
Topological groups, 2022–2023

Tom Sanders

Course overview

Groups like the integers, the circle, and general linear groups (over R or C) share a number

of properties naturally captured by the notion of a topological group. Providing a unified

framework for these groups and properties was an important achievement of 20th century

mathematics, and in this course we shall develop this framework.

Highlights will include the existence and uniqueness of Haar integrals for locally compact

topological groups, the topology of dual groups, and the existence of characters in various

topological groups. Throughout, the course will use the tools of analysis to tie together the

topology and algebra, getting at superficially more algebraic facts by analytic means.

Course synopsis

[7 lectures] Definition of topological groups. Examples and non-examples, and basic topo-

logical properties. Subgroups. Quotient groups. The Open Mapping Theorem.

[4 lectures] Complete regularity of topological groups. Continuous partitions of unity and

Fubini’s Theorem. Existence and uniqueness of Haar integrals.

[5 lectures] The Peter-Weyl Theorem for compact topological groups. Dual groups of topo-

logical groups. Local compactness of the dual of a locally compact topological group.

References

There are other notes on similar topics with a slightly different focus e.g. [Fol95, Kör08,

Kra17, Meg17] and [Rud90].

General prerequisites

The course is designed to be pretty self-contained. We assume basic familiarity with groups

as covered in Prelims Groups and Group Actions (see e.g. [Ear14]). We shall also assume

familiarity with Prelims Linear Algebra (see e.g. [May20]) and Part A: Metric Spaces and

Complex Analysis (see e.g. [McG19]) for material on metric and normed spaces.

Familiarity with topology is essential, though not much is required content-wise. What

we use (and more) is covered in Part A: Topology (see e.g. [DL18]), with the exception
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of Tychonoff’s Theorem. This can be informally summarised as saying that a non-empty

product of compact spaces is compact, and there is no harm in taking it as a black box for

the course. Those interested in more detail may wish to consult Part C: Analytic Topology

(see e.g. [Kni18]).

The Axiom of Choice is sometimes formulated as saying that an arbitrary product of

non-empty sets is non-empty, and in this formulation it may be less surprising that it can

be used to prove Tychonoff’s Theorem. It turns out that the converse is also true, i.e.

Tychonoff’s Theorem (and the other axioms of set theory) can be used to prove the Axiom

of Choice1.

Finally no familiarity with functional analysis is assumed, though there are clear simi-

larities and parallels for those who do have some. See e.g. [Pri17] and [Whi19].

Teaching

A first draft of these notes is on the website, but they will be updated after each lecture

with any resulting changes. This document was compiled on 25th May, 2023 at 09:44.

Lectures will be supplemented by some tutorial-style teaching where we can discuss the

course and also exercises from the sheets. Once I have a list of the MFoCS students attending

I shall be in touch to arrange these.

Contact details and feedback

Contact tom.sanders@maths.ox.ac.uk if you have any questions or feedback.

1Those unfamiliar and looking for a reference may wish to consult the notes [Ter10].
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Group notation

A group G is written multiplicatively if the binary operation of the group is written

G2 Ñ G; px, yq ÞÑ xy and called multiplication; the unique inverse is written x´1 and the

map G Ñ G;x ÞÑ x´1 is called inversion; and the identity is written 1G. Given S, T Ă G

we write

S´1 :“ ts´1 : s P Su and ST :“ tst : s P S, t P T u.

For n P N0 we define Sn inductively by

S0 :“ t1Gu and Sn`1 :“ SnS; and S´n :“ pS´1
q
n.

It will also be convenient to write xS :“ txuS and Sx :“ Stxu for x P G, which aligns

the the usual notation for left and right cosets when S is a subgroup. !△This notation has

effect that in general SS´1 ‰ S0 and S2 ‰ ts2 : s P Su.

!△As an exception to the above notation, Gn denotes the n-fold Cartesian product

G ˆ ¨ ¨ ¨ ˆ G not the product defined above; that product is just G.

We write xSy for the group generated by S, that is
Ş

tH ď G : S Ă Hu, the intersection

of all the subgroups of G containing S.

We say S Ă G is symmetric if S “ S´1. If S and T are symmetric then S X T is

symmetric, and if S is symmetric then xSy “
Ť

nPN0
Sn by the Subgroup Test.

We write Gop for the opposite group, that is the group with the same base set as G but

group operation given by G2 Ñ G; px, yq ÞÑ yx. The identity element and the inverse map

on Gop are the same as those on G, and the map G Ñ Gop;x ÞÑ x´1 is a group isomorphism.

If G is Abelian then it is written additively if the binary operation of the group is

written G2 Ñ G; px, yq ÞÑ x ` y and called addition; inversion is written G Ñ G;x ÞÑ ´x

and called negation; and the identity is written 0G. !△All groups written additively are

Abelian, but not all Abelian groups will be written additively.

If G is written additively then the above notation changes in the obvious way so we write

´S instead of S´1, S ` T instead of ST , nS instead of Sn etc.
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1 Groups with topologies

A group G that is also a topological space is called a topologized group. Without any

additional assumptions these are no more than their constituent parts: a group and a

topological space. When the group inversion G Ñ G and the group operation G2 Ñ G are

both continuous, where G2 has the product topology, we say G is a topological group.

Example 1.1 (Indiscrete groups). For any group G, we write GI for G endowed with the

indiscrete topology. This is a topological group since any map into an indiscrete space is

continuous.

Any indiscrete space is compact since the indiscrete topology is finite, so GI is a compact

topological group. GI is Hausdorff if and only if G is the trivial group.

There are non-compact spaces that retain traces of compactness which we shall find it

useful to discuss: A topological space is locally compact if every element is contained

in a compact neighbourhood; and it is σ-compact if it is a countable union of compact

sets. !△In the literature sometimes different definitions of local compactness are used – see

Remark 1.44 for an example that is relevant to us – but they usually coincide when the

space is additionally assumed to be Hausdorff.

Example 1.2 (Discrete groups). For any group G, we write GD for G endowed with the

discrete topology. This is a topological group since the product of two copies of the discrete

topology is discrete – so both the topological spaces G and G2 are discrete – and any map

from a discrete space is continuous.

Any discrete space is Hausdorff and locally compact since txu is an open neighbourhood

of x which is compact, since it is finite, and disjoint from the open neighbourhood tyu

if x ‰ y. Hence GD is a locally compact Hausdorff topological group. Since the set of

singletons in GD is an open cover of GD, GD is compact if and only if it is finite; and it is

σ-compact if and only if it is countable.

The reals under addition may be endowed with the discrete or indiscrete topologies

to make them into a topological group as above. However, neither of these is the ‘usual’

topology which is generated by intervals without their endpoints.

Example 1.3 (The real line). The additive group R endowed with its usual topology is a

topological group which we call the real line, and which we also denote R. The relevant

continuity is just the algebra of limits: in particular, if xn Ñ x0 then ´pxnq “ p´1qxn Ñ

p´1qx0 “ ´x0; and if additionally yn Ñ y0, then xn ` yn Ñ x0 ` y0.

The compact sets in the real line R are exactly the closed and bounded sets (this is the

Heine-Borel Theorem for R). We can use this to see that the real line is a non-compact

σ-compact locally compact Hausdorff topological group. Local compactness follows since
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rx ´ 1, x ` 1s is a compact neighbourhood of x, and σ-compactness follows since R “
Ť

nPN r´n, ns. R is non-compact since tp´x, xq : x P Ru is an open cover without a finite

subcover, and R is Hausdorff since if x ‰ y then putting δ :“ |x´ y|{2 the sets px´ δ, x` δq

and py ´ δ, y ` δq are disjoint open neighbourhoods of x and y respectively.

Example 1.4 (The rationals). The additive group Q endowed with subspace topology

inherited from the real line is a topological group for the same reasons as in Example 1.3.

Q is Hausdorff, but not locally compact (and so certainly not compact) – this is exactly

why one constructs the real line! – but is σ-compact since Q is a countable union of

singletons each of which is compact since it is finite.

Example 1.5 (Non-zero complex numbers). The non-zero complex numbers, C˚, form a

multiplicative group and with the usual topology is a topological group: By the algebra of

limits, if xn Ñ x0 in C˚ then x´1
n Ñ x´1

0 ; and if additionally yn Ñ y0 then xnyn Ñ x0y0.

The compact sets in C are exactly the closed and bounded sets (this is the Heine-Borel

Theorem again, this time for R2). We can used this as in Example 1.3 to see that C˚ is a

topological group that is non-compact, σ-compact, locally compact, and Hausdorff.

Example 1.6 (The positive reals). The set Rą0 of positive reals under multiplication with

the subspace topology inherited from the usual topology on C is a topological group for

the same reasons as in Example 1.5; it is non-compact, σ-compact, locally compact, and

Hausdorff.

Example 1.7 (The circle group). The set S1 :“ tz P C˚ : |z| “ 1u under multiplication

with the subspace topology inherited from the usual topology on C is a topological group

for the same reasons as in Example 1.5, and we shall call it the circle group; it is compact

and Hausdorff.

We denote the topological groups of Examples 1.3–1.7 without subscripts and small

caps, and in general only include disambiguating subscripts when the topology may not be

clear.

Group actions

Groups often arise with actions, and topological groups are no exception to this. For a

left action of a group G on a topological space X, we say it is an action by continuous

functions if the maps X Ñ X;x ÞÑ g.x are continuous for all g P G. !△In the literature

the term ‘continuous group action’ is reserved for an action of a topological group G on a

topological space X that is continuous as a map G ˆ X Ñ X.

Observation 1.8. The maps X Ñ X;x ÞÑ g.x are continuous for all g P G if and only if they

are homeomorphisms since g´1.pg.xq “ x “ g.pg´1.xq for all x P X and g P G.
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Example 1.9 (Homeomorphisms of topological spaces). For a topological space X and

group G of homeomorphisms of X under composition, the map G ˆ X Ñ X; pg, xq ÞÑ gpxq

is an action by continuous functions, and is called the evaluation action.

The case of X a metric space, and G a group of isometries is a special case of this.

!△While isometries are always injective, they need not be surjective. To form a group,

however, they must be invertible and so in particular surjective.

Some particular groups of homeomorphisms are studied in the Prelims Analysis II course:

Example 1.10. For X “ r0, 1s with the subspace topology from R, let G be the group

of all homeomorphisms of X fixing the endpoints. Then – [Qia20, Theorem 1.3.31] – the

functions in G are exactly the strictly increasing bijections of X.

Given a left action of a group G on a topological space X, the topology of pointwise

converge on G w.r.t. this action is the weakest topology on G such that the maps

G Ñ X; g ÞÑ g.x are continuous for all x P X. In particular, given a base B for X, the sets

Upx1, . . . , xn;U1, . . . , Unq :“ tg P G : g.x1 P U1, . . . , g.xn P Unu

with x1, . . . , xn P X and U1, . . . , Un P B form a base for the topology of pointwise convergence

w.r.t. the given action.

Proposition 1.11. Suppose that X is a metric space and G is a group of isometries of

X. Then G with the topology of pointwise convergence w.r.t. the evaluation action is a

topological group.

Proof. Write d for the metric on X and Bϵpxq :“ ty P X : dpx, yq ă ϵu so that the balls

tBϵpxq : x P X, ϵ ą 0u form a base for the topology on X. If f0 P Upx1, . . . , xn;U1, . . . , Unq

then there is ϵ ą 0 such that

Upx1, . . . , xn;Bϵpf0px1qq, . . . , Bϵpf0pxnqqq Ă Upx1, . . . , xn;U1, . . . , Unq.

For f P G, since f is an isometry, we have

dpf´1
pf0pxiqq, f´1

0 pf0pxiqqq “ dpf0pxiq, fpxiqq “ dpfpxiq, f0pxiqq

and so the preimage under inversion of Upx1, . . . , xn;U1, . . . , Unq contains the preimage of

Upx1, . . . , xn;Bϵpf0px1qq, . . . , Bϵpf0pxnqqq, which is Upf0px1q, . . . , f0pxnq;Bϵpx1q, . . . , Bϵpxnqq

which is a neighbourhood of f´1
0 . Hence inversion is continuous.

Now suppose f0 ˝ g0 P Upx1, . . . , xn;U1, . . . , Unq, and f P Upg0px1q, . . . , g0pxnq;Bϵ{2pf0 ˝

g0px1qq, . . . , Bϵ{2pf0 ˝ g0px1qqq and g P Upx1, . . . , xn;Bϵ{2pg0px1qqq, . . . , Bϵ{2pg0pxnqqq then

again since f is an isometry

dpf ˝ gpxiq, f0 ˝ g0pxiqq ď dpf ˝ gpxiq, f ˝ g0pxiqq ` dpf ˝ g0pxiq, f0 ˝ g0pxiqq

“ dpgpxiq, g0pxiqq ` dpfpg0pxiqq, f0pg0pxiqqq ă ϵ,
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and so f˝g P Upx1, . . . , xn;U1, . . . , Unq. In particular the preimage of Upx1, . . . , xn;U1, . . . , Unq

under the group operation contains the open neighbourhood

Upg0px1q, . . . , g0pxnq;Bϵ{2pf0 ˝ g0px1qq, . . . , Bϵ{2pf0 ˝ g0px1qqq

ˆ Upx1, . . . , xn;Bϵ{2pg0px1qqq, . . . , Bϵ{2pg0pxnqqq

of pf0, g0q. Hence multiplication is continuous as a map G2 Ñ G and G is a topological

group.

Example 1.12 (Groups of unitary maps with the SOT). For V an inner product space a

unitary map is a map ϕ : V Ñ V such that xϕpvq, ϕpwqy “ xv, wy for all v, w P V , and we

write UpV q for the set of unitary linear maps V Ñ V with unitary linear inverses.

V is, in particular, a metric space with metric dpx, yq :“ xx´ y, x´ yy1{2. The elements

of UpV q are isometries w.r.t. this metric and so by Proposition 1.11 UpV q is a topological

group with the topology of pointwise convergence. When V is a Hilbert space (i.e. when V

is additionally complete in the metic d) then this topology on UpV q is the strong operator

topology (SOT) restricted to UpV q.

Between topologized and topological

To better understand topological groups we shall also look at some weaker structures with

some axioms stripped away – centipede mathematics. These structures are also studied in

their own right; for a much more detailed development including many examples and open

problems see [AT08, Chapters 1 & 2].

Suppose that G is a topologized group written multiplicatively. We say that left (resp.

right) multiplication is continuous if the maps G Ñ G; y ÞÑ xy (resp. G Ñ G; y ÞÑ yx)

are continuous for all x P G. Such a group is said to be a left-topological (resp. right-

topological) group. A group which is both a left-topological and a right-topological group

is called a semitopological group.

Observation 1.13. Any Abelian left-topological group is semitopological since left multipli-

cation by y is the same as right multiplication by y.

Example 1.14 (The coset topology). For a group G and H ď G, equipping G with the

topology whose closed sets are unions of left cosets of H makes it into a left-topological

group; we call this topology the coset topology (on G generated by H). !△This

terminology is not completely standard.

