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Introduction

This book grew out of an undergraduate masters course taught at the Mathe-
matical Institute, University of Oxford. The book is aimed at mathematicians
and it does not assume any prior knowledge on optimal control (deterministic
nor stochastic). The book also introduces some of the mathematical results
supporting the growing field of reinforcement learning.

We thank Xiaolu Tan, Lingyi Yang and Wojtek Anyszka for comments and
pointing out errors in early versions of these notes.

Assumed knowledge

Although we aimed for the book to be self contained, we assume that the reader
has some familiarity with:

(i) measure theoretic probability (some background material is in the ap-
pendix),

(ii) stochastic differential equations (some background material is in the ap-
pendix),

(iii) basic first and second order PDE theory and numerical methods (e.g.,
finite differences),

(iv) and fundamentals of coding for scientific computing in Python if reviewing
the implemented examples we have online.

Notation

We will try and be consistent with notation throughout this book.

(1) For the avoidance of doubt, 0 ̸∈ N, but 0 ∈ N0 = N ∪ {0}.

(2) A process (whether random or deterministic, in either discrete or continuous
time) will be denoted with a capital letter (say X), and the value it takes
at time t will be either Xt or X(t) as convenient. The space it takes values
in is the calligraphic X , and a typical value in the set is denoted x.

5



6 CONTENTS

(3) The set of times which we are considering in our problem will be T, and
may be {0, 1, ..., T}, {0, 1, ...}, [0, T ] or [0,∞) as context requires. We will
use s and t as time variables.

(4) The size of a set A (that is, the number of elements it contains), will be
written |A| or #A if there might be confusion.

(5) The indicator function will be written 1A, whereA is some event or condition
(so 1A = 1 if A occurs, and 1A = 0 otherwise).

(6) The expectation operator will be written E, and the variance V. These can
be augmented with various superscripts, which specify (in some way) how
the probabilities are chosen, for notational convenience.

(7) Partial derivatives will be written using the shorthand ∂t =
∂
∂t , and when

there is a clear spatial variable x we write ∇ or Dx for the column vector
with components ∂xi

, so ∇v = Dxv is the gradient of v . Similarly, we write
D2

xxv for the Hessian of v.

(8) We think of vectors as column vectors.

(9) The Euclidean norm will be denoted ∥x∥, the ℓ∞ norm denoted ∥x∥∞ =
maxi{|xi|}, and the (Euclidean) inner products will be denoted either ⟨x, y⟩
or x⊤y.

(10) The minimum of two quantities will be written min{x, y} = x ∧ y, and the
maximum max{x, y} = x ∨ y.
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Chapter 1

Discrete-time Deterministic
Control

In the first five chapters of the book, we will look at discrete-time optimal control
problems. In this chapter we will begin by considering deterministic problems,
and then, in the next chapter, introduce randomness in our system.

In optimal control, we wish to make decisions about actions which modify
the state of the world. To make a mathematical model of this, we first need
to describe what we mean by ‘the state of the world’, and how this is affected
by our actions. We will begin with a simple discrete-time deterministic setting,
which avoids technicalities, while showing us some of the basic properties of
these problems.

We begin with a simple motivating example:

Example 1.0.1. Suppose you are running a lemonade stall for a week (days
t = 0, 1, ..., 6). Each day, you choose the quantity of new ingredients to buy,
and you set the price of lemonade that day. Depending on the price you charge,
you will sell a variable amount of lemonade, which reduces your inventory of
ingredients. Your aim is to make the most profit after a week and to keep the
inventory level “close” to given baseline quantity.

To build a mathematical model of this, we write Xt for the ingredients you
have at the start of day t (where for simplicity, we describe ingredients using a
single variable which tells us how many servings we can make). We know the
initial inventory X0 = x0. On day t, you choose a control Ut = (δt, pt), where δt
is the quantity of ingredients you purchase (you cannot buy a negative amount
and there a maximum amount you can buy), and pt is the price you charge
during the day. The demand for lemonade we model using a (deterministic)
decreasing function D, where D(pt) is the number of servings we sell if the
price is pt.

