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(Faraday’s law) (Ampère-Maxwell law)

About these notes

This document collects additional material for the B7.2 Electromagnetism course, which is a third

year course in the mathematics syllabus at the University of Oxford. Nothing from this doc-

ument is examinable, either because the material is slightly off-syllabus, or because it is more

difficult. We refer to sections and equations from the lecture notes as (L. . . ). Please send any

questions/corrections/comments to mark.mezei@maths.ox.ac.uk.
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2 Boundary value problems in electrostatics

2.5 Complex analytic methods

One can also solve certain boundary value problems in electrostatics using complex analysis. For

example, for problems that have translational symmetry in the z-axis direction, so that ϕ =

ϕ(x, y) depends only on the x and y coordinates, the Laplace equation in three dimensions (L2.62)

effectively reduces to the Laplace equation in two dimensions:

0 = ∇2ϕ =
∂2ϕ

∂x2
+

∂2ϕ

∂y2
. (2.1)

Introduce the complex coordinate

z ≡ x+ iy , (2.2)

thus identifying R2 ∼= C with the complex plane. Recall that a function f is said to be holomorphic

in a domain U ⊆ C if it is complex differentiable at every point of U . We write the real and

imaginary parts of f as u(x, y) ≡ Re f(z), v(x, y) ≡ Im f(z), viewed as functions on R2 ∼= C. Then
a result in complex analysis shows that both u and v are harmonic functions, i.e. ϕ = u and ϕ = v

both satisfy (2.1).

Example Taking f(z) = z2, we have u + iv = (x + iy)2 = x2 − y2 + i(2xy), and hence both

ϕ = u = x2 − y2 and ϕ = v = 2xy are harmonic.

This example is of course particularly simple, but it immediately solves an interesting electrostatics

problem: notice that the equipotentials for ϕ(x, y) ≡ xy are rectangular hyperbolae, xy = constant.

It follows that ϕ solves the Dirichlet problem for the first quadrant R ≡ {x, y ≥ 0}, bounded
by the positive x-axis and positive y-axis, with ϕ |∂R = 0. Physically, this then models the

electrostatic potential outside the right-angled corner of a conductor! Further examples, that also

have interesting physical applications, may be found in the Feynman lectures.
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3 Macroscopic media

3.4 More on magnetic dipoles

As for dielectrics, we can make all of this more quantitative by studying magnetic dipoles in more

detail. An electric dipole can be constructed from two point charges ±q, in a limit where the

charges coalesce. There is a similar construction for a magnetic dipole, although it is a little more

fiddly as magnetic fields are generated from currents, not point charges. We start from the general

formula (L3.19) for the vector potential:

A(r) =
µ0

4π

∫
R

J(r′)

|r− r′|
dV ′ . (3.1)

Here J δV ′ = ρv δV ′ = q v, where q is the charge in the small volume δV ′, centred at position r′.

On the other hand, precisely as in our derivation of the integral Biot-Savart law formula (L3.11),

we may identify I δr′ = q v for a current I flowing through a loop C, with segment δr′. Thus such

a loop of current generates a magnetic vector potential

A(r) =
µ0I

4π

∫
C

dr′

|r− r′|
. (3.2)

To construct a point magnetic dipole at the origin, we take C to be a small circle, where we

choose our coordinate axes so that this lies in the (x, y)-plane, with centre at the origin. Then

r′ = (a cosφ′, a sinφ′, 0) parametrizes C, with a > 0 the radius of this circle, and the Taylor

expansion (L3.37) gives

A(r) =
µ0I

4π

∫
C
dr′

[
1

r
+

r · r′

r3
+O(|r′|2)

]
. (3.3)

We will eventually take |r′| = a → 0. The first term in the expansion (3.3) is zero, as the

fundamental theorem of calculus gives
∫
C dr′ ≡

∫
(dr′/dφ′) dφ′ = 0, since the circle C is a closed

loop. Thus with dr′ = (−a sinφ′, a cosφ′, 0) dφ′, r = (x, y, z) we may evaluate (3.3) explicitly as

A(r) =
µ0I

4πr3

∫ 2π

0
(−a sinφ′ , a cosφ′ , 0 )

[
x a cosφ′ + y a sinφ′ +O(a2)

]
dφ′

=
µ0I

4πr3
[
πa2 e3 × r+O(a3)

]
. (3.4)

Comparing to the magnetic dipole vector potential (L3.50), we thus define

m ≡ Iπa2 e = I · area(C) e , (3.5)

where area(C) = πa2 is the area enclosed by C, and e is a unit vector perpendicular to this

surface, which here is e = e3 because of how we aligned our coordinate axes. Although we have

only derived (3.5) for a circular loop, it holds for an arbitrary loop of current confined to a plane.