The open (and closed) sets in G are exactly the unions of left cosets of H, hence if

S Ă G then S “ SH. Right multiplication is continuous (if and) only if H is normal

in G: Indeed, if right multiplication is continuous then since H is closed, Hy´1 is closed

for all y, so Hy´1 “ SH for some S Ă G. Let x P S be such that y´1 P xH, whence
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y´1H “ xH Ă SH “ Hy´1 and so H is normal in G. In particular there are left-topological

groups that are not semitopological.

Proposition 1.15. Suppose that X is a topological space and G is a group of homeomor-

phisms of X. Then G with the topology of pointwise convergence w.r.t. the evaluation action

is a semitopological group.

Proof. For x1, . . . , xn P X and U1, . . . , Un open in X we have

Upx1, . . . , xn;U1, . . . , Unqg´1
“ Upg.x1, . . . , g.xn;U1, . . . , Unq

so right multiplication is continuous. Furthermore,

g´1Upx1, . . . , xn;U1, . . . , Unq “ Upx1, . . . , xn; g
´1.U1, . . . , g

´1.Unq,

so left multiplication is continuous since the sets g´1.U1, . . . , g
´1.Un are open because the

action is by continuous functions.

The next example is not central to the course but may be contrasted with Example 1.12.

Example 1.16 (Groups of continuous maps with continuous inverses with the SOT). For

V an inner product space we write GLpV q for the set of continuous linear maps V Ñ V

with continuous linear inverses.

With V given the norm topology, that is the topology induced by the metric d as in

Example 1.12, GLpV q is a group of homeomorphisms of V . Hence if GLpV q is endowed with

the topology of pointwise convergence w.r.t. the evaluation action, then GLpV q becomes a

semitopological group; this topology is the strong operator topology restricted to GLpV q.

By contrast with Example 1.12 if V is infinite dimensional then composition on GLpV q

need not be continuous nor need it have a continuous inverse.

A topologized group in which the group operation is continuous (as a map from the

product space G2) is called a paratopological group.

Example 1.17 (The reals with the right order topology). The set2 tpa,8q : ´8 ď a ď 8u

is a topology on R which we call the right order topology (on R); we denote this

topologized group Rro.

Rro is a paratopological group since for a P R,

tpx, yq : x ` y P pa,8qu “
ď

bPR

pa ´ b,8q ˆ pb,8q

so that the preimage of the open set pa,8q is open in the product topology. Inversion on

Rro is not continuous since p´8,´aq is not open (for any a P R), and hence Rro is not a

topological group.

2For the avoidance of doubt p´8,8q :“ R and p8,8q :“ H.
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Rro is not Hausdorff: Any two non-empty open sets contain all sufficient large reals and

hence have non-empty intersection.

The sets rx,8q are compact because any open cover has a set containing x, and that set

must have the form pa,8q for some a ă x. This set on its own is a cover of rx,8q and hence

the cover has a subcover with one set. It follows that Rro is locally compact, since for x P R,
rx ´ 1,8q is a compact neighbourhood of x; and Rro is σ-compact since R “

Ť

zPZ rz,8q,

and rz,8q is compact.

On the other hand, any set A with arbitrarily large negative elements is not compact

since tpa,8q : a P Ru is an open cover of A, but any finite subset has a smallest element

and so is not a cover. In particular if A Ă R is non-empty then A “ p´8, supAs, and so

no non-empty closed set is compact, and Rro itself is not compact.

Observation 1.18. Every paratopological group G is semitopological since the maps G Ñ

G2;x ÞÑ px, yq (and G Ñ G2;x ÞÑ py, xq) are continuous for all y P G, and the composition

of continuous maps is continuous.

A semitopological group in which inversion is continuous is called a quasitopological

group.

Example 1.19 (The reals with the cofinite and cocountable topologies). Write Rcf and Rcc

for the additive group R equipped with the topology whose proper closed sets are the finite

sets, and whose proper closed sets are the countable sets respectively. These are genuinely

topologies and are called the cofinite and cocountable topologies respectively.

Rcf and Rcc are quasitopological groups because ´x ` U “ U ` p´xq is finite (resp.

countable) whenever U is finite (resp. countable), and ´U is finite (resp. countable) when

U is finite (resp. countable).

If U, V Ă R are non-empty and open in the cofinite (resp. cocountable) topology, then

U ` V “ R: for x P R, x ´ U is infinite (resp. uncountable) and V c is finite (resp.

countable) and so x´U Ć V c, whence x P U `V and U `V “ R as claimed. In particular,

tpx, yq P R2 : x` y ‰ 0u, which is the preimage under addition of an open set in the cofinite

(resp. cocountable) topology, cannot contain a sum of non-empty open sets. It follows that

multiplication is not continuous and Rcf (resp. Rcc) is not paratopological.

Rcf and Rcc are not Hausdorff: Any two non-empty open sets U and V have finite (resp.

countable) complements, but R is infinite (resp. uncountable) and so U is infinite (resp.

uncountable) and U Ć V c which is to say that U X V ‰ H.

Rcf is compact: Indeed, the cofinite topology on any topological space is compact since

if U is an open cover, then let U0 P U be non-empty. U c
0 is finite, say U c

0 “ tx1, . . . , xmu,

and since U is a cover we may take Ui P U such that xi P Ui. The set tU0, . . . , Umu is a finite

subcover of U and our claim is proved.
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Rcc is not σ-compact, nor is it locally compact: This follows from the fact that the

only compact sets in Rcc are finite. To see this fact note that if X is infinite then it has a

countably infinite subset C, and tpRzCq Y txu : x P Cu is an open cover of X with no finite

subcover.

Observation 1.20. Every left-topological group G with a continuous inverse is a quasitopo-

logical group, since for y P G the right multiplication map G Ñ G;x ÞÑ xy “ py´1x´1q´1

is continuous since it is a composition of inversion, left multiplication by y´1, and inversion

again.

The following diagram summarises the foregoing. The implications without any text

next to them follow a fortiori – i.e. by simply dropping hypotheses – and the missing

implications and non-implications can all be deduced from transitivity of implication and

the law of excluded middle.

Topological

Quasitopological Paratopological

Left-topological
& continuous inverse

Semitopological

Left-topological

1.20

{
Rcf e.g. 1.19

{ Rro e.g. 1.17

1.18

{
HďG and H ◁G in e.g. 1.14

Figure 1: Relationships between types of topologized groups

Basic tools

In this section there are a few key lemmas (Lemmas 1.21, 1.23, 1.32,1.34, 1.36, & 1.41)

which we highlight in red because they each capture a crucial technique or idea.

Lemma 1.21 (Key Lemma I). Suppose that G is a topologized group in which inversion is

continuous. If U is a neighbourhood of 1G then U contains a symmetric open neighbourhood

of the identity and if S is symmetric then S is symmetric.

Proof. If U is a neighbourhood of 1G then U contains an open neighbourhood V of 1G. Put

S :“ V X V ´1 which is open and contains 1G (since 1´1
G “ 1G) and moreover S “ S´1 so

that S is a symmetric open neighbourhood of 1G contained in U . For the second part, since

inversion is continuous the preimage of S under inversion is the set S
´1

and is closed and

contains S´1 “ S. It follows that S Ă S
´1
. But S

´1
Ă pS

´1
q´1 “ S, and we conclude that

S
´1

“ S.
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Remark 1.22. Every conclusion of Lemma 1.21 may fail if ‘topologized group with continuous

inverse’ is replaced by ‘paratopological group’: In Rro, the only symmetric and open sets are

H and R, hence p´1,8q is a neighbourhood of the identity that does not contain a symmetric

neighbourhood of the identity; and t0u “ p´8, 0s which is not symmetric despite t0u being

symmetric.

Lemma 1.23 (Key Lemma II). Suppose that G is a left-topological (resp. right-topological)

group, U is open, and V is any set. Then V U (resp. UV ) is open; U is a neighbourhood of

x if and only if x´1U (resp. Ux´1) is a neighbourhood of the identity; and xV “ xV (resp.

V x “ V x).

Proof. First, V U “
Ť

vPV vU which is a union of open sets since G Ñ G;x ÞÑ v´1x is

continuous. Secondly, if U is a neighbourhood of x then there is an open set Ux Ă U

containing x. Continuity of G Ñ G; z ÞÑ xz then says that x´1Ux is an open set containing

1G and contained in x´1U , which is to say x´1U is a neighbourhood of the identity. Similarly

if x´1U is a neighbourhood of the identity then U is a neighbourhood of x by continuity

of G Ñ G; z ÞÑ x´1z. Finally, since G Ñ G; z ÞÑ x´1z is continuous, xV is closed and

contains xV , hence xV Ă xV . Apply this with x replaced by x´1 and V replaced by xV to

get V Ă x´1xV , whence xV “ xV . The parenthetical results follow mutatis mutandis.

The ideas of the last two lemmas can be used to contain compact sets in ‘nice’ sets:

Lemma 1.24. Suppose that G is a locally compact quasitopological group and K is a com-

pact set. Then there is a symmetric open neighbourhood of the identity containing K and

contained in a compact set.

Proof. Since G is locally compact there is a compact neighbourhood of the identity L; let V

be an open neighbourhood of the identity contained in L. The set txV : x P Ku is an open

cover of K and so there are x1, . . . , xm P K such that K Ă x1V Y ¨ ¨ ¨ Y xmV ; let x0 :“ 1G.

xiV Ă xiL and since left multiplication is continuous, xiL is compact, and since inversion is

continuous, pxiLq´1 is compact. xiV Y pxiV q´1 is symmetric by design and open since left

multiplication and inversion are continuous. It follows that V :“
Ťm

i“0 pxiV q Y pxiV q´1 is a

symmetric open set contained in a finite union of compact sets. A finite union of compact

sets is compact and so V is contained in a compact set and by designK Ă V and 1G P V .

Remark 1.25. We cannot replace ‘quasitopological’ by ‘paratopological’ above: Rro is a lo-

cally compact paratopological group, but the only set containing an open symmetric neigh-

bourhood of the identity is R which is not compact.

We also cannot drop the local compactness requirement: Rcc is a quasitopological group

in which all the compact sets are finite while all neighbourhoods are infinite.
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We can also use Lemma 1.23 to see what happens to subgroups under the process of

topological closure. We begin with a technical lemma.

Lemma 1.26. Suppose that G is a semitopological group and H Ă G. If H is closed under

multiplication ( i.e. xy P H whenever x, y P H), then so is H; if H is a union of conjugacy

classes in G ( i.e. xH “ Hx for x P G) then so is H.

Proof. First, by Lemma 1.23 hH “ hH “ H for all h P H. Hence Hw Ă H for all w P H.

Again by Lemma 1.23 we have Hw “ Hw Ă H “ H, and hence H
2

Ă H as required.

Secondly, by Lemma 1.23, xH “ xH “ Hx “ Hx for all x P G.

Remark 1.27. We cannot replace ‘semitopological’ with ‘left-topological’ above: Suppose

that G is a group with subgroups H and K such that HK is not closed under multiplication.

Then G with the coset topology generated by K is left-topological but has H “ HK, so

that even though H is closed under multiplication, its topological closure is not.

Proposition 1.28. Suppose that G is a quasitopological group and H ď G. Then H is a

subgroup of G. Furthermore, if H is normal then so is H. In particular, t1Gu is a normal

subgroup of G.

Proof. By the first part of Lemma 1.26, H is closed under multiplication and by Lemma

1.21, H
´1

“ H. Since H is non-empty it follows that H is a group. If H is normal then H

is normal by the second part of Lemma 1.26. Since t1Gu is a normal subgroup of G we then

get the last claim.

Remark 1.29. We cannot replace ‘quasitopological’ by ‘paratopological’ above: t0u is a

subgroup of Rro but t0u “ p´8, 0s which is not a subgroup.

On the other hand, paratopological groups in which the closure of every subgroup is a

subgroup have been studied in [FT14].

Proposition 1.30. Suppose that G is a compact semitopological group. Then t1Gu is a

normal subgroup of G.

Proof. Put H :“ t1Gu then by Lemma 1.26, H2 Ă H and xH “ Hx for all x P G. Now

consider H :“ txH : x P Hu. This is a set of closed subsets of H by Lemma 1.23, which

has the finite intersection property: suppose x1H, . . . , xnH P H. Then xiH Ą xi ¨ ¨ ¨ xnH “

Hxi ¨ ¨ ¨ xn Ą x1 ¨ ¨ ¨ xi´1Hxi ¨ ¨ ¨ xn “ x1 ¨ ¨ ¨ xnH since x1 ¨ ¨ ¨ xi´1, xi`1 ¨ ¨ ¨ xn P H and H is

(multiplicatively) closed. Since G is compact, V :“
Ş

H is non-empty.

V is closed and non-empty, so there is some y P V . By Lemma 1.23 yH “ tyu Ă V , but

then y2H P H and so y2H Ą V Ą yH, and since G is a group, yH Ą H. Now H P H, and

so H Ą V Ą yH Ą H – in other words V “ H. But then for all x P H we have H Ă xH,

and since 1G P H we have some y P H such that xy “ 1G and H is closed under inverses

and hence a subgroup.
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Remark 1.31. In Exercise I.6 we give an example of a compact semitopological group that

is not quasitopological, so this result does not just follow from Proposition 1.28.

We cannot relax ‘semitopological’ to ‘left-topological’: if G is a finite group with a non-

normal subgroup H then G with the coset topology generated by H has t1Gu “ H which is

not normal, but it is compact since G is finite. Similarly, we cannot relax the compactness

requirement to local compactness or σ-compactness in view of the group Rro in which the

closure of the identity is not even a group (see Remark 1.29).

Lemma 1.32 (Key Lemma III). Suppose that G is a left-topological (resp. right-topological)

group, S is a set and V is an open neighbourhood of the identity. Then SV Ă SV V ´1 (resp.

V S Ă V ´1V S).

Proof. Let A :“ GzpSV V ´1q and B :“ GzpAV q. B is closed since AV is open by Lemma

1.23. If x P AV then there is some v P V such that xv´1 P A, so xv´1 R SV V ´1. Hence

SV Ă B and since B is closed SV Ă B. Now if x P B then x R A since 1G P V , and hence

x P SV V ´1 as claimed. The parenthetical results follow mutatis mutandis.

Corollary 1.33. Suppose that G is a left-topological group and H ď G. If H is a neigh-

bourhood in G then H is open in G; if H is open in G then H is closed in G; if H is closed

in G and of finite index then H is open in G.

Proof. First, if H is a neighbourhood then there is a non-empty open set U Ă H. But then

H “ HU is open by Lemma 1.23. For the second part, if H is open then by Lemma 1.32

H Ă HH´1 “ H and so H is closed.

For the last part, since H is closed, every W P G{H is closed by Lemma 1.23. Since

H is of finite index,
Ť

tW P G{H : W ‰ Hu is a finite union of closed sets and so closed.

Finally, since G{H is a partition of G containing H, H “ Gz
Ť

tW P G{H : W ‰ Hu is

open as required.