From this, we know that our ingredients satisfy the dynamics

Xt+1 = Xt −D(pt) + δt,
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and we have the practical requirement that Xt ≥ 0.
We now need to describe our costs: let the cost of ingredients1 per single

serving be C(δ) for a given function C, that is, at time t we will spend δt C(δt).
We suppose it may be expensive to hold inventory, which is described by a func-
tion Γ which adds a cost Γ(Xt) at time t. However, these costs are offset by
our revenue from sales, which is given by pt D(pt). We combine these to give
an objective which we want to minimize, that is,

J(x0) =

6∑
t=0

(
δt C(δt) + Γ(Xt)− pt D(pt)

)
subject to the requirement that Xt satisfies our dynamics and is nonnegative,
and starts at the value X0 = x0. The challenge is to find the optimal choice of
Ut = (δt, pt), and the minimal cost.

Motivated by the example we have just seen, we set up the mathematical
notation needed to model a general decision problem. We suppose we have
a state process X = {Xt}t∈T, which describes all (relevant) properties of the
world, with T = {0, 1, ..., T} and T ∈ N. We will assume that X takes values
in X ⊆ Rd for some d ≥ 1. This process will be affected by a control process,
which we denote {Ut}t∈T, and takes values in some set U .

We will assume that X can be described through its one-step dynamics,
which we write as

Xt+1 = f(t,Xt, Ut),

where f : T × X × U → X is a function (which we will assume known, for
now). We will make assumptions about f as we go. This is known as the state
dynamics or plant equation.

An agent wishes to optimize their rewards and costs. There are two con-
ventions – in the mathematical control and optimization community, we usually
think about minimizing some cost; in the reinforcement learning community, we
usually think about maximizing rewards. For the sake of consistency, we will fol-
low the convention of minimizing costs (even for when presenting reinforcement
learning algorithms), but the only difference is a change of sign.

We describe the agent’s costs by a function g : T × X × U → R, so that
g(t,Xt, Ut) represents the cost which the agent must pay at time t, in state Xt,
if they choose control Ut. We seek to find an optimal control, that is, a control
which minimizes

J(x, U) =
∑
t∈T

g(t,XU
t , Ut) (1.1)

with respect to U = {Ut}s∈T, where X0 = x is the initial value of X (which is
where the system begins) and where XU is the solution of the plant equation
(for t ∈ T) with control U .

1We allow C to be non-constant, which captures the idea that it may be very expensive
to purchase a very large quantity of ingredients. When C is linear in δ, we obtain a model
that is similar to the ‘temporary price impact’ framework in algorithmic trading; see e.g., the
books [2, 3].
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Remark 1.0.2. We have said that X should contain all relevant information.
What do we mean by relevant? Clearly X should be enough to allow us to
determine our costs/rewards at every time (we will define these later), as this
allows us to describe our preferences about the world. Furthermore, it is impor-
tant that X is enough to determine the future dynamics of the world, without
needing to know any additional information. In particular, we will assume that
the current state is enough to build a model of the future – we gain nothing
by remembering more information (for example the past values of X and U).
In a stochastic setting, this is closely related to a Markov assumption (but this
is made complicated by the control, as we will see later). If we want to in-
clude more memory, we can expand X to include its past values, at the cost of
increasing the dimension of X.

1.1 Alternative optimization approaches

Now that we have specified our problem, there are a few ways that we could try
and resolve the optimization problem.

1. We could try and find the cheapest Ut for each pair (Xt, Xt+1), and so
define

c(t,Xt, Xt+1) = min
Ut

{
g(t,Xt, Ut) : Xt+1 = f(t,Xt, Ut)

}
.

and c(T,XT , XT+1) = minUT
g(T,XT , UT ). This would convert our prob-

lem into minimizing the new functional
∑

t∈T c(s,Xt, Xt+1), which is the
problem of calculus of variations. Doing this conversion is not always
simple, and it doesn’t easily allow us to include randomness.

2. We could consider minimizing J with respect to {Xt, Ut}t∈T, by treating
Xt+1 = g(t,Xt, Ut) as a constraint, which we can handle with Lagrange
multipliers. This is a very high dimensional problem though, so can be
tricky to solve (but we will return to this approach later, see also Exercise
1.4.2!).

3. We can embed our optimization within a family of optimization problems,
by considering the behaviour over a single step. This exploits the dynamic
nature of our problem, allowing us to reduce our high-dimensional problem
(of finding the best control at all times) to a sequence of low-dimensional
problems (of finding the control at each time, given the future controls).
This will lend itself to stochastic problems as well.