By analogy with the electric dipole, we then take I → ∞ and a → 0, holding m fixed. In this limit

the O(a3) terms in (3.4) do not contribute, and the vector potential (3.4) is exactly the dipole

vector potential (L3.50).
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If we place such a magnetic dipole in an external magnetic field B, what force does it experience?

The dipole is generated by the circular current I in C, and it is the magnetic component q v×B of

the Lorentz force (L3.8) that acts on the moving charges in this current. Recalling that q v = I δr′

for an element of current, we sum these forces to obtain

F =

∫
C
I dr′ ×B(r′)

= I

∫ 2π

0
(−a sinφ′ , a cosφ′ , 0 )×

[
B(0) + ∂xB(0) a cosφ′ + ∂yB(0) a sinφ′ +O(a2)

]
dφ′

= I
{
πa2 [e2 × ∂xB(0)− e1 × ∂yB(0)] +O(a3)

}
= I

{
πa2 [∂xB3(0) e1 + ∂yB3(0) e2 − (∂xB1(0) + ∂yB2(0)) e3] +O(a3)

}
= I

{
πa2 [∇ (B3(0))− (∇ ·B(0)) e3] +O(a3)

}
. (3.6)

Here in the second line we have Taylor expanded B about the origin, where the dipole is, and have

then proceeded to evaluate the integral and cross products explicitly. Taking the point magnetic

dipole limit, where m = Iπa2 e3, then gives

F = ∇ (m ·B)− (∇ ·B)m = ∇ (m ·B) , (3.7)

where we have used the Maxwell equation ∇ ·B = 0. This force is conservative, with potential

F = −∇Vdipole , Vdipole ≡ −m ·B . (3.8)

Remarkably, this is exactly the same as for the force on an electric dipole in (L4.2), where we

replace electric dipole moment p by magnetic dipole moment m, and electric field E by magnetic

field B!

The torque about the origin is

τ =

∫
C
r′ ×

[
I dr′ ×B(r′)

]
= I

∫
C
dr′

[
r′ ·B(r′)

]
, (3.9)

where we have used the vector triple product identity (LA.6), together with the fact that r′ is

orthogonal to dr′ for the circle C. We may similarly compute this to obtain

τ = I

∫ 2π

0
(−a sinφ′ , a cosφ′ , 0 )

[
B1(0) a cosφ

′ +B2(0) a sinφ
′ +O(a2)

]
dφ′

= I
[
πa2(−B2(0) , B1(0) , 0 ) +O(a3)

]
→ m×B . (3.10)

Again, (3.10) is the same as the torque (L4.4) on an electric dipole, but replacing p → m, E → B.

Magnetic dipoles in an external magnetic field thus behave in exactly the same way as electric

dipoles behave in an external electric field. In particular, magnetic dipoles will tend to align

everywhere with B. This explains why iron filings align in an external magnetic field: an iron

filing behaves as a magnetic dipole, due the alignment of electron spins within it. But actually
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you might have noticed that even more is true: the electric and magnetic fields produced by point

dipoles at the origin are respectively (for r ̸= 0)

Edipole =
1

4πϵ0

[
− p

r3
+

3(p · r) r
r5

]
, Bdipole =

µ0

4π

[
−m

r3
+

3(m · r) r
r5

]
. (3.11)

They take exactly the same form!

(a) The magnetic field generated by a small cir-
cular current loop lying in a horizonal plane per-
pendicular to the page.

(b) The electric field generated by nearby point
charges lying on a vertical axis, with the positive
charge above the negative charge.

Figure 1: Comparing dipoles: the field lines look identical far from the centre, as in (3.11), but
notice they point upwards in the middle of Figure 1a, and downwards in the middle of Figure 1b.

This might lead you to suspect there is more than just an analogy going on here: does this

mean that a point magnetic dipole can also be constructed from two point magnetic charges? To

some extent the answer is yes, at least mathematically, but conceptually this is wrong: as far

as we know, point magnetic charges don’t exist. Nevertheless, some textbooks introduce point

magnetic charges for precisely this purpose, and indeed many physicists will then use this model

when thinking about the behaviour of magnetic fields. For example, does the north pole of one

magnetic dipole attract or repel the north pole of another magnetic dipole? The answer can be

determined using (3.8) and (3.10), and knowing the form of the dipole magnetic field in Figure L17;

but viewing the north poles as positive point magnetic charges makes it immediately clear they

repel, which is correct! More fundamentally though, in (3.11) have taken an idealized point dipole

limit: the field lines near the “core” of a finite sized current loop and pair of nearby point charges

±q actually point in opposite directions – see Figure 1.