Lemma 1.34 (Key Lemma IV). Suppose that G is a paratopological group and X is a

neighbourhood of z. Then there is an open neighbourhood of the identity V such that zV 2 Ă

X. Moreover, if G is a topological group then V may be taken to be symmetric.

Proof. Let U Ă X be an open neighbourhood of z. The map px, yq ÞÑ xy is continuous and

so tpx, yq : xy P Uu is an open subset of GˆG. By definition of the product topology there

is a set S of products of open sets in G such that

tpx, yq : xy P Uu “
ď

tS ˆ T : S ˆ T P Su.

Since z1G “ z P U , there is some S ˆ T P S such that pz, 1Gq P S ˆ T . Thus S is an open

neighbourhood of z and T is an open neighbourhood of the identity, so by Lemma 1.23
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V :“ pz´1Sq X T is an open neighbourhood of the identity. Now zV Ă S and V Ă T and

so zV 2 Ă U as required. Moreover, if G is a topological group inversion is also continuous

so by Lemma 1.21 V contains a symmetric open neighbourhood of the identity, and the

conclusion follows by nesting.

Remark 1.35. We cannot replace ‘paratopological’ by ‘quasitopological’ above: In Rcf (Ex-

ample 1.19) if X is the complement of some x ‰ z, then X is open but the sum of any two

non-empty open sets is the whole of R and so cannot be contained in X.

Lemma 1.36 (Key Lemma V). Suppose that G is a paratopological group and K1, . . . , Kn

are compact subsets of G. Then K1 ¨ ¨ ¨Kn is compact. In particular, if K is compact then

Kn is compact for all3 n P N0.

Proof. The (topological) product of two compact sets is compact so ifK1 ¨ ¨ ¨Kn´1 is compact

and Kn is compact then pK1 ¨ ¨ ¨Kn´1q ˆ Kn is compact. But then the continuous image of

a compact set is compact and so K1 ¨ ¨ ¨Kn “ pK1 ¨ ¨ ¨Kn´1qKn is compact and the result

follows by induction on n.

Remark 1.37. Exercise I.5 gives an example of a quasitopological group where the conclusion

above does not hold.

Corollary 1.38. Suppose that G is a locally compact topological group. Then there is a

σ-compact, locally compact open subgroup of G.

Proof. Apply Lemma 1.24 to get a symmetric open neighbourhood of the identity S con-

tained in a compact set L. Then H :“ xSy is a subgroup of G which is locally compact and

open and closed by Corollary 1.33. It is contained in
Ť

nPN0
pL X Hqn, and since H is closed

H XL is compact, and so this union is a countable union of compact (by Lemma 1.36) sets.

The result is proved.

Remark 1.39. In Exercise I.8 we ask for an example to show that the hypotheses of Corollary

1.38 may not be relaxed from ‘topological’ to ‘paratopological’, and in Exercise I.4 that the

hypothesis ‘locally compact’ may not be changed to ‘σ-compact’.

A cover U is a refinement of a cover V of a set X if U is a cover of X and each set in

U is contained in some set in V .

Observation 1.40. Refinements are transitive meaning that if W is a refinement of V and V
is a refinement of U then W is a refinement of U .

3Note that K0 “ t1Gu by definition and so is compact since it is finite.
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Lemma 1.41 (Key Lemma VI). Suppose that G is a paratopological group, K Ă Gn “

Gˆ ¨ ¨ ¨ ˆG is compact for some n P N, and U is an open cover of K. Then there is an open

neighbourhood of the identity U Ă G such that tx1U ˆ ¨ ¨ ¨ ˆ xnU,Ux1 ˆ ¨ ¨ ¨ ˆ Uxn : x P Ku

is a refinement of U . If G is a topological group then U may be taken to be symmetric.

Proof. First, the structure of the product topology (and Lemma 1.23) means that we can

pass to a refinement of U where for each x P K there are open neighbourhoods of the identity

U
pxq

1 , . . . , U
pxq
n (our notation is a little clumsy here to make the x-dependence explicit) such

that x1U
pxq

1 ˆ ¨ ¨ ¨ ˆxnU
pxq
n is in this refinement. The set

Şn
i“1 U

pxq

i is an open neighbourhood

of the identity and so by Lemma 1.34 there is a open neighbourhood of the identity Ux such

that U2
x Ă U

pxq

i for all 1 ď i ď n. In particular, V :“ tx1Ux ˆ ¨ ¨ ¨ ˆ xnUx : x P Ku is an open

cover of K and a refinement of U .
By compactness ofK there is a finite set F Ă K such thatW :“ tx1

1Ux1 ˆ¨ ¨ ¨ˆx1
nUx1 : x1 P

F u is a cover of K. Let U :“
Ş

x1PF Ux1 which is a finite intersection of open neighbourhoods

of the identity and so a open neighbourhood of the identity. Since W is a cover of K, for

each x P K there is some x1 P F such that x P x1
1Ux1 ˆ ¨ ¨ ¨ ˆ x1

nUx1 , and hence

x1U ˆ ¨ ¨ ¨ ˆ xnU Ă x1
1Ux1U ˆ ¨ ¨ ¨ ˆ x1

nUx1U

Ă x1
1U

2
x1 ˆ ¨ ¨ ¨ ˆ x1

nU
2
x1 Ă x1

1U
px1q

1 ˆ ¨ ¨ ¨ ˆ x1
nU

px1q
n

so that tx1U ˆ ¨ ¨ ¨ ˆ xnU : x P Ku is a refinement of V which in turn is a refinement of U .
Apply this to Gop, with the same topology, we get another neighbourhood of the identity

U 1 such that tU 1x1 ˆ ¨ ¨ ¨ ˆ U 1xn : x P Ku refines U . Taking the intersection of U and U 1

gives the result. If G is topological then by Lemma 1.21 U contains a symmetric open

neighbourhood of the identity and we may pass to this.

Remark 1.42. The lemma above is not unrelated to the Generalised Tube Lemma from

topology (see e.g. [Mun00, Lemma 26.8]), which is also known as Wallace’s Theorem.

With the results we have now established we can explain the lack of examples of compact

paratopological groups that are not topological groups:

Theorem 1.43. Suppose that G is a compact paratopological group. Then G is a topological

group.

Proof. Suppose that K Ă G is closed and x R K´1. For y P K, if yx P t1Gu then by

Proposition 1.30 x´1y´1 P t1Gu and so by Lemma 1.23, x´1 P t1Guy “ tyu Ă K “ K, a

contradiction. Hence yx R t1Gu and again, by Lemma 1.23 there is an open neighbourhood

Uy of y such that Uyx X t1Gu “ H and in particular 1G R Uyx.

Apply Lemma 1.41 to the cover tUy : y P Ku of K to get an open neighbourhood of the

identity U such that for all y P K we have yU Ă Uz for some z “ zpyq P K. It follows that

1G R yUx for all y P K, so K´1 XUx “ H. Thus K´1 is closed and the result is proved.
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Remark 1.44. We cannot replace ‘paratopological’ by ‘quasitopological’ in view of Rcf which

is a compact quasitopological group that is not a topological group. We also cannot relax

‘compact’ to ‘locally compact’ since Rro is a locally compact paratopological group that is

not a topological group.

!△In [Rav15] it states that every locally compact paratopological group is a topological

group. This does not contradict the above, it is simply using a different definition of local

compactness in which every element is contained in a closed compact neighbourhood.

A topological space X is said to be regular if for all x P X every neighbourhood of x

contains a closed neighbourhood of x. !△The literature is inconsistent on the meaning of

regular, and for some other authors a regular space is required to be Hausdorff.

Proposition 1.45. Suppose that G is a topological group. Then G is regular.

Proof. Let V be a neighbourhood of x P G. By Lemma 1.34 there is a symmetric open

neighbourhood of the identity U such that xU2 Ă V , and so by Lemmas 1.23 & 1.32,xU Ă

xUU´1 “ xU2 Ă V as required.

Remark 1.46. The quasitopological group Rcf is not regular because the only closed neigh-

bourhood is the whole of R which cannot be contained in any neighbourhood that is not

the whole of R; and the paratopological group Rro is not regular for the same reasons.

There are also purely topological conditions that give rise to regularity:

Proposition 1.47. Suppose that X is a locally compact Hausdorff topological space. Then

X is regular.

Proof. Let V be an open neighbourhood of x P X, which by local compactness we may

assume is contained in a compact neighbourhood U . For all x ‰ y P X there is an open set

Uy containing y which is disjoint from an open set Vy containing x. tUy : y P UzV u is an open

cover of a closed subset of the compact set U and so has a finite subcover, say Uy1 , . . . , Uym .

But U is a compact subset of a Hausdorff topological space, so pUzUy1q X ¨ ¨ ¨ X pUzUymq is

closed, contained in V , and contains Vy1 X ¨ ¨ ¨ X Vym which is an open set containing x.

In the above we used that compact subsets of Hausdorff topological spaces are closed, and

for non-Hausdorff spaces that are regular the following lemma helps recover the situation:

Lemma 1.48. Suppose that X is a regular space and K Ă X is compact. Then K is

compact.

Proof. Suppose U is an open cover of K. Then for each x P K there is an open neighbour-

hood of x in U , call it Ux. By regularity there is an open neighbourhood of x, call it Vx,

such that Vx Ă Ux. The set tVx : x P Ku is an open cover of K and so by compactness has

a finite subcover, say K Ă Vx1 Y ¨ ¨ ¨ Y Vxk
and hence K Ă Ux1 Y ¨ ¨ ¨ Y Uxk

. Thus U has a

finite subcover of K, and the result is proved.
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Remark 1.49. The reals with the cocountable topology has every compact set being finite,

and also all finite sets are closed hence if K is compact then K “ K is compact in this

topology, but this space is not regular.

Since every topological group is regular the closure of a compact subset of any topological

group is compact. We cannot relax ‘topological’ to ‘paratopological’ here since t0u is a

compact subset of Rro whose closure is p´8, 0s which is not compact. Similarly we cannot

relax ‘topological’ to ‘quasitopological’: Exercise I.7 gives an example of a quasitopological

group that is not locally compact but which has a compact dense subgroup. In particular,

this means that there are paratopological and quasitopological groups that are not regular.

Lemma 1.50. Suppose that X is a regular space and K is a compact set inside an open set

B. Then there is an open set C Ą K with C Ă B. If X is, additionally, locally compact

then C may be taken to be compact.

Proof. Since B is open, for each x P K there is an open set Ux containing x and contained

in B, and since X is regular, there is an open neighbourhood Vx of x with Vx Ă Ux. Since

K is compact K Ă Vx1 Y ¨ ¨ ¨ Y Vxm for some x1, . . . , xm P K. Put C :“ Vx1 Y ¨ ¨ ¨ Y Vxm and

get the result. If X is locally compact then we may assume that Ux is compact and hence

C is compact as claimed.

2 Continuous homomorphisms

The maps which will concern us the most are continuous homomorphisms, and also contin-

uous open homomorphisms, that is continuous homomorphisms in which the image of an

open set is open.

Example 2.1. The map θ : R Ñ S1;x ÞÑ expp2πixq from the real line to the circle group

is a surjective continuous open homomorphism.

Example 2.2. The maps R Ñ R;x ÞÑ αx for α P R are continuous homomorphisms of the

real line. For α “ 0 this map is not open; for α ‰ 0, this map has an inverse of the same

form and so is open and in fact a homeomorphic isomorphism.

Example 2.3. If G is a topologized group with continuous inverse and Gop is given the

same topology as G, then the map G Ñ Gop;x ÞÑ x´1 is a homeomorphic isomorphism,

because it has a continuous homomorphic inverse Gop Ñ G;x ÞÑ x´1.

Example 2.4. Suppose that G is a semitopological group. Then for a P G, conjugation by a,

that is the map G Ñ G;x ÞÑ axa´1 is an isomorphism with inverse map G Ñ G;x ÞÑ a´1xa.

Both these maps are homeomorphisms for fixed a since left and right multiplication is

continuous and the composition of continuous maps is continuous. !△We do not need

inversion to be continuous.
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Example 2.5. For a topologized group G, the identity map θ : GD Ñ G;x ÞÑ x from G with

its discrete topology to G with the given topology is a continuous homomorphism, because

the identity map is a homomorphism and any map from a discrete space is continuous.

!△GD is a topological group, but in general G need not even be a left-topological group.

In left-topological groups, the algebraic structure makes checking continuity and open-

ness a little easier: First, recall that a neighbourhood base of a point x in a topological

space X is a family B “ pBiqiPI of neighbourhoods of x such that if U is an open set

containing x then there is some i P I such that Bi Ă U .

Proposition 2.6. Suppose that G and H are left-topological groups and B “ pBiqiPI is a

neighbourhood base of the identity in H. Then a homomorphism θ : G Ñ H is continuous if

(and only if) θ´1pBiq is a neighbourhood of the identity for all i P I; and a homomorphism

θ : H Ñ G is open if (and only if) θpBiq is a neighbourhood of the identity for all i P I.

Proof. Suppose that U Ă H is open and θpyq P U . By Lemma 1.23 there is an open

neighbourhood of the identity Vy such that θpyqVy Ă U , and hence i P I such that Bi Ă Vy.

Thus θ´1pBiq Ă θ´1pVyq so yθ´1pBiq Ă θ´1pUq (using that θ is a homomorphism) and hence

θ´1pUq contains a neighbourhood of y i.e. θ´1pUq is open. The parenthetical ‘only if’ follows

since Bi contains an open neighbourhood of 1H and θp1Gq “ 1H . The result for open maps

follows similarly.

Corollary 2.7. Suppose that G is a semitopological group and B “ pBiqiPI is a neighbour-

hood base of the identity such that B´1
i is a neighbourhood of the identity for all i P I. Then

G is quasitopological.

Proof. Since G is semitopological the map G Ñ Gop;x ÞÑ x´1 is a homomorphism between

left-topological groups, and so Proposition 2.6 gives the result.

The initial topology, subgroups, and product groups

Given a function f : X Ñ Y into a topological space the initial topology on X w.r.t.

f is the topology tf´1pUq : U is open in Y u. In words it is the weakest topology (meaning

coarsest topology, or topology with the fewest open sets) on X making f continuous.

Proposition 2.8. Suppose that G is a topologized group, θ : H Ñ G is a group homomor-

phism, and H is given the initial topology w.r.t. θ. Then (θ is continuous and)

(i) if group inversion is continuous on G, then it is continuous on H;

(ii) if left (resp. right) multiplication is continuous on G, then it is continuous on H;
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(iii) and if multiplication is continuous on G2 then it is continuous on H2.

In particular if G is a topological (resp. paratopological, quasitopological, semitopological,

left-topological or right-topological) group then so is H.

Proof. Suppose U is an open set in H so that there isW , open in G, such that U “ θ´1pW q.