1.2 Building a dynamic programming problem

Instead of just optimizing J in (1.1), we will consider the family of problems
given by minimizing the cost-to-go (or remaining-cost), which we abuse notation
and write as
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J(t, x, U) =
∑
s≥t

g(s,Xt,x,U
s , Us)

where Xt,x,U solves the plant equation with control U and initial value Xt = x.
With this notation, J(0, x, U) is our original optimization objective in (1.1).

The basic principle of dynamic programming is then fairly simple. We ob-
serve that J(t, x, U) depends on U only through the values of Us for s ≥ t. We
then write

J(t, x, U) = g(t, x, Ut) + J(t+ 1, Xt,x,U
t+1 , U).

So, with a further abuse of notation

J(t, x, U) = g(t, x, Ut) + J
(
t+ 1, f(t, x, Ut), {Us}s≥t+1

)
. (1.2)

We can then optimize with respect to Ut and {Us}s≥t+1 independently, to get
the Bellman equation

V (t, x) := inf
U

J(t, x, U)

= inf
Ut

{
g(t, x, Ut) + inf

{Us}s≥t+1

J
(
t+ 1, f(t, x, Ut), {Us}s≥t+1

)}
= inf

Ut

{
g(t, x, Ut) + V

(
t+ 1, f(t, x, Ut)

)}
.

Note that the Bellman equation also holds for t = T if we define V (T+1, x) ≡ 0,
or equivalently V (T, x) = infu g(T, x, u) (and in many cases we will assume that
g(T, x, u) does not depend on u, so this is trivial).

This allows us to compute the optimal cost function (or value function) V
sequentially backward in time t. Using V , we can then identify Ut as the argmin
in the Bellman equation, which describes the (set of) optimal controls.

Remark 1.2.1. Even in this simple setting, there are some interesting things to
say about dynamic programming, which we will explore in more detail later.

(i) One way of looking at dynamic programming is as a computational tool.
Instead of having to solve the high-dimensional constrained optimization
problem where we find the optimal U subject to X being constrained
to satisfy the specified dynamics, we solve a family of low dimensional,
unconstrained optimization problems given by the dynamic programming
equation. This may be computationally much easier, depending on the
context.

(ii) Another, more modelling-driven perspective, is that we might have an
agent who is allowed to change their mind at any time. The dynamic
programming equation tells us that our agent is dynamically-consistent,
in that if we find an optimal strategy at time zero, then that strategy
remains optimal at all future times (with the remaining-cost being used
at time t) and, furthermore, if the agent changes to a different strategy,
which at time t they might consider optimal, then at time t = 0 we are
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indifferent about such a change – the resulting changed policy will also be
optimal.

The key fact that ensures dynamic programming holds here is the additive struc-
ture of J in (1.2), which ensures that J is monotone with respect to the future
cost-to-go – there’s no situation where you don’t want to minimize tomorrow’s
costs unless it’s expensive today.

1.3 Some examples

Example 1.3.1. Let us explore Example 1.0.1 further. Assume the demand
for lemonade is piecewise linear and of the form D(p) = max{0, D̄ − d p} with
D̄ = 10 and d = 5. Let the cost per unit of ingredient be linear C(δ) = q + r δ
for q = 3 and r = 0.5. The inventory cost function Γ(Xt) is taken to be
Γ(x) = γ (x−x̄)2 for simplicity, where the eagerness parameter to keep inventory
close to x̄ = 5 be γ = 1. Figure 1.1 shows the functions C(δ), D(p), and Γ(x).
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Figure 1.1: Left panel: cost function C(δ). Middle panel: demand function
D(p). Right panel: penalty function Γ(x). Model parameters are q = 3, r = 0.5,
D̄ = 10, d = 5, γ = 1, and x̄ = 5.

Let V (t, x) be the value function and U = (δ, p). The functions f and g are
given by

f(t, x, U) = x− (D̄ − d p) + δ ,

g(t, x, U) = δ(q + r δ) + γ (x− x̄)2 − p(D̄ − d p) .

We will temporarily ignore the requirement the the inventory is nonnegative,
and attempt to find an optimal control without this restriction.