The effective magnetostatic Maxwell equations in a material can be derived in a precisely anal-

ogous way to those for electrostatics in a dielectric medium. A large number of magnetic dipole
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moments mi at positions ri will generate a vector potential

A(r)dipoles =
µ0

4π

N∑
i=1

mi × (r− ri)

|r− ri|3
→ µ0

4π

∫
R

M(r′)× (r− r′)

|r− r′|3
dV ′ , (3.12)

with continuum limit precisely as in (L4.6), so that M(r′) δV ′ is the magnetic dipole moment in a

small volume δV ′, centred at position r′.

Definition The vector field M is called the magnetization density.

A similar computation to (L4.7) then gives

A(r)dipoles =
µ0

4π

∫
R
M(r′)×∇′

(
1

|r− r′|

)
dV ′ =

µ0

4π

∫
R

[
∇′ ×M(r′)

|r− r′|
− ∇′ ×

(
M(r′)

|r− r′|

)]
dV ′

=
µ0

4π

∫
R

∇′ ×M(r′)

|r− r′|
dV ′ +

µ0

4π

∫
∂R

M(r′)

|r− r′|
× dS′

=
µ0

4π

∫
R

∇′ ×M(r′)

|r− r′|
dV ′ . (3.13)

Here in the second line we have used a corollary of the divergence theorem to write the volume

integral of a curl as a boundary integral of a cross product, and in the last step we have assumed

that M is zero on the boundary of R, the region containing the magnetic dipoles. Comparing

(3.13) to (L3.19) we may define

JM ≡ ∇×M . (3.14)

The subscript M here denotes these are effective magnetizing currents, that generate the vector

potential (3.13) due to magnetic dipoles in the material.

We may then divide the electric current in Ampère’s law (L3.28) into a free current density Jfree

and the magnetizing current JM in (3.14). Thus

∇×B = µ0 J = µ0 (Jfree + JM ) = µ0 Jfree + µ0∇×M . (3.15)

On the other hand, the magnetization density M will align everywhere with the magnetic field B,

so that the cross product M(r)×B(r) = 0, and there is no torque on the magnetic dipoles. Thus

M ≡ χm

µ
B ≡

(
1

µ0
− 1

µ

)
B . (3.16)

Definition µ is called the permeability, with χm ≡ (µ/µ0 − 1) the magnetic susceptibility.

µ is not constant in general, but for uniform materials it is approximately constant. For the vacuum

µ/µ0 = 1, for air µ/µ0 ≃ 1.00000037, for water µ/µ0 ≃ 0.999992, while for iron µ/µ0 ≃ 200, 000!

Substituting (3.16) into (3.15), we have

µ0 Jfree = ∇× (B− µ0M) = µ0∇×
(
1

µ
B

)
. (3.17)
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which leads to the effective Maxwell equations

∇ ·B = 0 , ∇×
(
1

µ
B

)
= Jfree . (3.18)

Notice that the magnetic field generated by Jfree in a magnetic material is µ/µ0 times the field that

would be generated without the magnetic material present. This is e.g. a little larger for air, since

χm > 0 (called paramagnetism), but a little smaller for water, since χm < 0 (called diamagnetism).

Definition The quantity H ≡ 1
µ B in (3.18) is called the magnetic field strength.

Magnetism is more complicated than electric polarization, for a number of reasons. First, the

alignment of magnetic dipoles in an external magnetic field that we have described is more specif-

ically called paramagnetism. It usually results in a small positive χm > 0, with the aligned dipoles

effectively increasing slightly the overall magnetic field. However, there are also materials, such as

water, with a small but negative χm < 0. This diamagnetism is not due to the alignment of dipoles,

but rather an applied magnetic field can result in a change in electric currents in the medium (at

the atomic scale, by changing electron orbits), which in turn generates a magnetic field in the op-

posite direction. These two effects in general compete, and which is dominant depends on precise

atomic/molecular structure. Finally, ferromagnetic materials, such as iron, become magnetized

under even a small applied magnetic field, and moreover then remain magnetized. Here the align-

ment of (spin) magnetic dipoles in one region influences the alignment in neighbouring regions –

our discussion ignored dipole-dipole interactions, which in ferromagnetic materials are important.
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5 Electrodynamics and Maxwell’s equations