For (i), note that U´1 “ pθ´1pW qq´1 “ θ´1pW´1q, but W´1 is open in G and so U´1

is open in H. For (ii), given x P H, xU “ xθ´1pW q “ θ´1pθpxqW q, but θpxqW is open

in G and so xU is open in H, so left multiplication is continuous. The result for right

multiplication follows similarly. Finally, for (iii), let S be a set of products of open sets in

G such that tpx, yq P G2 : xy P W u “
Ť

S. Then

tpx, yq P H2 : xy P Uu “ tpx, yq P H2 : θpxqθpyq P W u

“ tpx, yq P H2 : pθpxq, θpyqq P S ˆ T for some S ˆ T P Su

“
ď

tθ´1
pSq ˆ θ´1

pT q : S ˆ T P Su,

and this last set is a union of open sets and so open. The result is proved.

We say that a topologized group H is a topological subgroup of a topologized group

G if H is a subgroup of G and has the subspace topology i.e. has the initial topology w.r.t.

the inclusion homomorphism H Ñ G;x ÞÑ x.

Note from the proposition that if G is a topological (resp. paratopological, quasitopo-

logical, semitopological, left-topological or right-topological) group then so is H.

Example 2.9. A number of the topological groups from the introduction are examples of

topological subgroups: Q (from Example 1.4) is a topological subgroup of the real line R;
and Rą0 (from Example 1.6) and S1 (from Example 1.7) are topological subgroups of C˚.

Example 2.10 (p-divisor topology on Z). Write Zp´div for the group Z and the initial

topology w.r.t. the quotient map Z Ñ pZ{pZqd;x ÞÑ x ` pZ, which is a topological group

by Proposition 2.8. This is the same as the coset topology on Z generated by pZ.
The group Z{pZ is finite – this follows from the division algorithm – and so all topologies

on Z{pZ are finite and so in particular the topology on Zp´div is finite.

It can be useful to have the initial topology with respect to multiple functions, and to

this end we need the direct product of topologized groups:

Proposition 2.11. Suppose that pGiqiPI is a family of topologized groups. Then
ś

iPI Gi is a

topologized group when it is given the group structure of the product group, and the topological

structure of the product topology, and for j P I the projection map pj :
ś

iPI Gi Ñ Gj;x ÞÑ xj

is a continuous open homomorphism. Furthermore, for each j P I there are continuous

homomorphisms ιj : Gj Ñ
ś

iPI Gi such that Gj has the initial topology w.r.t. ιj, and
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(i) if inversion is continuous on all of the Gis then it is continuous on
ś

iPI Gi;

(ii) if left (resp. right) multiplication is continuous on all the Gis then it is continuous on
ś

iPI Gi;

(iii) and if multiplication is continuous on all of the G2
i s then it is continuous on p

ś

iPI Giq
2.

In particular if Gi is a topological (resp. paratopological, quasitopological, semitopological,

left-topological or right-topological) group for all i P I then so is
ś

iPI Gi.

Proof. The first part is just a statement of the usual results concerning product groups and

product topologies. The sets of the form
ś

iPI Ui where Ui is open for all i P I, and Ui “ Gi

for all but finitely many i P I, form a base B for the product topology.

We define ιj : Gj Ñ
ś

iPI Gi by letting πjpιjpxqq “ x for all x P Gj and πipιjpxqq “ 1Gi

for all i ‰ j. This is a continuous homomorphism, and the initial topology on Gj w.r.t. ιj is

tπjpUq : U is open in
ś

iPI Giu which is exactly the set of open subsets of Gj in its original

topology. In other words the topology on Gj is initial as described.

For (i), by definition of inversion in the product group, p
ś

iPI Uiq
´1 “

ś

iPI U
´1
i , and if

Ui “ Gi then U
´1
i “ Gi, so if inversion is continuous for all of the Gis and

ś

iPI Ui P B then

p
ś

iPI Uiq
´1 P B and the result is proved.

For (ii), given x P
ś

iPI Gi and
ś

iPI Ui P B we have x´1
ś

iPI Ui “
ś

iPI x
´1
i Ui by

definition of the group operation in the product group. x´1
i Ui is open for all i P I by Lemma

1.23, and if Ui “ Gi then x
´1
i Ui “ Gi, so x

´1
ś

iPI Ui P B. It follows that left multiplication

by x is continuous. Similarly for right multiplication.

Finally, for (iii), if
ś

iPI Ui P B let J Ă I be finite such that Ui “ Gi for all i R J . Then

Vi :“ tpxi, yiq : xi, yi P Uiu “
ď

tSi ˆ Ti : Si ˆ Ti P Siu

for some set Si of products of open sets in Gi, and if Ui “ Gi then Vi “ Gi ˆ Gi whence

#

px, yq : xy P
ź

iPI

Ui

+

“
ď

#

ź

iPI

Si ˆ
ź

iPI

Ti :
Si ˆ Ti P Si for all i P J

and Si “ Ti “ Gi for all i R J

+

,

which is a union of sets in B ˆ B and so open. The result is proved.

We call the topologized group above the topological direct product of the groups

pGiqiPI , and given n topologized groups G, H, . . . , K, we write G ˆ H ˆ ¨ ¨ ¨ ˆ K for
ś

iPt1,...,nu
Gi where G1 :“ G, G2 :“ H, . . . , Gn :“ K.

Remark 2.12. Suppose that G is a group and pGiqiPI are copies of the group G with different

topologies. Then we write G∆ for the group G with initial topology w.r.t. the diagonal

homomorphism G Ñ
ś

iPI Gi;x ÞÑ px, . . . , xq. Concretely this is just the topology on G
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generated by all the topologies together – that is the set of unions of sets of the form
Ş

iPJ Ui where J Ă I is finite and Ui is open in Gi for all i P J .

In particular, combining Propositions 2.8 & 2.11, if Gi is a topological (resp. paratopo-

logical, quasitopological, semitopological, left-topological or right-topological) group for all

i P I then so is G∆.

Example 2.13 (Prime divisor topology on Z). By the preceding remark we may give Z the

topology generated by the topological groups Zp´div – that is Z with the p-divisor topology

from Example 2.10 – as p ranges the primes. This makes Z into a topological group denoted

Zpd.

The topology of Zpd is Hausdorff: if x ‰ y then without loss of generality px`1q´y ą 1.

Every natural number bigger than 1 has a smallest factor bigger than 1, and this factor will

be prime, so there is a prime p with x`1´y P pZ. Then x`pZXy`pZ “ py´1q`pZXy`pZ.
Since p ffl 1 we have y ´ 1 ` pZ ‰ y ` pZ and since the intersection of two cosets is either a

coset or empty we have that the open sets x` pZ and y` pZ are disjoint giving the claimed

result.

Quotient groups

For G a topologized group and H ď G, the quotient topology on left cosets G{H has

U Ă G{H open if and only if
Ť

U is open in G; or, equivalently, C Ă G{H closed if and

only if
Ť

C is closed in G.

Remark 2.14. This topology is the final topology on G{H w.r.t. the quotient map q : G Ñ

G{H;x ÞÑ xH – it is the strongest topology (meaning finest topology, or topology with the

most open sets) on G{H making q continuous.

Lemma 2.15. Suppose that G is a left-topological group and H ď G is dense. Then G{H

with the quotient topology is indiscrete.

Proof. Suppose that C Ă G{H is closed and non-empty. Then
Ť

C is closed and contains

xH for some x P G. However xH “ xH “ xG “ G by Lemma 1.23, and so
Ť

C “ G and

hence the only non-empty closed set in G{H is G{H and the result is proved.

Proposition 2.16. Suppose that G is a right-topological group and H ď G. Then for G{H

with the quotient topology, the quotient map q : G Ñ G{H is open.

Proof. If U is open in G then UH is open by Lemma 1.23 (for right-topological groups).

But
Ť

qpUq “ UH, and so qpUq is open in G{H by definition.

Quotient maps are not necessarily closed:
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Example 2.17. Q is a dense subgroup of the real line R and so Lemma 2.15 tells us that

R{Q has the indiscrete topology. The quotient map q : R Ñ R{Q;x ÞÑ x ` Q is not closed

since qpt0uq “ tQu is not closed in R{Q.

Corollary 2.18. Suppose that G is a topologized group, and H ď G. Then G{H with the

quotient topology is compact (resp. σ-compact) if G is compact (resp. σ-compact); and if

G is right-topological and locally compact, then G{H with the quotient topology is locally

compact.

Proof. The quotient map q is continuous and the continuous image of a compact set is

compact, so if G is compact then so is G{H, and if G is σ-compact so that G “
Ť

nPN0
Kn

for compact sets Kn, then G{H “ qpGq “
Ť

nPN0
qpKnq is σ-compact.

Now let xH P G{H, and suppose G is locally compact. There is an open set U containing

x and contained in a compact set K. Since q is open (Proposition 2.16), qpUq is an open

set containing xH and contained in qpKq. The latter is compact since q is continuous and

so G{H is locally compact as claimed.

Proposition 2.19. Suppose that G is a topologized group and H is a normal subgroup of

G. Then

(i) if group inversion on G is continuous, then it is continuous on G{H;

(ii) if left (resp. right) multiplication is continuous on G, then it is continuous on G{H;

(iii) and if multiplication is continuous on G2 then it is also on pG{Hq2.

In particular, if G is a topological (resp. paratopological, quasitopological, semitopological,

left-topological or right-topological) group then so is G{H.

Proof. Suppose that U Ă G{H is open. If inversion is continuous on G then

ď

U´1
“
ď

␣

pxHq
´1 : xH P U

(

“
ď

␣

x´1H : xH P U
(

“

!

x´1 : x P
ď

U
)

“

´

ď

U
¯´1

and so U´1 is open in G{H by definition since
Ť

U is open in G. If left multiplication on G

is continuous, then for x P G,

ď

pxHq
´1U “

ď

␣

px´1HqpyHq : yH P U
(

“
ď

␣

x´1yH : yH P U
(

“ x´1
ď

U,

and so pxHq´1U is open in G{H and hence left multiplication by xH is continuous. Similarly

for right multiplication.

Finally suppose multiplication on G is continuous. Define

W :“
␣

pzH,wHq P pG{Hq
2 : pzHqpwHq P U

(

and V :“
!

pz, wq P G2 : zw P
ď

U
)

.
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Suppose that pxH, yHq P W . Then xy P pxHqpyHq Ă
Ť

U so px, yq P V and since V is open

there are open sets S, T Ă G such that x P S, y P T , and S ˆ T Ă V . If s P S and t P T ,

then st P
Ť

U , and since the latter is a union of cosets of H we have pstqH Ă
Ť

U . Since

H is normal we have psHqptHq “ pstqH Ă
Ť

U , and so SH ˆ TH Ă V .

By Lemma 1.23, SH and TH are open sets, and so the sets S 1 :“ tsH : s P Su and

T 1 :“ ttH : t P T u are open in G{H; xH P S 1 and yH P T 1; and S 1 ˆ T 1 Ă W . It follows

that W is open, and multiplication on G{H is continuous.

Example 2.20 (The real line modulo 1). The real line R (Example 1.3) has a (normal)

subgroup Z and so the group R{Z may be given the quotient topology making it into a

topological group by Proposition 2.19.

!△In the literature on topological spaces (though not in these notes) the notation R{Z
is sometimes used to refer to a different space, called the adjunction space in which all the

integers in R are identified but the rest of R remains the same. In other language this is a

countably infinite bouquet of circles all connected at the point Z.

Example 2.21 (The reals with the circle topology). By Proposition 2.8 R is a topological

group (which we shall denote RC) when endowed with the initial topology w.r.t. the quotient

map q : R Ñ R{Z where R{Z is the reals pmod 1q (Example 2.20). We call this the circle

topology on R. The open sets in the circle topology have the form U ` Z where U Ă R is

open in the real line.

Since Rc has the initial topology, a set A Ă Rc is compact if (and only if) qpAq is

compact in R{Z: Indeed, if U is an open cover of A, we can write U “ tq´1pV q : V P Vu for

some set V of open subsets of R{Z. Now, if qpAq is compact then there are V1, . . . , Vn P V
such that qpAq Ă V1 Y ¨ ¨ ¨ Y Vn, and hence A Ă q´1pqpAqq Ă q´1pV1q Y ¨ ¨ ¨ Y q´1pVnq and so

tq´1pV1q, . . . , q
´1pVnqu is a finite subcover of U .

!△In particular, A :“ r0, 1s and B :“ r0, 1{2qYr3{2, 2s are compact, but AXB “ r0, 1{2q

is not compact. This phenomenon of the intersection of two compact sets not being compact

cannot happen in a Hausdorff space where every compact set is closed, and hence where the

intersection of two compact sets is an intersection of a closed set with a compact set which

is, therefore, compact.

The open mapping theorem

Example 2.5 shows that there are continuous bijective group homomorphisms that are not

homeomorphic isomorphisms. This is by way of contrast with the purely algebraic situation

where any bijective group homomorphism is a group isomorphism (i.e. has an inverse that

is a homomorphism), but in alignment with the topological situation where continuous

bijections need not be homeomorphisms. With a few mild conditions on the topology we

can recover the algebraic situation:
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Theorem 2.22 (Open Mapping Theorem). Suppose that G is a σ-compact left-topological

group, H is a locally compact Hausdorff left-topological group, and π : G Ñ H is a continuous

bijective homomorphism. Then π is a homeomorphic isomorphism.

Proof. Since the inverse of a bijective group homomorphism is a group isomorphism, it

suffices to show that πpCq is closed whenever C is closed in G. Let Kn be compact in G

such that G “
Ť

nPNKn.

Claim. There is some n P N such that πpKnq is a neighbourhood.

Proof. We use a Baire Category argument, though no familiarity with these is assumed. We

construct a nested sequence of closed neighbourhoods inductively: Let U0 be a compact (and

so closed since H is Hausdorff) neighbourhood in H, and for n P N let Un Ă πpKnqc XUn´1

be a closed neighbourhood.

This is possible since (by the inductive hypothesis) Un´1 is a neighbourhood and so

contains an open neighbourhood Vn´1. But then πpKnqc X Vn´1 is open and non-empty

since otherwise πpKnq contains a neighbourhood. It follows that πpKnqc XUn´1 contains an

open neighbourhood and so it contains a closed neighbourhood since H is locally compact

and regular.

Now by the finite intersection property of the compact space U0, the set
Ş

n Un is non-

empty. This contradicts surjectivity of π since G “
Ť

nPNKn and the claim is proved.

Claim. If X Ă H is compact then π´1pXq is compact.

Proof. By the previous claim πpKnq contains a neighbourhood (and hence so does xπpKnq

by Lemma 1.23) and the set txπpKnq : x P Hu covers X, so by compactness of X there are

elements x1, . . . , xm such that X Ă
Ťm

i“1 xiπpKnq and hence π´1pXq Ă
Ťm

i“1 π
´1pxiqKn (by

injectivity of π). π´1pxiqKn is compact by Lemma 1.23, and since a finite union of compact

sets is compact it follows that π´1pXq is contained in a compact set. Finally, X is closed so

π´1pXq is closed and a closed subset of a compact set is compact as required.