From the dynamic programming principle, we have that for t ∈ {0, 1, . . . , 6}

V (t, x) = inf
(δ,p)∈[0,δ̄]×R+

{
δ(q+r δ)+γ(x−x̄)2−p(D̄−d p)+V (t+1, x−(D̄−d p)+δ)

}
with the convention that V (6, x) = Γ(x) (to capture a terminal penalty on being
away from x̄). By inspection of the functions g and f we employ the ansatz
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V (t, x) = h0(t) + h1(t)x+ h2(t)x
2 to obtain

h0(t) + h1(t)x+ h2(t)x
2

= inf
(δ,p)

{
δ(q + r δ) + γ (x− x̄)2 − p(D̄ − d p) + h0(t+ 1)

+ h1(t+ 1)
(
x− (D̄ − d p) + δ

)
+ h2(t+ 1)

(
x− (D̄ − d p) + δ

)2}
.

Using the first order conditions to find the optimizer, we obtain that

p∗ =
D̄ r − d r h1(t+ 1) + (D̄ + d q + 2 d D̄ r − 2 d r x)h2(t+ 1)

2 d(r + (1 + d r)h2(t+ 1))
,

δ∗ = −q + h1(t+ 1) + (−D̄ + d q + 2x)h2(t+ 1)

2(r + (1 + d r)h2(t+ 1))
.

Plugging these back in the Bellman equation and taking all terms to one side,
we match coefficients of powers of x to obtain an equation of the form

0 = {· · · }+ x {· · · }+ x2{· · · }.

From here, given that this equation should be zero for all values of x, we conclude
that each of the expressions in the curly brackets should be zero and obtain a
system of equations that characterize h0, h1, and h2.

2 For example, the equation
for h2 is

h2(t) =
r γ + (r + γ + d r γ)h2(t+ 1)

r + (1 + d r)h2(t+ 1)
,

similarly,

h1(t) =
−2 r x̄ γ + r h1(t+ 1)− (q + D̄r + 2 x̄ γ + 2 d r x̄ γ)h2(t+ 1)

r + (1 + d r)h2(t+ 1)
,

and we do not show the value of h0 because it is not needed to determine the
control. We can then solve these equations numerically; Figure 1.2 shows the
optimal strategy (top panels), inventory trajectory (bottom left), and costs (bot-
tom right), for a variety of initial inventory levels. Note that negative costs are
profits.

2In the GitHub repository for the book there is a Mathematica notebook with the details.
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Figure 1.2: Implementation of the lemonade problem. Top panels: optimal
strategies (p∗t , δ

∗
t ). Bottom left panel: inventory trajectory. Bottom right panel:

cumulative costs (negative values are profits).

We observe that in all these scenarios, the inventory is positive at all times,
and so this requirement (which was omitted in our derivation) is automatically
satisfied. Similar to the previous example, we see the turnpike effect show again,
and by looking at the optimal controls p∗ and δ∗, we see that they are fairly far
from their myopic minimisers D̄/(2 d) and −q/(2 r), that is, the minimisers of
p → −p(D̄ − d p) and δ → δ(q + r δ) respectively. This shows the eagerness of
the controller to keep Xt close to x̄ and the planning involved.

We next consider an abstract special case, for which we can give a closed-
form solution.

Example 1.3.2. Consider the one-dimensional Linear-Quadratic problem, where
X = U = R and for t ≤ T ,

Xt+1 = a+ bXt + Ut ⇒ f(t, x, u) = a+ bx+ u,

g(t, x, u) = α+ β(x− µx)
2 + γ(u− µu)

2.

We make an ansatz (i.e. an educated guess) that the value function is quadratic,
so can be written in the form

V (t, x) = πt + ρt(x− ξt)
2,
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for some values of πt, ρt, ξt. We have the trivial value V (T + 1, x) ≡ 0, so can
write πT+1 = ρT+1 = ξT+1 = 0. The Bellman equation then is

V (t, x) = inf
Ut

{
α+ β(x− µx)

2 + γ(Ut − µu)
2︸ ︷︷ ︸

g(t,x,Ut)

+ πt+1 + ρt+1

(
a+ bx+ Ut − ξt+1

)2︸ ︷︷ ︸
V (t+1,f(t,x,Ut))

}
.