5.6 Time-dependent Green’s function

5.6.2 Radiation from an accelerated charge

To avoid confusion with derivatives, let tr (previously t′) denote the solution to the implicit equation

c(t − tr) = R where R = |R| and R = r − r0(tr). With the notations β = v0(tr)/c and n =

R(tr)/R(tr), we can write the Liénard–Wiechert potentials of a moving point charge as

ϕ(r, t) =
q

4πϵ0

1

R−R · β
and A(r, t) =

q

4πϵ0c

β

R−R · β
.

To compute the fields E and B, we need to know the implicit dependence of tr = tr(r, t) on r and

t. Therefore, consider the defining relation t = tr + R(r, tr)/c. We regard (r, t) as independent

variables and compute the partial derivatives of this equation to get

• Taking the t-derivative, we find

1 =
∂tr
∂t

+
1

c

∂R

∂tr

∂tr
∂t

= (1− n · β) ∂tr
∂t

,

where in the last equality we used (L5.68).

• Taking the gradient, we find (using the chain rule)

0 = ∇t = ∇tr +∇R(r, tr)

c
= ∇tr +

n

c
+

1

c

∂R

∂tr
∇tr =

n

c
+ (1− n · β) (∇tr) .

In summary, we have obtained that

∂tr
∂t

=
1

1− n · β
and ∇tr = − n/c

1− n · β
. (5.1)

Using these, we can compute the electromagnetic fields. For −∇ϕ, we need

−∇ 1

R−R · β
=

1

R2(1− n · β)2
∇ (R−R · β) = 1

R2(1− n · β)2
(

∇R︸︷︷︸
n+ ∂R

∂tr
∇tr

− ∇(R · β)︸ ︷︷ ︸
−β+

∂(R·β)
∂tr

∇tr=−β+(−cβ2+R·β′)∇tr

)

= − β

R2(1− n · β)2
+

n

R2(1− n · β)3
(
1− β2 +R · β′/c

)
(5.2)

where we set β′ = v′
0(tr)/c to the acceleration of the charge, at the retarded time divided by c,

write β = |β| = |v0(tr)|/c, and to get to the last line we gathered terms proportional to the vectors

β and n. To compute ∂A/∂t, we obtain

∂

∂t

β/c

R−R · β
=

(
β′/c

R−R · β
∂tr
∂t

)
− β/c

(R−R · β)2
∂

∂t
(R−R · β)

=
β′/c

R(1− n · β)2
− β/c

(R−R · β)2
( ∂R

∂t︸︷︷︸
−cn·β ∂tr

∂t

− ∂(R · β)
∂tr︸ ︷︷ ︸

−cβ2+R·β′

∂tr
∂t

)

=
β′/c

R(1− n · β)2
− β

R2(1− n · β)3

(
β2 − n · β − R · β′

c

)
. (5.3)
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Combining the two calculations above, we obtain for E = −∇ϕ− ∂A/∂t the result

E(r, t) =
q

4πϵ0

[
n− β

R2(1− n · β)3
(
1− β2 +R · β′/c

)
− β′

cR(1− n · β)2

]
. (5.4)

Note that both (5.2) and (5.3) contributed to the coefficient of β, and it turned out to equal minus

that of n. Similarly we can compute the magnetic flux density B. The result can be stated as

B(r, t) =
1

c
n×E. (5.5)

Note that B is orthogonal to E and n. Organizing the expression for E according to the R-scaling,

we find two contributions:

E =
1

R2

q(n− β)(1− β2)

4πϵ0(1− n · β)3
+

1

R

q

4πϵ0c(1− n · β)3
(
(n− β)(n · β′)− β′(1− n · β)

)︸ ︷︷ ︸
n×((n−β)×β′)

. (5.6)

The first contribution ∝ 1/R2 is Coulomb-like, but the second contribution ∝ 1/R falls off only

linearly and thus has longer range. Note that this long-range component is only present when the

charge accelerates (β′ ̸= 0), hence we do not see it for a charge with constant velocity.

We conclude: An accelerated electric charge emits electromagnetic radiation! This is the princi-

ple behind antennas, synchrotrons, and free electron lasers.