Finally, suppose that C Ă G is closed, and y is a limit point of πpCq. H is locally

compact so y has a compact neighbourhood X. Now π´1pXq is compact and so π´1pXq XC

is compact. But then X X πpCq is compact since π is continuous, and hence closed since H

is Hausdorff. But by design y P X X πpCq “ X X πpCq Ă πpCq.

Corollary 2.23. Suppose that G is a countable locally compact Hausdorff topological group.

Then G is discrete. In particular, if G is a compact Hausdorff topological group then G is

either finite or uncountable.

Proof. Gd is a σ-compact semitopological group by Example 1.2, and the identity map

GD Ñ G is a continuous bijective homomorphism (Example 2.5). Hence by the Open
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Mapping Theorem this is a homeomorphism and so G is discrete. Finally, if G is compact

and countable then it is compact and discrete and so finite.

Remark 2.24. None of the hypotheses may be dropped: The real line is an example of an un-

countable locally compact Hausdorff topological group that is not discrete (since singletons

are not open), and the rationals as a topological subgroup are an example of a countable

Hausdorff topological group that is not discrete. Finally, QI, that is Q with the indiscrete

topological, is a countable (locally) compact topological group that is not discrete.

Remark 2.25. Furstenberg [Fur55] gave a proof that there are infinitely many primes in

topological language and here we can dress this up in terms of topologized groups:

Suppose, for a contradiction, that there were finitely many primes. Then the topology

of Zpd (from Example 2.13) is generated by a finite collection of finite topologies and so is

itself a finite topology and hence compact. But we saw in Example 2.13 that it is Hausdorff

so by Corollary 2.23 Zpd is finite giving the contradiction claimed.

3 Continuous complex-valued functions on topological

groups

For a topological space X we write CpXq for the set of continuous functions X Ñ C. This
is closed under pointwise addition and multiplication of functions and contains the constant

functions, so it is a C-algebra.

Remark 3.1. For any indiscrete space X, the space CpXq contains only the constant func-

tions; and for any discrete space X, the space CpXq contains all functions X Ñ C.

Constructing non-constant continuous functions

In view of the preceding remark it is not always possible to construct non-trivial continuous

functions, but for topologies that are sufficiently rich in open sets we have a chance: First,

the dyadic rationals in r0, 1s are the set D :“
Ť8

i“0Di, where

D0 :“ t0{1, 1{2u, D1 :“ t0{2, 1{2, 2{2u, D2 :“ t0{4, 1{4, 2{4, {3{4, 4{4u,&c.

In particular D is dense in r0, 1s; we have the nesting D0 Ă D1 Ă . . . ; and every element of

Di`1zDi can be written in the form 1
2
pq` q1q where q and q1 are consecutive elements of Di.

Write S˝ for the interior of S, that is the set of x P S that are contained in an open set

contained in S. In particular S˝ is an open subset of S, and S˝ “ S if and only if S is open.

Example 3.2 (The real line contd., Example 1.3). !△The interior of the closure of B may

be very different to B, even if B is open: there are open dense subsets S of r0, 1s of arbitrarily

small measure, so that S
˝

“ p0, 1q, but S itself is much smaller.
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Proposition 3.3. Suppose that G is a paratopological group, A,B Ă G with A compact

and A Ă B
˝
. Then there are sets pUqqqPD with U0 “ A, U1 “ B, and Uq Ă Uq1

˝
whenever

q, q1 P D have q ă q1.

Proof. By Lemma 1.41 there is an open neighbourhood of the identity U such that AU Ă B,

and by Lemma 1.34 there are open neighbourhoods Vi of the identity such that V 2
i`1 Ă Vi

for all i P N0 and V 2
0 Ă U .

We set U0 :“ A and U1 :“ B and define Uq for q P Di`1zDi iteratively for i P N0.

Suppose that at step i, for all consecutive pairs q ă q1 in Di we have UqVi Ă Uq1 – this is

certainly true for i “ 0. For q ă q1 consecutive elements of Di set U 1
2

pq`q1q :“ UqVi`1 so that

a) UqVi`1 Ă U 1
2

pq`q1q; and b) U 1
2

pq`q1qVi`1 Ă UqVi`1Vi`1 Ă UqV 2
i`1 Ă Uq1 “ Uq1 by Lemma

1.23. Every element of Di`1zDi is the average of two consecutive elements of Di, and the

result is proved.

Proposition 3.4. Suppose that X is a locally compact regular topological space, A,B Ă X

with A compact and A Ă B
˝
Then there are open sets pUqqqPD with A Ă U0, U1 Ă B, and

Uq Ă Uq1

˝
whenever q, q1 P D have q ă q1.

Proof. We set U0 :“ A and U1 :“ B and define Uq for q P Di`1zDi iteratively for i P N0.

Suppose that at step i, for all consecutive pairs q ă q1 in Di we have Uq Ă Uq1

c
irc and Uq

compact – this is certainly true for i “ 0 by Lemma 1.48. For q ă q1 consecutive elements

of Di, apply Lemma 1.50 to get an open set U 1
2

pq`q1q containing Uq and contained in Uq1

˝
,

with compact closure, and the result is proved.

Lemma 3.5. Suppose that X is a topological space, and pUqqqPD are such that Uq Ă Uq1

˝

whenever q ă q1. Then there is a continuous function g : X Ñ r0, 1s with gpxq “ 0 for

x P U0, and gpxq “ 1 for x R U1
˝
.

Proof. For x P G let Spxq :“ tq P D : x P Uq
˝
u and define g : G Ñ r0, 1s by gpxq :“

inf Spxq Y t1u. This certainly maps into r0, 1s. If x P U0 then q P Spxq for all q ą 0

by nesting, and hence gpxq “ 0; if x R U1
˝
, then Spxq “ H by nesting, and so gpxq “

1. It remains to establish that g is continuous: First, for α ď 1 we have g´1pr0, αqq “
Ť

tUq
˝
: q ă αu is open. The harder case is showing for α ě 0 that g´1ppα, 1sq is open;

suppose that gpx0q ą α. Then there is q P D with gpx0q ą q ą α, and hence x0 R Uq
˝
. Now,

if z R Uq then by nesting gpzq ě q ą α, and hence x0 P GzUq Ă g´1ppα, 1sq. Thus every

element of g´1ppα, 1sq is contained in an open subset of g´1ppα, 1sq, and so g´1ppα, 1sq itself

must be open. Finally, the half-open sets pα, 1s and r0, αq for α P r0, 1s form a base for the

topology on r0, 1s and hence g is continuous as required.

Corollary 3.6. Suppose that G is a regular paratopological group, and A Ă B are compact

and open sets respectively. Then there is a continuous function g : G Ñ r0, 1s with gpxq “ 0

for all x P A and gpxq “ 1 for all x R B.

Page 26



Proof. Since the topology is regular and A is compact there is an open set C containing A

with C Ă B. Apply Proposition 3.3 and then Lemma 3.5 to get g : G Ñ r0, 1s continuous

with gpxq “ 0 for all x P A, and gpxq “ 1 for all x R C
˝
. The result follows since C

˝
Ă B.

Remark 3.7. We know from Proposition 1.45 that every topological group is regular, hence

every topological group is a regular paratopological group so in particular the above corollary

applies to all topological groups. It is sometimes called the ‘complete regularity of topological

groups’.

Example 3.8. For the rationals (Example 1.4), the function g : Q Ñ C with gpxq “ 0 if

x2 ă 2 and gpxq “ 1 if x2 ą 2 is continuous because for every x P Q there is an interval on

which it is constant (on the rationals in that interval), and it has gp0q “ 0 and gpxq “ 1 for

all x not in the open set ty P Q : y2 ą 2u. This is not the sort of function that is constructed

by the argument of Corollary 3.6, and suffers from not having a continuous extension to the

reals because it is not uniformly continuous.

Remark 3.9. !△Corollary 3.6 does not assume that G is not indiscrete so that there may

not be any non-constant continuous functions. Exercise II.9 asks for a proof that if G is a

topological group and the only continuous functions are constant then G is indiscrete, and

also for examples to show how things differ for quasitopological and paratopological groups.

Corollary 3.10. Suppose that X is a locally compact regular topological space, and A Ă B

are compact and open sets respectively. Then there is a continuous function g : G Ñ r0, 1s

with gpxq “ 0 for all x P A and gpxq “ 1 for all x R B.

Proof. By exactly the same argument as Corollary 3.6 with Proposition 3.4 replacing Propo-

sition 3.3.

Compactly supported continuous functions

Given a topological space X the support of a (not necessarily continuous) function f :

X Ñ C, denoted supp f , is the set of x P X such that fpxq ‰ 0; f is said to be compactly

supported if its support is contained in a compact set. We write CcpXq for the subset

of functions in CpXq that are compactly supported. !△As we have defined it the support

of a function that is compactly supported need not actually be a compact set; it is simply

contained in one.

Remark 3.11. The set CcpXq is a subalgebra of CpXq since the union of two compact sets

is compact and the support of the sum of two functions is contained in the union of their

supports; and the support of the product of two functions is the intersection of their supports

which is certainly contained in a compact set if one is. More than this, the function

}f}8 :“ sup t|fpxq| : x P Xu
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is a norm on CcpXq. It is well-defined since every continuous (complex-valued) function on

a compact set is bounded, and the axioms of a norm are easily checked.

!△In general } ¨ }8 is not a norm on CpXq since we are not assuming the elements of

CpXq are bounded.

!△In general CcpXq is not complete despite the fact that the uniform limit of continuous

functions is continuous since this limit function may not be compactly supported.

Remark 3.12. !△If f, g P CpXq then the support of g is open and there is a continuous

function h : supp g Ñ C such that f “ gh, but in general this need4 not have a continuous

extension to the whole of X. By way of contrast, if f, g P CcpXq and supp f Ă supp g then

there is h P CcpXq such that f “ gh.

Proposition 3.13. Suppose that G is a left-topological group and CcpGq contains a function

that is not identically zero. Then G is locally compact.

Proof. Suppose that f P CcpGq is not identically zero. Then supp f is open (since f is

continuous), non-empty and contained in a compact set K (since f is compactly supported).

It follows that K is a compact neighbourhood of some point x P G, and by Lemma 1.23

yx´1K is then a compact neighbourhood of y for y P G as required.

Example 3.14. !△For the rationals (Example 1.4) we have CcpQq “ t0u.

For us Corollary 3.6 will be crucial in providing a supply of compactly supported func-

tions in locally compact topological groups.

Corollary 3.15. Suppose that G is a locally compact topological group and K Ă G is

compact. Then there is a continuous compactly supported f : G Ñ r0, 1s such that fpxq “ 1

for all x P K.

Proof. Since G is locally compact it contains a compact neighbourhood of the identity

L; let H Ă L be an open neighbourhood of the identity. KH is open by Lemma 1.23.

Apply Corollary 3.6 to get a continuous f : G Ñ r0, 1s with fpxq “ 1 for all x P K and

supp f Ă KH Ă KL which is compact by Lemma 1.36.

Furthermore, we can produce continuous partitions of unity:

Corollary 3.16. Suppose that G is a locally compact topological group, F : G Ñ r0, 1s is

continuous, K is a compact set containing the support of F , and U is an open cover of

K. Then there is some n P N and continuous compactly supported functions f1, . . . , fn :

G Ñ r0, 1s such that F “ f1 ` ¨ ¨ ¨ ` fn; and for each 1 ď i ď n there is Ui P U such that

supp fi Ă Ui.

4Consider, for example, the functions fpxq “ x and gpxq “ x2 in CpRq. Then hpxq “ 1{x for all x P supp g

but h has no continuous extension to R.
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Proof. Since U is an open cover of K, for each x P K there is an open neighbourhood of

x, call it Ux P U , and by Proposition 1.45 there is a closed neighbourhood Vx Ă Ux of x.

Since each Vx is a neighbourhood and tVx : x P Ku is a cover of K, compactness tells us

that there are elements x1, . . . , xn such that K Ă Vx1 Y ¨ ¨ ¨ Y Vxn . By Lemma 1.48 K is

compact and so for each i the set Vxi
XK is a closed subset of a compact set and so compact.

Apply Corollary 3.6 to Vxi
XK Ă Uxi

to get a continuous function gi : G Ñ r0, 1s such that

gipxq “ 1 for all x P Vxi
X K and supp gi Ă Uxi

.

Since the sets Vx1 , . . . , Vxn are closed, K Ă Vx1 Y ¨ ¨ ¨ Y Vxn , and so since the gis are

non-negative we have

suppF Ă K Ă pVx1 X Kq Y ¨ ¨ ¨ Y pVxn X Kq Ă supppg1 ` ¨ ¨ ¨ ` gnq.

Thus (see Remark 3.12) there is h P CcpGq such that F “ hpg1 ` ¨ ¨ ¨ ` gnq and since F maps

into r0, 1s and g1pxq ` ¨ ¨ ¨ ` gnpxq ě 1 on the support of F , we conclude that h maps into

r0, 1s; for 1 ď i ď n put fi “ gih.

It remains to check the properties of the fis. First, fi is a continuous function G Ñ r0, 1s

by design of h and gi. Secondly, F “ f1 ` ¨ ¨ ¨ ` fn by design. Finally, supp fi Ă supp gi Ă

Uxi
P U . Moreover, since the fis are non-negative supp fi Ă K so fi has compact support.

The result is proved.

Integrals of continuous functions

We say that a complex-valued function f from a set X is non-negative if fpxq ě 0 for all

x P X; we say a linear functional
ş

from a complex vector space of complex-valued functions

V is non-negative if
ş

f ě 0 whenever f is non-negative.

Our motivating example of an integral is the Riemann integral:

Example 3.17. The set R of Riemann integrable functions R Ñ C has some basic properties

often established in first courses on analysis e.g. [Gre20]. In particular, R is a complex vector

space under point-wise addition and scalar multiplication of functions, and
ż

: R Ñ C; f ÞÑ

ż 8

´8

fpxqdx

is a non-negative linear map. Furthermore, CcpRq is a subspace of R, and
ş

restricted to

CcpRq is non-trivial (meaning not identically zero).

Remark 3.18. !△We are only concerned with proper integrals, and though the integral in
ş

appears to be improper we are restricting attention to compactly supported functions so

the integrals are, in fact, proper.

Remark 3.19. Non-triviality of
ş

when restricted to CcpRq is important; see Exercise III.7

for a contrasting situation.
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Given a topological space X if f, g P CcpXq are both real-valued then we write f ě g if

f ´ g is non-negative, and C`
c pXq for the set of f P CcpGq such that f ě 0, where 0 is the

constant 0 function.

Remark 3.20. The functions C Ñ R; z ÞÑ Re z, C Ñ R; z ÞÑ Im z, R Ñ Rě0;x ÞÑ maxtx, 0u

and R Ñ Rě0;x ÞÑ maxt´x, 0u are continuous and so any f P CcpXq can be written as

f “ f1 ´ f2 ` if3 ´ if4 for f1, f2, f3, f4 P C`
c pXq, and this decomposition is unique. We

shall frequently have call to understand elements of CcpXq through this linear combination

of elements of C`
c pXq.

