

Part A.

1. For each statement below, prove if the statement is true. Otherwise, disprove by giving a counterexample.

- (i) If two surfaces S_1 and S_2 have the same first fundamental forms, then their Gaussian curvatures are the same.
- (ii) If S is a minimal surface with Gaussian curvature zero, then S must be part of a plane.

2.

Let C be the cylinder

$$C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\},$$

and let

$$\gamma(t) = \begin{pmatrix} \cos t \\ \sin t \\ at \end{pmatrix}, \quad a > 0,$$

be a helix on C . Compute the geodesic curvature of γ .

Part C.**1.**

A surface of revolution is generated by revolving a plane curve

$$\gamma(u) = (r(u), z(u)), \quad r(u) \geq 0,$$

about the z -axis. A standard parametrization of the surface is

$$\mathbf{r}(u, \theta) = (r(u) \cos \theta, r(u) \sin \theta, z(u)), \quad \theta \in [0, 2\pi).$$

A parallel of the surface is a curve obtained by fixing $u = u_0$ and varying θ :

$$\theta \mapsto \mathbf{r}(u_0, \theta) = (r(u_0) \cos \theta, r(u_0) \sin \theta, z(u_0)).$$

Show that if all parallels of a surface of revolution are S are geodesics, then S must be a circular cylinder.