For the Poynting vector P = E×B/µ0 we find

P = E× n×E

cµ0
=

|E|2n−E(E · n)
cµ0

=
q2

16π2ϵ0cR2

|n×
(
(n− β)× β′) |2
(1− n · β)6

n+O(1/R3). (5.7)

This energy flux density is directed along n, that is, radiation is being emitted by the moving

charge. Integrating P over a sphere, once finds for the total emitted power

dW

dtr
=

(
∂t

∂tr

)∫
P · dS =

q2

6πϵ0c
γ4

(
|β′|2 + γ2(β · β′)2

)
, (5.8)

where γ = 1/
√

1− β2 and the (∂t/∂tr) factor accounts for the radiating charge’s own time that

is different from t. If one applies this formula to the model of a hydrogen atom, with the electron

moving in a circular orbit (note β · β′ = 0)

r0(t) = r0

cosωt
sinωt
0

 , β(t) =
r0ω

c

− sinωt
cosωt

0

 , β′(t) =
r0ω

2

c

− cosωt
− sinωt

0

 ,

one finds that the entire binding energy of an electron in the ground state would be radiated away

in ≈ 10−11 seconds. This contradicts the existence of hydrogen and suggests that the classical

mechanical model of the atom is too simplistic. This puzzle is resolved in quantum mechanics.
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7 Electromagnetism and Special Relativity

The theory of electromagnetism developed in the 19th century was extraordinarily successful,

unifying the previously unrelated phenomena of electricity and magnetism into a single theory.

For example, it explained Faraday’s law, where a time-dependent magnetic field produces an

electric field, which in turn led to the development of electric motors, transformers, etc. As

we saw in the last section, the theory also interprets visible light, along with the rest of the

electromagnetic spectrum (X-rays, microwaves, radio waves, etc), as a wave propagating through

this electromagnetic field. Maxwell identified c = 1/
√
ϵ0µ0 with the speed of light in vacuum. But

that also led to a problem: speed relative to what?

Suppose that Louisa is on a train that moves in a straight line with constant speed v relative to

Franklin, who is at rest in the train station. Louisa rolls a marble along the aisle of the train, in

the direction of its motion, with speed u. This means that in Louisa’s inertial reference frame S ′,

fixed relative to the train, the marble moves with speed u. In Frankin’s inertial reference frame

S, fixed relative to the Earth’s surface, what is the observed speed of the marble? It’s certainly

greater than u, due to the train’s speed v > 0. If you asked a random person in the street, they

would almost certainly say Franklin sees the marble moving with speed u+ v. This is intuitively

obvious, and wrong. It turns out it’s only approximately true, for speeds u, v ≪ c.

Rather than experiment with marbles, suppose that Louisa and Franklin instead measure the

electrostatic force between electric charges, and the magnetostatic force between current carrying

wires, and from Maxwell’s equations thus measure ϵ0, µ0. Going back to Galileo, we have:

Postulate 1 The laws of physics are the same in all inertial reference frames.

By this principle, Louisa and Franklin should measure the same values for ϵ0, µ0 in their two

reference frames, namely those quoted earlier in these lecture notes. But according to Maxwell

they will then both observe light to be propagating at the same speed c = 1/
√
ϵ0µ0. Light

is clearly not like marbles: it’s always moving at the same speed, no matter how your inertial

reference frame is moving relative to it. If we believe that Postulate 1 (the Principle of Relativity)

applies to electromagnetism, we are led to:

Postulate 2 The speed of light in vacuum is the same in all inertial reference frames.

These two postulates directly led to Einstein’s 1905 theory of Special Relativity. It supersedes the

Galilean view of space and time, although reduces to it in the limit of small speeds v ≪ c.1

Let us examine the consequences of this a little further. Introduce time and space coordinates

t, x, y, z for Franklin’s reference frame S, and t′, x′, y′, z′ for Louisa’s reference frame S ′. Suppose

1It is worth remarking that before 1905 physicists, including Maxwell, had instead postulated that Maxwell’s
equations are only valid in a unique universal rest frame. This was supposed to be filled with something called
aether, through which light propagated. However, a famous 1887 experiment by Michelson and Morely provided
strong evidence that Postulate 2 is correct.
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v

Figure 2: Reference frame S with coordinates t, x, y, z, and reference frame S ′ with coordinates
t′, x′, y′, z′. The origins O, O′ coincide at times t = 0 = t′, with S ′ moving in the x-axis direction,
relative to S, with speed v. The origin O′ is thus at position x = vt, y = z = 0 in the frame S.