Remark 3.21. If f, g P CcpXq are real-valued with f ě g and
ş

is a non-negative linear

functional CcpXq Ñ C then
ş

f ě
ş

g; and if f P CcpGq then
ˇ

ˇ

ş

f
ˇ

ˇ ď
ş

|f |.

Remark 3.22. The decomposition in Remark 3.20 can be used to show that if
ş

is a non-

negative linear functional then
ş

f “
ş

f for all f P CcpXq.

Remark 3.23. We think of non-negative linear functionals as integrals and in fact the Riesz-

Markov-Kakutani Representation Theorem tells us that if X has a sufficiently nice topology

then every non-negative linear map CcpXq Ñ C arises as an integral against a suitably

well-behaved measure on X.

Remark 3.24. Suppose that f P CpXq. By the triangle inequality if ∆ :“ tz P C : |z| ă ϵ{2u

and fpxq, fpyq P z ` ∆ then |fpxq ´ fpyq| ă ϵ and hence U :“ tf´1pz ` ∆q : z P Cu is an

open cover of X such that if U P U and x, y P U then |fpxq ´ fpyq| ă ϵ.

Given a further topological space Y and F : X ˆ Y Ñ C and x P X, we write
ş

y
F px, yq

for the functional
ş

: CcpY q Ñ C applied to the function Y Ñ C; y ÞÑ F px, yq (assuming this

function is continuous and compactly supported), and similarly for y P Y and
ş

x
F px, yq. It

will be crucial for us that the order of integration can be interchanged and this is what the

next result concerns:

Theorem 3.25 (Fubini’s Theorem for continuous compactly supported functions). Suppose

that G is a locally compact topological group,
ş

and
ş1

are non-negative linear functionals

CcpGq Ñ C, and F P CcpGˆGq. Then the map x ÞÑ
ş1

y
F px, yq is continuous and compactly

supported, so that
ş

x

ş1

y
F px, yq exists. Similarly y ÞÑ

ş

x
F px, yq is continuous and compactly

supported, so that
ş1

y

ş

x
F px, yq exists and moreover

ż

x

ż 1

y

F px, yq “

ż 1

y

ż

x

F px, yq.

Proof. In view of the decomposition in Remark 3.20 and linearity of
ş

and
ş1
it is enough to

establish the result for F non-negative.

Since F P C`
c pGˆGq has support contained in a compact setK, and since the coordinate

projection maps GˆG Ñ G are continuous (and the union of two compact sets is compact)
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there is a compact set L such that K Ă L ˆ L. It follows that the maps x ÞÑ F px, yq for

y P G and y ÞÑ F px, yq for x P G are continuous and have support in the compact set L.

We also need an auxiliary ‘dominating function’ which is a compactly supported con-

tinuous function on whose support all of the ‘action’ happens. For those familiar with the

theory of integration, the Dominated Convergence Theorem may come to mind. Concretely,

by Corollary 3.15 there is a continuous function f : G Ñ r0, 1s with fpxq “ 1 for all x P L

supported in a compact set M .

For ϵ ą 0 (by Remark 3.24) let U be an open cover of G ˆ G such that |F px, yq ´

F px1, y1q| ă ϵ for all px, yq, px1, y1q P U P U . MˆM is compact and so by Lemma 1.41 there is

a symmetric open neighbourhood of the identity U in G such that U 1 :“ txUˆyU : x, y P Mu

is a refinement of U (as a cover of M ˆM not of GˆG). First, the support of
ş1

y
F px, yq is

contained in the (compact) set L and if x1 P xU then by design and non-negativity of
ş1
we

have
ż 1

y

F px1, yq “

ż 1

y

F px1, yqfpyq ď

ż 1

y

pF px, yq ` ϵqfpyq “

ż 1

y

F px, yq ` ϵ

ż 1

f.

Since U is symmetric we have x P x1U and similarly
ş1

y
F px, yq ď

ş1

y
F px1, yq ` ϵ

ş1
f and

hence |
ş1

y
F px1, yq ´

ş1

y
F px, yq| ď ϵ

ş1
f . Since ϵ is arbitrary (and

ş1
f does not depend on

ϵ) it follows that x ÞÑ
ş1

y
F px, yq is continuous (and compactly supported) and similarly for

y ÞÑ
ş

x
F px, yq.

By Corollary 3.16 applied to f supported on the compact set M with the open cover

txU : x P Mu, there are continuous compactly supported f1, . . . , fn : G Ñ r0, 1s such that

f1 ` ¨ ¨ ¨ ` fn “ f and supp fi Ă xiU for some xi P M . Now, F px, yq “ F px, yqfpxqfpyq and

f “ f1 ` ¨ ¨ ¨ ` fn, so

F px, yq “

n
ÿ

i“1

n
ÿ

j“1

F px, yqfipxqfjpyq for all x, y P G.

By design of U 1 and U , for 1 ď i, j ď n there is λi,j ě 0 such that |F px, yq ´ λi,j| ă ϵ for all

px, yq P supp fi ˆ supp fj. We conclude that

n
ÿ

i“1

n
ÿ

j“1

λi,jfipxqfjpyq ´ ϵfpxqfpyq ď F px, yq ď

n
ÿ

i“1

n
ÿ

j“1

λi,jfipxqfjpyq ` ϵfpxqfpyq.

Since
ş

and
ş1
are non-negative linear functionals, we conclude that

ˇ

ˇ

ˇ

ˇ

ˇ

ż

x

ż 1

y

F px, yq ´

n
ÿ

i“1

n
ÿ

j“1

λi,j

ż

fi

ż 1

fj

ˇ

ˇ

ˇ

ˇ

ˇ

ď ϵ

ż

f

ż 1

f

and
ˇ

ˇ

ˇ

ˇ

ˇ

ż 1

y

ż

x

F px, yq ´

n
ÿ

i“1

n
ÿ

j“1

λi,j

ż

fi

ż 1

fj

ˇ

ˇ

ˇ

ˇ

ˇ

ď ϵ

ż

f

ż 1

f.

The result is proved by the triangle inequality since ϵ is arbitrary (and
ş

f and
ş1
f do not

depend on ϵ).
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Remark 3.26. !△It is not enough to assume that F : G ˆ G Ñ C is such that the maps

G Ñ C;x ÞÑ
ş1

y
F px, yq and G Ñ C; y ÞÑ

ş

x
F px, yq are well-defined, continuous, and

compactly supported. Exercise III.4 asks for an example.

4 The Haar integral

We now turn to one of the most beautiful aspects of the theory of topological groups. This

describes the way the topology and the algebra naturally conspire to produce an integral.

Given a topological group G and a function f P CpGq we write

λxpfqpzq :“ fpx´1zq for all x, z P G.

Remark 4.1. λxpfq P CpGq for all f P CpGq and x P G (since left multiplication is continuous

and the composition of continuous functions is continuous), and λ is a left action meaning

λxypfq “ λxpλypfqq for all x, y P G and λ1Gpfq “ f , and the maps λx are linear on the

vector space CpGq. !△Without inversion this is naturally a right action.

Remark 4.2. For a topological group G, λ restricts to an action on the space CcpGq and this

action is isometric with respect to } ¨ }8 i.e. }λxpfq}8 “ }f}8 for all x P G.

Proposition 4.3. Suppose that G is a topological group and f P CcpGq. Then G Ñ

CcpGq;x ÞÑ λxpfq is continuous.

Proof. Let W Ă CcpGq be open and suppose x P G has λxpfq P W . Since W is open there

is ϵ ą 0 such that λx1pfq P W whenever }λx1pfq ´ λxpfq}8 ă ϵ. We shall show that there is

an open neighbourhood of the identity V such that }λx1pfq ´ λxpfq}8 ă ϵ for all x1 P xV

from which the result follows.

Let K be a compact set containing the support of f . As in Remark 3.24 let U be an

open cover of G such that |fpyq ´ fpy1q| ă ϵ for all y, y1 P U P U . By Lemma 1.41 there is a

symmetric open neighbourhood of the identity V such that tV y : y P Ku is a refinement of

U (as a cover of K).

Suppose that v P V and y P G is such that λvpfqpyq ´ fpyq ‰ 0. Then either fpyq ‰ 0

so y P K, but then V ´1y “ V y is a subset of an element of U and so |λvpfqpyq ´ fpyq| ă ϵ;

or λvpfqpyq ‰ 0 so v´1y P K, but then V pv´1yq is a subset of an element of U and so again

|λvpfqpyq ´ fpyq| ă ϵ. Since λvpfq ´ f is continuous and compactly supported it attains its

bounds so }λvpfq ´ f}8 ă ϵ. Finally, since λ is an action, the map λx is linear, and this

action is isometric (Remark 4.2) we have

}λxvpfq ´ λxpfq}8 “ }λxpλvpfq ´ fq}8 “ }λvpfq ´ f}8 ă ϵ.

The result is proved.
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Given a topological group G we say that
ş

: CcpGq Ñ C is a (left) Haar integral on G

if
ş

is a non-trivial (meaning not identically zero) non-negative linear map with

ż

λxpfq “

ż

f for all x P G and f P CcpGq.

We sometimes call this last property (left) translation invariance.

Remark 4.4. Our definition of Haar integral requires CcpGq to be non-trivial and hence (c.f.

Proposition 3.13) for G to support a Haar integral it must be locally compact. It will turn

out in Theorem 4.11 that this is enough to guarantee that there is a Haar integral.

Remark 4.5. There is an analogous notion of right Haar integral which we shall not pursue

here.

Example 4.6 (The Riemann Integral). The map
ş

in Example 3.17 restricted to CcpRq is

a Haar integral, with the only property not already recorded being translation-invariance.

Example 4.7. If G is a discrete group then it supports a left Haar integral:

ż

: CcpGq Ñ C; f ÞÑ
ÿ

xPG

fpxq.

Remark 4.8. See Exercise III.1 for a partial converse.

The integral of a non-negative continuous function that is not identically 0 is positive,

and this already follows from the axioms of a Haar integral. To establish this we begin with

a lemma on the comparability of functions:

Lemma 4.9. Suppose that G is a topological group, f, g P C`
c pGq and f is not identically

zero. Then there is n P N, c1, . . . , cn ě 0 and y1, . . . , yn P G such that

gpxq ď

n
ÿ

i“1

ciλyipfqpxq for all x P G.

Proof. Since f is not identically zero there is some x0 P G such that fpx0q ą 0 and hence

(by Lemma 1.23) an open neighbourhood of the identity U such that fpx0yq ą fpx0q{2 for

all y P U . Let K be compact containing the support of g. Then txU : x P Ku is an open

cover of K and so there are elements x1, . . . , xn such that x1U, . . . , xnU covers K. But then

gpxq ď 2fpx0q
´1

}g}8

n
ÿ

i“1

fpx0x
´1
i xq “ 2fpx0q

´1
}g}8

n
ÿ

i“1

λxix
´1
0

pfqpxq for all x P G,

and the result is proved.

Corollary 4.10. Suppose that G is a topological group,
ş

is a left Haar integral on G, and

f P C`
c pGq has

ş

f “ 0. Then f is identically zero.

Page 33



Proof. We suppose, for a contradiction, that f is not identically zero. Then by Lemma 4.9

for g P C`
c pGq we have g ď

řn
i“1 ciλyipfq for c1, . . . , cn ě 0 and y1, . . . , yn P G. By linearity,

non-negativity, and translation invariance of the Haar integral
ż

g ď

n
ÿ

i“1

ci

ż

λyipfq “

n
ÿ

i“1

ci

ż

f “ 0.

Since g ě 0, non-negativity of the Haar integral implies
ş

g ě 0, and hence
ş

g “ 0.

Now, in view of Remark 3.20 we have that
ş

h “ 0 for all h P CcpGq i.e.
ş

is identically

zero contradicting the non-triviality of the Haar integral. The lemma follows.

Existence of a Haar Integral

Our first main aim is to establish the following.

Theorem 4.11 (Existence of a Haar integral). Suppose that G is a locally compact topolog-

ical group. Then there is a left Haar integral on G.

We begin by defining a sort of approximation: for f, ϕ P C`
c pGq with ϕ not identically 0

put

pf ;ϕq :“ inf

#

n
ÿ

j“1

cj : n P N; c1, . . . , cn ě 0; y1, . . . , yn P G; and f ď

n
ÿ

j“1

cjλy´1
j

pϕq

+

. (4.1)

We think of this as a sort of ‘covering number’ and begin with some basic properties:

Lemma 4.12. Suppose that f, g, ϕ, ψ P C`
c pGq with ϕ and ψ are not identically 0. Then

(i) pf ;ϕq is well-defined;

(ii) pϕ;ϕq ď 1;

(iii) pf ;ϕq ď pg;ϕq whenever f ď g;

(iv) pf ` g;ϕq ď pf ;ϕq ` pg;ϕq;

(v) pµf ;ϕq “ µpf ;ϕq for µ ě 0;

(vi) pλxpfq;ϕq “ pf ;ϕq for all x P G;

(vii) pf ;ψq ď pf ;ϕqpϕ;ψq.

Proof. Lemma 4.9 shows that the set on the right of (4.1) is non-empty; it has 0 as a lower

bound. (i) follows immediately. For (ii)5 note that ϕ ď 1.λ1´1
G

pϕq so that pϕ;ϕq ď 1. (iii),

(iv), (v), and (vi) are all immediate. Finally, for (vii) suppose c1, . . . , cn ě 0 are such that

f ď
řn

j“1 cjλy´1
j

pϕq, so that by (iii), (iv), (v), and (vi) we have pf ;ψq ď
řn

j“1 cjpϕ;ψq. The

result follows on taking infima.

5As it happens it is easy to prove equality here but we do not need it.
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To make use of p¨ ; ¨q we need to fix a non-zero reference function f0 P C`
c pGq and for

ϕ P C`
c pGq not identically zero we put

Iϕpfq :“
pf ;ϕq

pf0;ϕq
ď pf ; f0q, (4.2)

where the inequality follows from Lemma 4.12 (vii).

Many of the properties of Lemma 4.12 translate into properties of Iϕ. In particular, we

have Iϕpf1 ` f2q ď Iϕpf1q ` Iϕpf2q; for suitable ϕ we also have the following converse.

Lemma 4.13. Suppose that G is a locally compact topological group, f1, f2 P C`
c pGq and

ϵ ą 0. Then there is a symmetric open neighbourhood of the identity V such that if ϕ P

C`
c pGq is not identically 0 and has support in V then Iϕpf1q ` Iϕpf2q ď Iϕpf1 ` f2q ` ϵ.

Proof. Let K be a compact set containing the support of both f1 and f2 (possible since

the union of two compact sets is compact) and apply Corollary 3.15 to get F : G Ñ r0, 1s

continuous, compactly supported, and with F pxq “ 1 for all x P K.

For j P t1, 2u let gj be continuous such that pf1 ` f2 ` ϵF qgj “ fj (possible in view of

Remark 3.12 and use that supp fi Ă K Ă F´1pt1uq Ă suppF ). By Remark 3.24 (and the

fact that the intersection of two open covers is an open cover) there is an open cover U of G

such that if x, y P U P U then |gjpxq ´ gjpyq| ă ϵ for j P t1, 2u. K is compact; apply Lemma

1.41 to U to get a symmetric open neighbourhood of the identity V such that tyV : y P Ku

refines U (as a cover of K).