Basic calculus shows that the optimal strategy is of the form

U∗
t =

γµu + ρt+1(ξt+1 − a)

γ + ρt+1
− bρt+1

γ + ρt+1
x =: ht + ktx (1.3)

and hence, by substitution in the Bellman equation,

V (t, x) = α+ β(x− µx)
2 + γ(U∗

t − µu)
2 + πt+1 + ρt+1

(
a+ bx+ U∗

t − ξt+1

)2
= α+ β(x− µx)

2 + γ(ht + ktx− µu)
2

+ πt+1 + ρt+1

(
a+ bx+ ht + ktx− ξt+1

)2
= α+ πt+1 + β(x− µx)

2 + k2t γ
(
x− µu − ht

kt

)2

+ ρt+1(b+ kt)
2
(
x− ξt+1 − a− ht

b+ kt

)2

,

which one can rearrange to obtain

V (t, x) =
[
β + k2t γ + ρt+1(b+ kt)

2
]
×(

x− βµx + ktγ(µu − ht) + ρt+1(b+ kt)(ξt+1 − a− ht)

β + k2t γ + ρt+1(b+ kt)2

)2

+
βγ(ktµx − µu + ht)

2 + βρt+1((b+ kt)µx − ξt+1 + a+ ht)
2

β + k2t γ + ρt+1(b+ kt)2

+
γρt+1(b(µu − ht) + kt(µu − ξt+1 − a))2

β + k2t γ + ρt+1(b+ kt)2
+ α+ πt+1 .

From the above, together with our ansatz, we can write the backward recursion

ρt = β + k2t γ + ρt+1(b+ kt)
2,

ξt =
βµx + ktγ(µu − ht) + ρt+1(b+ kt)(ξt+1 − a− ht)

β + k2t γ + ρt+1(b+ kt)2
,

and similarly for πt (but note that πt is not needed to compute the optimal
strategy). Various algebraic simplifications of this are possible, as is making the
parameters α, β, γ, µx, µu time dependent.

In order to make the above abstract results more concrete, we give a com-
putational example.
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Example 1.3.3. Consider a control problem where the controller wishes to keep
Xt as close as possible to µx = 5 and where Ut different from zero induces a
cost. The dynamics of the system in this example are

Xt+1 = 0.5 + 0.5Xt + Ut,

that is, in the absence of interventions (i.e., if Ut = 0 for all t), the dynamics
of the system bring Xt back to the equilibrium level x = 1. The costs are given
by

g(t, x, u) = (x− 5)2 + γ (u− 0)2,

thus, the controller incurs costs if Ut ̸= 0 and if Xt ̸= 5. Below, we evaluate the
solutions for X0 = 0, µx = 5, µu = 0, a = b = 0.5, T = 20, α = 0, β = 1, and
γ ∈ {0.01, 0.5, 1, 2}.
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Figure 1.3: Implementation of the one-dimensional deterministic LQ problem.
Left panel: optimal trajectory for the state Xt. Right panel: optimal control
Ut.

As expected, when the cost parameter γ is small (γ = 0.01 in the example),
the controller takes Xt close to µx from the start and compensates any decrease
from the mean-reversion to one to keep Xt around µx = 5. In the graphs we
can also appreciate the so-called turnpike phenomenon, where the trajectory of
X stays close to µx for most of the time window [0, 20] with deviations at the
beginning and at the end. We return to this in the final chapter. Next, we look
at the coefficients ht and kt from the optimal control in (1.3).

For the trajectory with the least costs to use non-zero controls (the case
γ = 0.01), we see that the optimal strategy is almost of the form Ut ≈ 4.5−0.5Xt

making the next step of the state be Xt+1 ≈ 0.5 + 0.5Xt + 4.5 − 0.5Xt = 5.
As expected there is a relaxation in the trajectories of ht and kt towards T
culminating in the terminal condition hT = kT = 0.

The following example shows another application of discrete-time determin-
istic control involving graphs.
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Figure 1.4: Implementation of the one-dimensional deterministic LQ problem.
Left panel: trajectory for the auxiliary variable ht. Right panel: trajectory for
the auxiliary variable kt.

Example 1.3.4 (Shortest path in a directed graph). Consider a finite directed
graph, that is a set of nodes V = {1, 2, ..., N} and edges E ⊂ V ×V . We assume
that all self-connections are possible, that is, (x, x) ∈ E for all x ∈ V . Suppose
the graph is connected, that is, for any x, x′ ∈ V there exists m ∈ N and a
sequence x = x0, x1, x2, ..., xm = x′ with (xi, xi+1) ∈ E for all i. We call such a
sequence a path from x to x′. Figure 1.5 shows an example of a directed graph,
with seven nodes, that is connected and where all self-connections are possible.
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Figure 1.5: Example of a directed graph with seven nodes. The
graph is connected and all self-connections are possible. In this ex-
ample the nodes are V = {1, 2, 3, 4, 5, 6, 7}, and the edges are E =
{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), . . . , (7, 7)}. The right panel highlights the short-
est path from x0 = 2 to x∗ = 6 with length equal to 3.