as above that Louisa’s reference frame has speed v relative to Franklin’s, moving in the x-axis

direction. Suppose furthermore that their origins O, O′ coincide at times t = 0 = t′. At this

moment, a flash of light is emitted from the common origins, expanding as a spherical wave

(precisely as in the retarded Green’s function (L5.60)). According to Postulate 2, the speed of this

wave is c in both reference frames, so in particular Franklin will see the wave obey

ct = |r| ⇒ −c2t2 + x2 + y2 + z2 = 0 , (7.1)

in his frame S. Here ct is the distance travelled by light in time t, while |r| ≡
√

x2 + y2 + z2 is the

distance of the point r = (x, y, z) from the origin O. But similarly Louisa will see the wave obey

ct′ = |r′| ⇒ −c2t′2 + x′2 + y′2 + z′2 = 0 , (7.2)

in her frame S ′.

The issue now is how these coordinates are related to each other. Galileo would say

Galilean transformation : t′ = t , x′ = x− vt , y′ = y , z′ = z . (7.3)

This is a particular case of the more general set of Galilean transformations with

t′ = t− t0 , r′ = R r− r0 − vt . (7.4)

Here t0 is a constant, that is zero if the two observers synchronize their clocks; r0 is a constant

vector, that is zero if the two observers fix a common origin at time t = 0; R is a 3× 3 orthogonal

matrix (i.e. a rotation and potentially also reflection of the spatial directions); and v is a constant

velocity. The set of transformations (7.4) form a group, called the Galilean group. They map

inertial reference frames to inertial reference frames, in particular meaning they map uniform

motion (i.e. with constant velocity) in one reference from to uniform motion in the other frame.
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Postulate 1 says that the law physics are the same in any inertial reference frame, and indeed

Newton’s laws of motion are invariant under Galilean transformations.

This Galilean view of space and time was the standard lore before 1905, but it is not consistent

with electromagnetism. Specifically, if you substitute the Galilean transformation (7.3) into (7.2),

you obtain −c2t2 + (x − vt)2 + y2 + z2 = 0, which is not the spherical wavefront (7.1) seen in

Franklin’s frame. It should be clear why: according to Galileo, a ray of light travelling at speed

u = c in the positive x-axis direction in Louisa’s frame S ′ has x′ = ut, which in Franklin’s frame

S is x = x′ + vt = (u + v)t, and thus has speed u + v = c + v ̸= c. Galilean transformations are

inconsistent with Postulate 2.

The transformations (7.4) are linear maps from (ct, x, y, z) ∈ R4 to (ct′, x′, y′, z′) ∈ R4. Here

we have multiplied the time coordinate by c so that ct also has dimensions of length. Notice the

maps are linear because we want to map uniform motion (which traces out straight lines in R4) to

uniform motion. We may rewrite (7.4) as
ct′

x′

y′

z′

 =


1 0 0 0

−v1
c

−v2
c R

−v3
c



ct
x
y
z

 +


ct0
x0
y0
z0

 ≡ G


ct
x
y
z

 + constant . (7.5)

Here the 3× 3 orthogonal matrix R fills the lower right hand block of the 4× 4 matrix G.

The linear transformation that maps (ct, x, y, z) to (ct′, x′, y′, z′) that is consistent with (7.1)

and (7.2) is

Lorentz transformation : ct′ =
ct− v

cx√
1− v2

c2

, x′ =
x− v

c · ct√
1− v2

c2

, y′ = y , z′ = z . (7.6)

Specifically, one can easily verify that −c2t′2 + x′2 + y′2 + z′2 = −c2t2 + x2 + y2 + z2 under this

transformation. Notice that (7.6) approximately reduces to (7.3) for speeds v ≪ c. Since (7.6) is

linear, we may write it similarly to (7.5)
ct′

x′

y′

z′

 =


γ −v

cγ 0 0
−v

cγ γ 0 0
0 0 1 0
0 0 0 1



ct
x
y
z

 ≡ L


ct
x
y
z

 , (7.7)

where we have introduced

γ = γ(v) ≡ 1√
1− v2/c2

. (7.8)

The Galilean transformation (7.3) has x′ = x − vt, while the Lorentz transformation has x′ =

γ(x − vt), and moreover treats the time and space directions symmetrically. Notice also that a

marble moving with speed u along the positive x-axis direction in Louisa’s frame S ′ has x′ = ut′,

which in terms of x and t is the equation

γ(x− vt) = uγ
(
t− v

c2
x
)

⇒ x =
(u+ v)t

1 + uv/c2
, (7.9)
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so that the speed as seen in Franklin’s frame S is (u+v)/(1+uv/c2). This approximately reduces to

u+v, for uv ≪ c2. On the other hand, for u = c the speed in the frame S is (c+v)/(1+cv/c2) = c.