Now suppose that ϕ P C`
c pGq is not identically 0 and has support in V , and that

c1, . . . , cn ě 0 and y1, . . . , yn P G are such that

f1pxq ` f2pxq ` ϵF pxq ď

n
ÿ

i“1

ciϕpyixq for all x P G.

If ϕpyixqgjpxq ‰ 0 then x P K and y´1
i P xV (using V “ V ´1), but xV is a subset of a set

in U so gjpxq ď gjpy
´1
i q ` ϵ and hence

fjpxq ď

n
ÿ

i“1

ciϕpyixqgjpxq ď

n
ÿ

i“1

cipgjpy
´1
i q ` ϵqϕpyixq for all x P G, j P t1, 2u.

By Lemma 4.12 (ii),(iii), (iv),(v) & (vi) we have

pfj;ϕq ď

n
ÿ

i“1

cipgjpy
´1
i q ` ϵq for all j P t1, 2u,

but g1py
´1q ` g2py´1q ď 1 for all y P G, so

pf1;ϕq ` pf2;ϕq ď

n
ÿ

i“1

cip1 ` 2ϵq.
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Taking infima and then applying Lemma 4.12 (iv) and (v) and the inequality in (4.2) we

get

Iϕpf1q ` Iϕpf2q ď p1 ` 2ϵqIϕpf1 ` f2 ` ϵF q

ď p1 ` 2ϵqpIϕpf1 ` f2q ` ϵIϕpF qq

ď Iϕpf1 ` f2q ` p2pf1 ` f2; f0q ` pF ; f0q ` 2ϵpF ; f0qqϵ.

The result follows since ϵ ą 0 was arbitrary and F , f1, f2 and f0 do not depend on ϵ.

With these lemmas we can turn to the main argument.

Proof of Theorem 4.11. By Corollary 3.15 (applied withK “ t1Gu) there is f0 P C`
c pGq with

f0 not identically 0. Write F for the set of functions I : C`
c pGq Ñ Rě0 with Ipfq ď pf ; f0q

for all f P C`
c pGq endowed with the product topology i.e. the weakest topology such that

the maps F Ñ r0, pf ; f0qs; I ÞÑ Ipfq are continuous for all f P C`
c pGq. Since the closed

interval r0, pf ; f0qs is compact, F is a product of compact spaces and so compact. Let X be

the set of I P F such that

Ipf0q “ 1 (4.3)

Ipµfq “ µIpfq for all µ ě 0, f P C`
c pGq, (4.4)

and

Ipλxpfqq “ Ipfq for all x P G, f P C`
c pGq. (4.5)

The set X is closed as an intersection of the preimage of closed sets. Moreover, by Lemma

4.12 Iϕ P X for any ϕ P C`
c pGq that is not identically zero: the fact that Ipfq P r0, pf ; f0qs

follows from the inequality in (4.2); (4.3) by design; (4.4) by (v); and (4.5) by (vi).

This almost gives us a Haar integral (on non-negative functions) except that in general

the elements ofX are not additive, meaning we do not in general have Ipf`f 1q “ Ipfq`Ipf 1q.

To get this we introduce some further sets: for ϵ ą 0 and f, f 1 P C`
c pGq define

Bpf, f 1; ϵq :“ tI P X : |Ipf ` f 1
q ´ Ipfq ´ Ipf 1

q| ď ϵu.

As with X, the sets Bpf, f 1; ϵq are closed. We shall show that any finite intersection of

such sets is non-empty: For any f1, f
1
1, f2, f

1
2, . . . , fn, f

1
n P C`

c pGq and ϵ1, . . . , ϵn ą 0, by

Lemma 4.13 there are symmetric open neighbourhoods of the identity V1, . . . , Vn such that

if ϕ P C`
c pGq is not identically 0 and is supported in Vi then

|Iϕpfi ` f 1
iq ´ Iϕpfiq ´ Iϕpf 1

iq| ă ϵi. (4.6)

Since G is locally compact by Lemma 1.24 there is a symmetric open neighbourhood of the

identity H contained in a compact set L; set V :“ H X
Şn

i“1 Vi which is also a symmetric

open neighbourhood of the identity and by Corollary 3.6 there is ϕ P C`pGq that is not
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identically 0 with support contained in V , and hence in the compact set L which is to say

it has compact support. Iϕ enjoys (4.6) for all 1 ď i ď n, and we noted before that Iϕ P X,

hence Iϕ P
Şn

i“1Bpfi, f
1
i , ϵiq. We conclude that tBpf, f 1; ϵq : f, f 1 P C`

c pGq, ϵ ą 0u is a set of

closed subsets of F with the finite intersection property, but F is compact and so there is

some I in all of these sets. Such an I is additive since |Ipf ` f 1q ´ Ipfq ´ Ipf 1q| ă ϵ for all

f, f 1 and ϵ ą 0. It remains to define
ş

: CcpGq Ñ C by putting

ż

f :“ Ipf1q ´ Ipf2q ` iIpf3q ´ iIpf4q where f “ f1 ´ f2 ` if3 ´ if4 for f1, f2, f3, f4 P C`
c pGq.

This decomposition of functions in CcpGq is unique (noted in Remark 3.20) and so this is

well-defined. Moreover,
ş

is linear since I is additive and enjoys (4.4); it is non-negative since

I is non-negative (and Ip0q “ 0); it is translation invariant by (4.5); and it is non-trivial by

(4.3). The result is proved.

Uniqueness of the Haar integral

Our second main aim is to establish the following result.

Theorem 4.14 (Uniqueness of the Haar Integral). Suppose that G is a locally compact

topological group and
ş

and
ş1

are left Haar integrals on G. Then there is some λ ą 0 such

that
ş

“ λ
ş1
.

For this we introduce a little more notation: Given a topological group G and f P CcpGq

we write rfpxq “ fpx´1q.

Remark 4.15. r̈ is a conjugate-linear multiplicative involution on CcpGq, since complex con-

jugation and x ÞÑ x´1 are both continuous (and continuous images of compact sets are

compact).

Proof of Theorem 4.14. Suppose that f0, f1 P C`
c pGq are not identically 0 and write K for a

compact set containing the support of f0 and f1 (which exists since finite unions of compact

sets are compact). By Lemma 1.24 there is a symmetric open neighbourhood of the identity,

H, contained in a compact set L.

First, by Corollary 3.15 there is a continuous compactly supported function F : G Ñ

r0, 1s with F pxq “ 1 for all x P KL (this set is compact by Lemma 1.36, and hence the

corollary applies).

Now, suppose ϵ ą 0 and use Remark 3.24 (and the fact that intersections of open covers

are open covers) to get an open cover U of G such that if x, y P U P U then |fipxq´fipyq| ă ϵ

for i P t0, 1u. By Lemma 1.41 applied to U and the compact set KL there is a symmetric

open neighbourhood of the identity V such that txV : x P KLu is a refinement of U (as

a cover of KL), and by Corollary 3.6 there is a continuous function h : G Ñ r0, 1s that is

Page 37



not identically zero and is supported in V X H, and in particular supported in L so it has

compact support.

For x P G, translation invariance of
ş1
(and Remark 3.22) tells us that

ż 1

y

hpy´1xq “

ż 1

y

rhpx´1yq “

ż 1

y

rhpx´1yq “

ż 1

y

rhpyq “

ż 1

rh.

For i P t0, 1u, the map x ÞÑ
ş1

y
fipxqhpy´1xq “ fipxq

ş1
rh is continuous and is supported in K

and so is compactly supported and
ş

x

ş1

y
fipxqhpy´1xq exists and equals

ş

fi
ş1
rh (by linearity

of
ş

and
ť1

). On the other hand the map px, yq ÞÑ fipxqhpy´1xq is continuous and supported

on K ˆ L and so is compactly supported and hence by Fubini’s Theorem (Theorem 3.25),

y ÞÑ
ş

x
fipxqhpy´1xq exists, and (using translation invariance of

ş

) we have

ż

fi

ż 1

rh “

ż

x

ż 1

y

fipxqhpy´1xq “

ż 1

y

ż

x

fipxqhpy´1xq “

ż 1

y

ż

x

fipyxqhpxq.

Since tyV : y P KLu refines U (as a cover of KL) we have |fipyxq ´ fipyq| ă ϵ for x P V and

y P KL; and for x P H and fipyxq ‰ 0 or fipyq ‰ 0 we have y P KH whence F pyq “ 1. It

follows that

fipyqhpxq ´ ϵF pyqhpxq ď fipyxqhpxq ď fipyqhpxq ` ϵF pyqhpxq for all x, y P G,

and so by non-negativity and linearity of
ş

and
ş1
we have

ż 1

y

ż

x

fipyqhpxq ´

ż 1

y

ż

x

ϵF pyqhpxq ď

ż 1

y

ż

x

fipyxqhpxq ď

ż 1

y

ż

x

fipyqhpxq `

ż 1

y

ż

x

ϵF pyqhpxq.

It follows (using linearity of
ş

) that |
ş1
fi
ş

h´
ş

fi
ş1
rh| ď ϵ

ş1
F
ş

h, and hence by the triangle

inequality (and division, which is valid since
ş

f0,
ş

f1 ‰ 0 by Corollary 4.10 as f0 and f1 are

not identically zero) that

ˇ

ˇ

ˇ

ˇ

ˇ

ş1
f0

ş

f0
´

ş1
f1

ş

f1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ş1
f0

ş

f0
´

ş1
rh

ş

h

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ş1
rh

ş

h
´

ş1
f1

ş

f1

ˇ

ˇ

ˇ

ˇ

ˇ

ď ϵ

ż 1

F

ˆ

1
ş

f0
`

1
ş

f1

˙

.

Since ϵ was arbitrary (and in particular f0, f1, and F do not depend on it) it follows that
ş1
f{

ş

f is a constant λ for all f P C`
c pGq not identically zero. This constant must be non-

zero since
ş1
is non-trivial, and it must be positive since

ş1
and

ş

are non-negative. The result

follows from the usual decomposition (Remark 3.20), and the fact that
ş

0,
ş1
0 “ 0.

5 The Peter-Weyl Theroem

Suppose that G is a topological group, and for an inner product space V recall the definition

of UpV q from Example 1.12. A finite dimensional unitary representation of G is a
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continuous homomorphism G Ñ UpV q for some finite dimensional complex inner product

space V .

A function f : G Ñ C is said to be a matrix coefficient if there is a finite dimensional

unitary representation π : G Ñ UpV q, and elements v, w P V such that fpxq “ xπpxqv, wy

for all x P G.

Example 5.1. Suppose that π : G Ñ UpV q is a finite dimensional unitary representation

of a topological group G and e1, . . . , en is an orthonormal basis for V . If we write Ai,j :“

xπpxqei, ejy and suppose that λ P Cn is the vector for v P V written w.r.t. the basis e1, . . . , en

(i.e. λi “ xv, eiy), then λA – the matrix A pre-multiplied by the row vector λ – is πpxqv

written w.r.t. the basis e1, . . . , en. This is the reason for the terminology ‘matrix coefficient’.

Remark 5.2. All matrix coefficients are continuous, since continuity of π : G Ñ UpV q and

the definition of the topology on UpV q means that x ÞÑ πpxqv is continuous for all v P V ,

and the projections v ÞÑ xv, wy are continuous for all w P V , so the resulting composition is

also continuous.

Lemma 5.3. Suppose that G is a compact topological group. Then there is a unique left

Haar integral
ş

on G with
ş

1 “ 1 such that

xf, gy :“

ż

fg for all f, g P CpGq

is an inner product on CpGq and for each x P G, λx is unitary w.r.t. this inner product.

Furthermore, }f}2 :“ xf, fy1{2 and }f}1 :“
ş

|f | define norms on CpGq and

}f}1 ď }f}2 ď }f}8 for all f P CpGq.

Proof. By Theorem 4.11 there is a left Haar integral
ş1

on G. Since G is compact the

constant function 1 is compactly supported and so by Corollary 4.10,
ş1
1 ą 0. Diving by

this positive constant we get a left Haar integral
ş

with
ş

1 “ 1. Now suppose that
ş1

is

another left Haar integral with
ş1
1 “ 1. By Theorem 4.14

ş1
“ λ

ş

for some λ ą 0, but since
ş

1 “ 1 “
ş1
1 we conclude that λ “ 1 and

ş

“
ş1
giving the claimed uniqueness.

Linearity in the first argument and conjugate-symmetry of x¨, ¨y follow from linearity

of the Haar integral and Remark 3.22 respectively. xf, fy ě 0 for all f P CpGq since
ş

is

non-negative and x¨, ¨y is then positive definite by Corollary 4.10.

The Haar integral is left-invariant so

xf, gy “

ż

fg “

ż

λxpfgq “

ż

λxpfqλxpgq for all f, g P CpGq,

and the first part is proved.

For any inner product f ÞÑ xf, fy1{2 is a norm, so } ¨ }2 is a norm. Absolute homogeneity

of } ¨ }1 follows from the fact that the modulus of a complex number is multiplicative and
ş
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is linear, and the triangle inequality follows from, non-negativity, linearity and the triangle

inequality for the modulus of a complex number. }f}1 ě 0 by non-negativity of
ş

, and finally

} ¨ }1 is positive definite by Corollary 4.10.

Since G is compact the constant functions 1 and }f}28 are both in CpGq. By the Cauchy-

Schwarz inequality (which holds for all inner products) we have

}f}1 “

ż

|f | “ x1, |f |y ď }1}2}|f |}2 “ }f}2 for all f P CpGq;

and by non-negativity of
ş

we have

}f}
2
2 “

ż

|f |
2

ď

ż

}f}
2
8 “ }f}

2
8 for all f P CpGq.

The result is proved.

Remark 5.4. For the remainder of this section we write
ş

for the unique Haar integral in

Lemma 5.3, and use the notation x¨, ¨y, } ¨ }2 and } ¨ }1 as in this lemma.

Remark 5.5. Convergence in } ¨ }8 is called convergence in L8 or uniform convergence;

convergence in }¨}2 is called convergence in L2; and convergence in }¨}1 is called convergence

in L1.

The second inequality in Lemma 5.3 tells us that uniform convergence implies conver-

gence in L2, and the first that convergence in L2 implies convergence in L1.

For f, g P CpGq we define their convolution to be the function

x ÞÑ f ˚ gpxq :“

ż

y

fpyqgpy´1xq “ xf, λxprgqy.

Lemma 5.6 (Basic properties of convolution). Suppose that G is a compact topological

group. Then

(i) CpGq Ñ CpGq; g ÞÑ g ˚ f is well-defined and linear for all f P CpGq;

(ii) h ˚ pg ˚ fq “ ph ˚ gq ˚ f for all f, g, h P CpGq;

(iii) λxpg ˚ fq “ λxpgq ˚ f for all x P G, f, g P CpGq;

(iv) xg ˚ f, hy “ xg, h ˚ rfy for all f, g, h P CpGq (recall rf from just before Remark 4.15);

(v) }h ˚ f}8 ď mint}h}1}f}8, }h}2}
rf}2u for all f, h P CpGq.