From such simple setup, we can already infer that for any x, x′ ∈ V there
exists a path from x to x′ with exactly N steps. To see this, observe that if there
exists a path from x to x′, then there exists a path without repeated nodes. As
there are N nodes in total, we know that a path without repeats will have length
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at most N . Now allowing repeats in the final node, we see that there must be a
path with exactly N steps.

With such a setup one can study versions of Bellman–Ford’s algorithm to
find the shortest path between two nodes [1], and we formulate this in our optimal
control notation.

We define the cost of following a path of length T ≥ N to be

J(0, x0, U) =

( T−1∑
t=1

f(Xt, Ut)

)
+Φ(XT )

where Ut ∈ V determines the next step in our path (so XU
t+1 = Ut), X0 = x0 ∈

V , and for a fixed state x∗ ∈ V

f(x, u) =


0 if x = x∗,

1 if (x, u) ∈ E, x ̸= x∗,

∞ if (x, u) ̸∈ E,

Φ(x) =

{
0 if x = x∗,

N + 1 if x ̸= x∗.

These costs are chosen so that infU J(t, U) is the length of the shortest path to
x∗, and we will write down the dynamic programming formulation to find the
shortest path.

As there exists a path with at most N steps, and we can repeat the final
node with zero cost, we see that J(0, x0, U) < N . In particular, for U mini-
mizing J(0, x0, U), we know that Φ(XU

T ) < N + 1, so XU
T = x∗. In this case,

the costs are simply the number of non-repeating steps in the path. The dy-
namic programming formula then states that the length of the shortest path is
V (0, x0) = minU J(0, U), and we have

V (t, x) = min
u:(x,u)∈E

{
f(x, u) + Vt+1(u)

}
with terminal value V (T, x) = Φ. We also observe that V (t, x) < N if and only
if there is a path from x to x∗ in at most T − t steps.

Next, we employ the dynamic programming formula above to find the shortest
path in the directed graph of Figure 1.5; by inspection it is easy to see that the
actual shortest path from x0 = 2 to x∗ = 6 is the one in red on the right panel
of the figure. To solve this mathematically (or computationally) we start by
computing V (T, x) for x ∈ V and T = 7. From the terminal condition it follows
that

V (7, x) =

{
0 if x = 6,

8 otherwise.
(1.4)

Then, from the dynamic programming formula we have that at time t = 6 the
value function is given by V (6, x) = minu:(x,u)∈E{f(x, u) + V (7, u)}. It follows
that
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V6(x) =


0 if x = 6,

1 if x ∈ {5, 7},
8 otherwise.
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Here we draw (on the right) the set of transitions which are known to be optimal3

at time t = 6.
Similarly, using V (5, x) = minu:(x,u)∈E{f(x, u) + V (6, u)} we have

V (5, x) =


0 if x = 6,

1 if x ∈ {5, 7},
2 if x ∈ {3, 4},
8 otherwise.
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Proceeding in the same way, we have that

V (4, x) =



0 if x = 6,

1 if x ∈ {5, 7},
2 if x ∈ {3, 4},
3 if x = 2,

8 if x = 1,
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and lastly, for t ∈ {0, 1, 2, 3}

V (t, x) =



0 if x = 6,

1 if x ∈ {5, 7},
2 if x ∈ {3, 4},
3 if x = 2,

4 if x = 1.

1

2

3

45

6

7

Thus, the shortest path from x0 = 2 to x∗ = 6 has length V (0, 2) = 3 and
this is achieved by following the (allowed) path x → x′ that satisfies V (t, x) =
V (t+ 1, x′)− 1. In our example this would be x0 = 2 → 3 → 7 → 6.

In the above example, we might also want to consider the case where, at
each time step, the connections available are random. To solve such a problem

3At time t = 6, all possible transitions from states in {1, 2, 3, 4} are equally bad, and so
are not shown.
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we will need a little more theory, which we will develop in the next section. We
will return to this in Example ??.