Lorentz discovered these transformations by studying Maxwell’s equations, realizing they were not

invariant under Galilean transformations. Indeed, we noted this already in section L5.2 when

motivating Faraday’s law. For example, the Biot-Savart law says that moving charges generate

magnetic fields, but moving relative to which reference frame? Einstein showed that the same

transformations follow directly from Postulates 1 and 2, independently of Maxwell’s equations.

The most striking feature of (7.6) is that the time coordinates in the two inertial frames are not

the same, due to the factor of γ. Consider a clock at rest in Franklin’s frame S. The location of

the clock on two different ticks is the same, so ∆x = 0, and (7.6) gives

∆t′ = γ∆t . (7.10)

Here ∆t is the time interval between ticks of the clock, as seen in Franklin’s frame S, while ∆t′ is

the time interval between ticks of the clock, as seen in Louisa’s frame S ′. Since γ > 1 for v ̸= 0,

∆t′ > ∆t. In other words, Louisa sees the time between ticks of Franklin’s clock taking longer

than the time ∆t. His clock seems to be running slow. The fact that ∆t′ = ∆t in Galileo’s view

of space and time was always a (tacit) assumption, and it is not compatible with Postulate 2.

The Lorentz transformations may be characterized mathematically as follows. We first assemble

the time and space coordinates into a four-vector X⃗ ∈ R4, writing X⃗ = (ct, x, y, z)T . We may then

write a general Lorentz transformation, as in (7.7), as

X⃗ ′ = L X⃗ , (7.11)

with L a linear map on spacetime R4. We then define the 4× 4 diagonal matrix

η ≡


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (7.12)

(the Minkowski metric tensor), and note that we may write

−c2t2 + x2 + y2 + z2 = X⃗T η X⃗ . (7.13)

Lorentz transformations preserve this quadratic form, meaning

X⃗ ′T η X⃗ ′ ≡ X⃗TLT η L X⃗ = X⃗T η X⃗ holds for all X⃗ ∈ R4, (7.14)

or in other words −c2t′2 + x′2 + y′2 + z′2 = −c2t2 + x2 + y2 + z2. This in turn implies

LT η L = η . (7.15)
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This is the defining property of a Lorentz transformation L. One can compare to the 3 × 3

orthogonal transformation R, which by definition satisfies RTR = 13×3, and preserves Euclidean

distance so

r′T r′ ≡ rTRTR r = rT r holds for all r ∈ R3. (7.16)

Indeed, rotations are contained within the Lorentz transformations as

L =


1 0 0 0

0
0 R
0

 , (7.17)

just as they are contained within the Galilean transformations (7.5). To summarize, Lorentz

transformations preserve the Lorentzian square distance −c2t2 + x2 + y2 + z2 in R4, which unlike

a usual distance can be positive, negative, or zero.

After this brief detour into Special Relativity and Lorentz transformations, we return to dis-

cuss electromagnetism. We have already noted that Maxwell’s equations are not invariant under

Galilean transformations. Under a 3 × 3 rotation R, a vector such as E or B would rotate as a

vector, and we have seen that Lorentz transformations naturally act on four-vectors, rather than

three-vectors, but contain rotations as a special case. The correct Lorentz transformations of

electromagnetism are most easily stated by first recalling that

E = −∇ϕ− ∂A

∂t
, B = ∇×A , (7.18)

in terms of the potentials ϕ and A. Recalling also that 1
c E and B have the same dimensions, it is

natural to put ϕ and A into the four-vector

A⃗ ≡
(
ϕ

c
,A1, A2, A3

)T

=

(
ϕ

c
, A

)T

, (7.19)

and similarly define the four-current

J⃗ ≡ (c ρ , J) , (7.20)

in terms of the charge density ρ and current density J. The four-vector A⃗′ and current J⃗ ′ in the

frame S ′ are then simply

A⃗′ = L A⃗ , J⃗ ′ = L J⃗ , (7.21)

where L is the Lorentz transformation from S to S ′. In Lorenz gauge we can write the Maxwell

equations (L5.34), (L5.35) as the single four-vector equation

□ A⃗ = −µ0 J⃗ . (7.22)
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Moreover, notice that

□ ≡ − 1

c2
∂2

∂t2
+

3∑
i=1

∂2

∂x2i
= ∂⃗ T η ∂⃗ , (7.23)

where ∂⃗ ≡ (1c∂t, ∂x, ∂y, ∂z)
T is the gradient operator on spacetime. The d’Alembertian □ is thus the

natural analogue of the Laplacian in spacetime, and is invariant under Lorentz transformations.

