $n \in \mathbb{N}$, if n is a square number then n is not prime.
 - (vi) For all $n \in \mathbb{N}$, n is not prime if and only if n is a square number.
 - (vii) For all even primes $p > 2$, $p^2 = 2021$.
4. Organise the following assertions about a function $f: \mathbb{R} \rightarrow \mathbb{R}$ into pairs such that one member of the pair is true if and only if the other is false. Re-write each statement using symbols (\in , \forall , \exists , etc.)
 - (1) for all real numbers x, y there exists a real number $z > x$ such that $f(z) > y$;
 - (2) for every real number x there exists a real number y such that for all real z either $z \leq y$ or $f(z) \neq x$;
 - (3) there exist real numbers x, y such that for every real number z if $z \leq y$ then $f(z) = x$;
 - (4) there is a real number x such that for every real number y there is a real number $z > y$ for which $f(z) = x$;
 - (5) for all real x and y there is a real number z such that $z \leq y$ and $f(z) \neq x$;
 - (6) there exist real numbers x and y such that for every real number z either $z \leq x$ or $f(z) \leq y$.
5. Each card in a pack has a number on one side and a letter on the other. Four cards are placed on the table:

2	3	A	B
---	---	---	---

You are permitted to turn just two cards over in order to test the following hypothesis: *a card that has an even number on one side has a vowel on the other*. Which two cards should you turn? Or is it impossible?

6. Let X , Y and Z be sets, and let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. Which of the following statements are true, which false? In each case either carefully prove the statement or give a specific counter-example.

- (i) if f and g are surjective then $g \circ f$ is surjective.
- (ii) if g is surjective then $g \circ f$ is surjective.
- (iii) if $g \circ f$ is surjective then g is surjective.

7. Let $n \geq 2$ be an integer, let S be the set of $n \times n$ matrices with real coefficients, and define $f: S \rightarrow \mathbb{R}$ by

$$f(A) = \sum_{i=1}^n a_{ii} \quad \text{for} \quad A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}.$$

Prove or disprove each of the following statements:

- (i) $f(A + B) = f(A) + f(B)$ for all $A, B \in S$;
- (ii) $f(AB) = f(A)f(B)$ for all $A, B \in S$;
- (iii) $f(AB) = f(BA)$ for all $A, B \in S$;
- (iv) $f(A) = 0$ if and only if A is not invertible.

8. [A bit harder] Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Translate the following statement into English:

$$\forall \varepsilon > 0 \quad \forall a \in \mathbb{R} \quad \exists \delta > 0 \quad \forall x \in \mathbb{R} \quad |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon.$$

Express the following statement using the symbols \forall , \exists and \Rightarrow :

for every positive real number ε there exists a positive real number δ such that for all real numbers a and x , $|f(x) - f(a)| < \varepsilon$ whenever $|x - a| < \delta$.

Do these statements say the same thing? Can you prove whether or not they hold for the case $f(x) = x^2$?