

B1.2 Set Theory

Sheet 1 — HT26

For this sheet, assume only ZF1-6 (Extensionality, Empty Set, Pairing, Union, Powerset, Comprehension).

Section A

1. Show that for any sets x and y , there is a *unique* set whose elements are precisely x and y .
2. Let a be a set. Show that there is a set whose elements are precisely the two-element subsets of a .

Section B

3. A set a is called **transitive** if $\bigcup a \subseteq a$. Prove:

- A set a is transitive if and only if for all x and y , if $x \in y$ and $y \in a$, then $x \in a$.
- \emptyset is transitive.
- If a is transitive then so is $a \cup \{a\}$.
- a is transitive if and only if $\bigcup(a \cup \{a\}) = a$.
- The intersection of any non-empty set of transitive sets is transitive.
- The union of any set of transitive sets is transitive.
- For any a , there is a set whose elements are precisely the transitive elements of a .

4. For each of the following statements, either prove that it holds for all sets a, b , or give a counterexample.

- $\mathcal{P}(\bigcup a) = a$.
- $\bigcup \mathcal{P}(a) = a$.
- $\mathcal{P}(a) \subseteq \mathcal{P}(b)$ if and only if $a \subseteq b$.

5. Let a and b be sets. For each of the following, prove either that a set as described exists or that no such set exists.

- $\{\{x, y\} : x \in a, y \in b\}$.
- $\{x \cup y : x \in a, y \in b\}$.
- $\{x : x \notin a\}$.
- $\{x : a \in x\}$.
- $\{\bigcup x : x \in a\}$.
- $\{\{x, y\} : x \neq y\}$.

6. Suppose that there exist sets x and y such that $x = \{y\}$ and $y = \{x\}$. Deduce that there exists a non-empty set a with $a = \bigcup a$.

7. Consider the following potential universe of set theory. The objects are the natural numbers, and, writing \in_a for the element relation in this universe, $n \in_a m$ if and only if the n th digit from the right of the binary expansion of m is 1. For example, the binary expansion of 13 is 1101, so $n \in_a 13$ precisely for $n = 0, 2, 3$.

Show that ZF1-6 hold in this universe, assuming standard facts about the natural numbers.

[This is known as the *Ackermann interpretation* of finite set theory in arithmetic.]