1.4 Exercises

Exercise 1.4.1. (A ‘time-inconsistent’ problem, where the DPP fails.) Con-
sider a deterministic control problem, where at each time t, our agent’s prefer-
ences are described by a cost-to-go function

J(t, x, U) =

T∑
s=t

1

1 + (s− t)
g(s,Xs, Us),

which is sometimes known as hyperbolic discounting. We assume f(t, x, u) =
x + u and g(t, x, u) = −u + x2, where x0 ∈ [0, 1] and u ∈ U = [0, 2], with a
horizon T = 2.

Show that the dynamic programming principle fails, i.e., there are controls
U which optimize J(t,Xt, U) but do not optimize J(t+ 1, Xt+1, U).

Exercise 1.4.2 (Discrete-time deterministic Pontryagin minimum principle).
Consider a discrete time deterministic control problem, on a finite horizon,
where the cost function g and the state dynamics f are both differentiable with
respect to the pair (x, u). Suppose that the value function is a differentiable
function of the state, and there exists a differentiable function u∗ : T× X → U
such that u∗(t, x) is an optimal control when Xt = x. Define X∗

t to be the
trajectory when following the control U∗

t = u∗(t,X∗
t ).

(i) Show that

0 = ∂ug(t,X
∗
t , U

∗
t ) + ∂xV

(
t+ 1, f(t,X∗

t , U
∗
t )
)
· ∂uf(t,X∗

t , U
∗
t )

(ii) By induction (or otherwise), show that

∂xV (t,X∗
t ) = ∂xg(t,X

∗
t , U

∗
t ) + ∂xV

(
t+ 1, f(t,X∗

t , U
∗
t )
)
· ∂xf(t,X∗

t , U
∗
t ).

(iii) Hence show that, in order for U∗ and X∗ to be an optimal control–trajectory
pair, they must be part of a fixed point to the following forward-backward
system of equations:

X∗
t+1 = f(t,X∗

t , U
∗
t ); X0 = x;

Qt = ∂xg(t,X
∗, U∗

t ) +Qt+1 · ∂xf(t,X∗
t , U

∗
t ); QT = ∂xg(T,X

∗
T );

0 = ∂ug(t,Xt, U
∗
t ) +Qt+1 · ∂uf(t,Xt, U

∗
t ).

(Here Q is called the adjoint process, and can be interpreted as a marginal
value associated with changing the state, or as a Lagrange multiplier aris-
ing from treating the state equation as a constraint.)
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This result is a discrete-time version of Pontryagin’s maximum principle, which
we will return to in Chapter ??. The practical use of this result is that, in many
cases, this system of equations can be solved numerically and, if the solution is
unique, then this allows us to identify the optimal control process without solving
the full Bellman equation.

Exercise 1.4.3. Consider the following general linear-quadratic control problem
where the state is n-dimensional and the control is m-dimensional. The plant
equation is linear and given by

Xt+1 = AXt +B Ut, X0 = x ∈ Rn,

with A ∈ Rn×n and B ∈ Rn×m. The cost function g is

g(x, u) = x⊤Qx+ u⊤Ru,

where Q = Q⊤ ⪰ 0, and R = R⊤ ≻ 0. The performance criterion over horizon
T ∈ N with terminal weight S = S⊤ ⪰ 0 is

J(t, x, U) =

T−1∑
s=t

(
X⊤

s QXs + U⊤
s RUs

)
+X⊤

T S XT .

Define the value function

V (t, x) = inf
U

J(t, x, U)

with the convention V (T, x) = x⊤S x.

(i) Write down the Bellman equation satisfied by V (t, x).

(ii) Use the ansatz V (t, x) = x⊤Pt x with symmetric matrices Pt = P⊤
t ⪰ 0

and PT = S in the Bellman equation from the previous part.

(iii) By expanding x⊤Qx + u⊤Ru + V (t + 1, A x + B u) and completing the
square in u, derive the optimal control at time t as

U∗
t = −KtXt, Kt :=

(
R+B⊤Pt+1B

)−1
B⊤Pt+1A,

with the Riccati backward recursion

Pt = Q+A⊤Pt+1A−A⊤Pt+1 B
(
R+B⊤Pt+1 B

)−1
B⊤Pt+1A, PT = S.
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