It follows that Maxwell’s equations (7.22) take the same form in both reference frames, with both

sides transforming as a Lorentz four-vector.

Example We reconsider the example at the end of section 5.6, namely a point charge q moving

with constant velocity v = v e1 in the reference frame S. We computed the potentials ϕ and A in

equations (L5.75) and (L5.76), using the general solution to the time-dependent Maxwell equations

(L5.62) and (L5.63), respectively. The point charge hence generates both an E and a B field in

the frame S. On the other hand, in the frame S ′ this charge is at rest. Taking this to be the origin

r′ = 0 in S ′, the laws of statics imply that the charge generates the potentials

ϕ′(r′) =
q

4πϵ0

1

r′
, A′ = 0 , (7.24)

in the frame S ′.

The four-vector A⃗′ = ( ϕ′

c ,A′)T in the frame S ′ is related the four-vector A⃗ = (ϕc ,A)T in the

frame S via the Lorentz transformation (7.21). Using (7.7) this reads

ϕ′

c
= γ

ϕ

c
− v

c
γ A1 , A′

1 = −v

c
γ
ϕ

c
+ γ A1 , A′

2 = A2 , A′
3 = A3 . (7.25)

The Lorentz transformed postion vector is

r′ = γ(x− vt) e1 + y e2 + z e3 , r′2 = γ2(x− vt)2 + y2 + z2 . (7.26)

Since from (7.24)A′ = 0, one immediately solves the last three equations in (7.25) to findA = ϕ
c2
v.

Substituting this into the first equation in (7.25) then gives

ϕ′

c
= γ

(
1− v2

c2

)
ϕ

c
=

1

γ

ϕ

c
, (7.27)

and hence from (7.24) we deduce

ϕ(r, t) =
qγ

4πϵ0

1√
γ2(x− vt)2 + y2 + z2

, A =
ϕ(r, t)

c2
v , (7.28)

in precise agreement with (L5.75), (L5.76)! We have here derived these formulae from Coulomb’s

law (7.24) in the frame S ′, together with a Lorentz transformation.

The electric and magnetic fields in the frame S may be computed from these potentials using

the usual formulae (7.18). Indeed, combining the latter with the Lorentz transformation of the

potentials (7.25) leads to the transformations

E′
1 = E1 , E′

2 = γ (E2 − vB3) , E′
3 = γ (E3 + vB2) ,

B′
1 = B1 , B′

2 = γ
(
B2 +

v

c2
E3

)
, B′

3 = γ
(
B3 −

v

c2
E2

)
. (7.29)
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After a computation, in our current example with potentials (7.28) one finds

E(r, t) =
q

4πϵ0

γ

[γ2(x− vt)2 + x2 + z2]3/2
(r− vt) , B(r, t) =

1

c2
v ×E . (7.30)

If we denote R ≡ r−vt to be the postion vector of the observation point r, relative to the position

vector vt of the point charge q, we may write these as

E =
qγ

4πϵ0

1[
γ2R2

1 +R2
2 +R2

3

]3/2 R , B =
µ0

4π

qγ v ×R[
γ2R2

1 +R2
2 +R2

3

]3/2 . (7.31)

When v ≪ c we may approximate γ ≃ 1, and the equation for E is Coulomb’s law (L1.7), while

the equation for B is the Biot-Savart law (L3.10)! In particular, notice that we have effectively

derived the Biot-Savart law from Coulomb’s law, using only a Lorentz transformation!

* You may wonder what kind of objects transform as E and B in (7.29). They are clearly
neither scalars nor four-vectors as A⃗. In special relativity they form one object together,
the skew-symmetric matrix:

Fab = ∂⃗aA⃗b − ∂⃗bA⃗a =


0 E1

c
E2
c

E3
c

−E1
c 0 −B3 B2

−E2
c B3 0 −B1

−E3
c −B2 B1 0


ab

. (7.32)

The existence of F makes it natural that E and B transmute into each other under Lorentz
transformation.

There is of course much more to say about Special Relativity than the comments we have

made in this section, but having derived magnetostatics from electrostatics and the structure of

spacetime, we conclude here. ■
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