

B1.2 Set Theory

Sheet 2 — HT26

On this sheet, assume the axioms ZF1-7 (Extensionality, Empty Set, Pairing, Union, Power Set, Comprehension, Infinity).

Section A

1. (a) Let X and Y be sets. Prove that there is a set whose elements are precisely the *surjective* functions $X \rightarrow Y$.
(b) Let X be a set. Prove that there is a set consisting precisely of all strict total orders on X .
2. For each of the following, find an equivalent \mathcal{L} -formula using no abbreviations (so using only the symbols $=, \in, \neg, \wedge, \vee, \rightarrow, \leftrightarrow, \forall, \exists$, and variables, and not using the notation $\forall x \in y$).
 - (a) $\forall x \in y \ x \subseteq y$.
 - (b) $\bigcup x = \bigcup y$.
 - (c) $x \subseteq \{z \in \mathcal{P}(y) : \emptyset \in z\}$
3. Prove that addition on \mathbb{N} is commutative by proving that for all $n, m \in \mathbb{N}$:
 - (a) $0 + n = n$;
 - (b) $m + n^+ = m^+ + n$;
 - (c) $m + n = n + m$.

Section B

4. Let a be a set. Show that $\{a\} \times \{a\} = \{\{\{a\}\}\}$.

5. Prove the following:

- (a) Any subset of a finite set is finite.

[Hint: First show by induction that any subset of a natural number is finite.]

- (b) If X is finite and $f : X \rightarrow X$ is an injective function, then f is surjective.

[Hint: if $f : n^+ \rightarrow n^+$ is a non-surjective injection, compose with a transposition to obtain an injection $f' : n^+ \rightarrow n$, then consider $f'|_n$.]

6. Prove that multiplication on \mathbb{N} is commutative by proving that the following hold for all $n, m \in \mathbb{N}$. You may use the associativity and commutativity of addition (proven in lectures and Question 3 respectively).

- (a) $0 \cdot n = 0$;
- (b) $m^+ \cdot n = m \cdot n + n$;
- (c) $m \cdot n = n \cdot m$.

7. Prove the existence of the factorial function: show that a function $\mathbb{N} \rightarrow \mathbb{N}$ exists such that, writing it as $n \mapsto n!$, we have $0! = 1$, and $(n^+)! = n^+ \cdot n!$ for all $n \in \mathbb{N}$.

[Hint: use definition by recursion indirectly.]

8. A *Peano system* is a triple (A, s, a_0) in which A is a set, $a_0 \in A$, and $s : A \rightarrow A$ is a function which

- is injective,
- does not have a_0 in its range, and
- satisfies the Principle of Induction: if $S \subseteq A$, $a_0 \in S$ and $\forall a(a \in S \rightarrow s(a) \in S)$, then $S = A$.

(a) Prove that $(\mathbb{N}, x \mapsto x^+, 0)$ is a Peano system. [You may refer to results proven in lectures.]

(b) Suppose (A, s, a_0) is a Peano system. Prove that there exists an isomorphism from $(\mathbb{N}, x \mapsto x^+, 0)$ to (A, s, a_0) , that is, there is a bijection $f : \mathbb{N} \rightarrow A$ such that $f(0) = a_0$, and $f(n^+) = s(f(n))$ for all $n \in \mathbb{N}$.

[Hence, up to isomorphism, $(\mathbb{N}, x \mapsto x^+, 0)$ is the unique Peano system.]

9. Prove that the following properties of a set X are equivalent:

- (i) There exists an injective function $f : \mathbb{N} \rightarrow X$.
- (ii) There exists a function $g : X \rightarrow X$ which is injective but not surjective.

[Hint: For (ii) \Rightarrow (i), define f by recursion.]

Section C

10. A set X is *amorphous* if it is infinite, but $X \setminus Y$ is finite for any infinite $Y \subseteq X$. It is consistent with ZF (but not with ZFC) that amorphous sets exist.

Show that if X is amorphous, then the pigeonhole principle holds for X : any injective function $f : X \rightarrow X$ is surjective.

Hence, under ZF, the pigeonhole principle does not characterise finiteness.