Proof. By the first part of Fubini’s Theorem (Theorem 3.25) the function g ˚f P CpGq since

px, yq ÞÑ gpxqfpx´1yq is continuous and compactly supported. Since
ş

x
is linear, g ÞÑ g ˚ f

is well-defined and linear giving (i).
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For (ii) we apply λy to the integrand z ÞÑ gpzqfpz´1y´1xq using that
ş

z
is a left Haar

integral; then Fubini’s Theorem (Theorem 3.25) since pz, yq ÞÑ hpyqgpy´1zqfpz´1xq is con-

tinuous; and finally linearity of
ş

y
to see that

h ˚ pg ˚ fqpxq “

ż

y

hpyq

ż

z

gpzqfpz´1y´1xq

“

ż

y

hpyq

ż

z

gpy´1zqfpz´1xq “

ż

z

ˆ
ż

y

hpyqgpy´1zq

˙

fpz´1xq “ ph ˚ gq ˚ fpxq

as claimed.

For (iii) note that λtpg ˚ fqpxq “ g ˚ fpt´1xq “ xg, λt´1xp rfqy “ xg, λt´1pλxp rfqqy “

xλtpgq, λxp rfqy “ λtpgq ˚ fpxq since λt is unitary w.r.t. x¨, ¨y by Lemma 5.3.

For (iv), since the function px, yq ÞÑ gpxqfpx´1yqhpyq is continuous and compactly sup-

ported, by Fubini’s Theorem (Theorem 3.25) and linearity of
ş

y
; and then Remark 3.22 we

have

xg ˚ f, hy “

ż

y

ż

x

gpxqfpx´1yqhpyq

“

ż

x

gpxq

ż

y

fpx´1yqhpyq “

ż

x

gpxq

ż

y

hpyq rfpy´1xq “ xg, h ˚ rfy,

as required.

Finally, (v) follows on the one hand since

|h ˚ fpxq| ď

ż

y

|hpyq||fpy´1xq| ď

ż

|h|}f}8 “ }h}1}f}8,

and on the other since |h ˚ fpxq| “ |xh, λxp rfqy| ď }h}2}λxp rfq}2 “ }h}2}
rf}2. The result is

proved.

Remark 5.7. As usual, in view of the associativity in (ii) there is no ambiguity in omitting

parentheses when writing expressions like h ˚ g ˚ f .

Remark 5.8. The linearity of the maps in (i) and inequality (v) mean that convolution maps

convergence in L1 to uniform convergence c.f. Remark 5.5.

Before beginning our main argument we need one more tool which will deal with the

fact our inner product spaces are not in general complete.

Remark 5.9. A complete inner product space is called a Hilbert space and the results of this

section are usually developed with respect to these. !△In particular, a unitary represen-

tation is usually a continuous group homomorphism π : G Ñ UpHq for a complex Hilbert

space H, not merely a complex inner product space. Every finite dimensional complex inner

product space is complete and so a Hilbert space, and so our definition at the start of the

section is not at variance with this, but in general care is warranted.
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Proposition 5.10. Suppose that G is a compact topological group G, f P CpGq and pgnqnPN

is a sequence of elements of CpGq with }gn}1 ď 1. Then there is a subsequence pgni
qiPN such

that gni
˚ f converges uniformly to some element of CpGq as i Ñ 8.

Proof. For each j P N, Remark 3.24 gives us an open cover Uj of G such that if x, y P

U P Uj then |fpxq ´ fpyq| ă 1{j. Since G is compact apply Lemma 1.41 to get an open

neighbourhood of the identity Uj such that txUj : x P Gu refines Uj; and by compactness

again there is a finite cover tx1,jUj, . . . , xkpjq,jUju which refines txUj : x P Gu. By Lemma

5.3 (v) gn ˚ fpxq P r´}f}8, }f}8s. The interval r´}f}8, }f}8s is sequentially compact,

meaning every sequence has a convergent subsequence. A countable product of sequentially

compact spaces is sequentially compact6 so there is a subsequence pniqi such that gni
˚fpxk,jq

converges, say to hpxk,jq, as i Ñ 8 for all 1 ď k ď kpjq and j P N.
Suppose ϵ ą 0 and let j :“ r3ϵ´1s. For all 1 ď k ď kpjq let Mk be such that |gni

˚

fpxk,jq ´ hpxk,jq| ă ϵ{6 for all i ě Mk; let M :“ maxtMk : 1 ď k ď kpjqu and suppose that

i, i1 ě M .

For x P G there is some 1 ď k ď kpjq such that x P xk,jUj and hence for all y P G we have

y´1x, y´1xk,j P y´1xk,jUj which is a subset of an element of Uj, so |fpy´1xq ´ fpy´1xk,jq| ă

1{j. Thus for g P CpGq with }g}1 ď 1 we have

|g ˚ fpxq ´ g ˚ fpxk,jq| “ |xg, λxp rfq ´ λxk,j
p rfqy|

ď }g}1}λxp rfq ´ λxk,j
p rfq}8 ď sup

yPG
|fpy´1xq ´ fpy´1xj,kq| ď

1

j
ď ϵ{3.

In particular this holds for g “ gni
and g “ gni1 , so that

|gni
˚ fpxq ´ gni1 ˚ fpxq| ď |gni

˚ fpxq ´ gni
˚ fpxk,jq| ` |gni

˚ fpxk,jq ´ hpxk,jq|

` |hpxk,jq ´ gni1 ˚ fpxk,jq| ` |gni1 ˚ fpxk,jq ´ gni1 ˚ fpxq| ă ϵ.

Since x P G was arbitrary it follows that the sequence of functions pgni
˚ fqi is uniformly

Cauchy and so converges to a continuous function on G. The result is proved.

We say that V ď CpGq is invariant if λxpvq P V for all v P V .

Example 5.11. Suppose that V ď CpGq is invariant and finite dimensional. Then π : G Ñ

UpV q;x ÞÑ pV Ñ V ; v ÞÑ λxpvqq is a finite dimensional unitary representation.

For any V ď CpGq write V K for the set of w P CpGq such that xv, wy “ 0 for all v P V .

Proposition 5.12. Suppose that G is a compact group and f P CpGq. Then there is an

invariant space W ď CpGq with dimW ď ϵ´2}f}22 such that if g P WK then }g ˚ f}2 ď ϵ}g}2.

6The proof of this is just Cantor’s diagonal argument.
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Proof. Let V be the set of vectors of the form

h1 ` ¨ ¨ ¨ ` hn where n P N0, hi ˚ rf ˚ f “ λihi and λi ě ϵ2 for all 1 ď i ď n. (5.1)

This is an invariant space by Lemma 5.6 (iii). For v P V we shall write v “ h1 ` ¨ ¨ ¨ ` hn to

mean a decomposition as in (5.1) with the additional requirements that hi is not identically

zero (so }hi}
2
2 ‰ 0 since hi is continuous), and λi ‰ λj for i ‰ j, which is possible since the

map T : CpGq Ñ CpGq;h ÞÑ h ˚ rf ˚ f is linear. (The zero vector is represented as a sum

with no terms.)

In fact T is positive definite and so the his, which are eigenvectors with corresponding

eigenvalues λi, are perpendicular for different eigenvalues. In our language the relevant parts

of this follow since if hi ˚ rf ˚ f “ λihi and hj ˚ rf ˚ f “ λjhj, then

λixhi, hjy “ xλihi, hjy “ xhi ˚ rf ˚ f, hjy “ xhi, hj ˚ rf ˚ fy “ xhi, λjhjy “ λjxhi, hjy.

Applying this identity with j “ i for some hj ‰ 0 we see that λi is real. Then applying

it again with λi ‰ λj we have xhi, hjy “ 0. In particular, if v “ h1 ` ¨ ¨ ¨ ` hn in the way

discussed after (5.1) then

}v ˚ rf}
2
2 “ xv ˚ rf ˚ f, vy “

n
ÿ

i“1

λi}hi}
2
2 ě ϵ2

n
ÿ

i“1

}hi}
2
2 “ ϵ2}v}

2
2. (5.2)

If V contains n linearly independent vectors, then by the Gram-Schmidt process7 there are

orthonormal vectors v1, . . . , vn P V . For x P G, by Bessel’s inequality8

n
ÿ

i“1

|xvi, λxpfqy|
2

ď }λxpfq}
2
2 “ }f}

2
2.

7Given e1, e2, . . . linearly independent, the Gram-Schmidt process in an inner product space defines

ui :“ ei ´

i´1
ÿ

k“1

xei, vkyvk and vi :“ ui{}un}.

It can be shown by induction that v1, v2, . . . is an orthonormal sequence.
8Bessel’s inequality is the fact that if v1, v2, . . . is an orthonormal sequence in an inner product space

then
řn

i“1 |xvi, vy|2 ď }v}2 for all v. To prove it note that because the vis are orthonormal we have

›

›

›

›

›

n
ÿ

i“1

xvi, vyvi

›

›

›

›

›

2

“

n
ÿ

i“1

n
ÿ

j“1

xvi, vyxvj , vyxvi, vjy “

n
ÿ

i“1

|xvi, vy|2.

Hence by the Cauchy-Schwarz inequality

˜

n
ÿ

i“1

|xvi, vy|2

¸2

“

ˇ

ˇ

ˇ

ˇ

ˇ

C

v,
n
ÿ

i“1

xvi, vyvi

G
ˇ

ˇ

ˇ

ˇ

ˇ

2

ď }v}2

›

›

›

›

›

n
ÿ

i“1

xvi, vyvi

›

›

›

›

›

2

“ }v}2

˜

n
ÿ

i“1

|xvi, vy|2

¸

.

Cancelling gives the inequality.
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Integrating against x and using (5.2) we have

nϵ2 ď

n
ÿ

i“1

ż

x

|vi ˚ rfpxq|
2

“

ż

x

n
ÿ

i“1

|xvi, λxpfqy|
2

ď

ż

x

}f}
2
2 “ }f}

2
2.

It follows that dimV ď ϵ´2}f}22.

Write W :“ tk ˚ rf : k P V u, which is invariant by Lemma 5.6 (iii) and the fact V is

invariant. Let M :“ supt}g ˚ f}2 : g P WK and }g}2 ď 1u. We shall be done if we can show

that M2 ď ϵ2.

Claim. If h P V K then }h ˚ rf}2 ď M}h}2.

Proof. First, h ˚ rf P WK: To see this, for v P V write v “ h1 ` ¨ ¨ ¨ ` hn to mean a

decomposition as in (5.1). Then

xh ˚ rf, v ˚ rfy “

n
ÿ

i“1

xh, hi ˚ rf ˚ fy “

n
ÿ

i“1

λixh, hiy “ 0.

Now let k P WK have }k}2 “ 1 such that }h ˚ rf}2 “ xh ˚ rf, ky “ xh, k ˚ fy ď }h}2}k ˚ f}2 ď

M}h}2 as claimed.

Let gn P WK have }gn ˚ f}2 Ñ M and }gn}2 ď 1. By Cauchy-Schwarz we have }gn}1 ď 1

and we may apply Proposition 5.10 to pass to a subsequence which converges uniformly.

Hence by relabelling we may now additionally assume that gn ˚ f Ñ h uniformly for some

h P CpGq. In particular, }gn ˚ f}2 Ñ }h}2 and xh, gn ˚ fy Ñ }h}22 and hence }h}2 “ M .

Moreover, if v P V then xgn ˚ f, vy “ xgn, v ˚ rfy “ 0, and the former converges to xh, vy,

whence h P V K.

Combining this with the claim above we have

}h ˚ rf ´ M2gn}
2
2 “ }h ˚ rf}

2
2 ´ 2M2Rexh ˚ rf, gny ` M4

}gn}
2
2

ď M2
}h}

2
2 ´ 2M2Rexh, gn ˚ fy ` M4

Ñ 0.

HenceM2gn Ñ h˚ rf in }¨}2, and since convergence in }¨}2 is mapped to uniform convergence

by convolution operations we have M2gn ˚ f Ñ h ˚ rf ˚ f . Uniqueness of limits then ensures

M2h “ h˚ rf ˚f . IfM2 ě ϵ2 then h P V , but then since h P V K we see h is not identically zero.

In that case M “ }h}2 “ 0 and certainly M2 ď ϵ2 as required. The result is proved.

Theorem 5.13 (The Peter-Weyl Theorem). Suppose that G is a compact topological group.

Then matrix coefficients are dense in CpGq with the uniform norm.

Proof. Suppose that f P CpGq and let ϵ ą 0. Remark 3.24 gives us an open cover Uj of

G such that if x, y P U P Uj then | rfpxq ´ rfpyq| ă ϵ{2. Since G is compact, by Lemma

1.41 there is an open neighbourhood of the identity U such that txU : x P Gu refines U ,
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and by Lemma 1.34 there is an open set V such that V 2 Ă U . By Corollary 3.6, there is

g P CpGq non-negative and not identically 0 such that supp g Ă V . By rescaling g we may

assume that
ş

g “ 1. The support of g ˚ g is contained in V 2 Ă U and by Fubini’s Theorem

(Theorem 3.25) we therefore have
ş

g ˚ g “ 1. But then

|g ˚ g ˚ fpxq ´ fpxq| “

ˇ

ˇ

ˇ

ˇ

ż

y

g ˚ gpyqfpy´1xq ´ fpxq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

y

g ˚ gpyqp rfpx´1yq ´ rfpx´1
qq

ˇ

ˇ

ˇ

ˇ

ď ϵ,

for all x P G and so }f ´ g ˚ g ˚ f}8 ď ϵ{2.

Let δ ă ϵ}g}
´1
2 } rf}

´1
2 {2 for reasons which will be come clear shortly. By Proposition 5.12

there is a finite dimensional invariant space W ď CpGq such that }h ˚ g}2 ď δ}h}2 for all

h P WK. Write πW : CpGq Ñ CpGq for the map projecting onto W . Then g ´ πW pgq P WK

and so }g ˚ g ´ πW pgq ˚ g}2 ď δ}g ´ πW pgq}2 ď δ}g}2. By Lemma 5.6 (v) we have

}g ˚ g ˚ f ´ πW pgq ˚ g ˚ f}8 ď δ}g}2}
rf}2.

By the triangle inequality we have }f ´πW pgq ˚g ˚f}8 ă ϵ. Finally, writing k :“ pg ˚fq„ we

have by definition; since λx is unitary; sinceW is invariant; since πW is self-adjoint (meaning

xπWv, wy “ xv, πWwy for all v, w P CpGq); and again since λx is unitary, that

πW pgq ˚ g ˚ fpxq “ xπW pgq, λxpkqy “ xλx´1pπW pgqq, ky

“ xπW pλx´1pπW pgqqq, ky

“ xλx´1pπW pgqq, πW pkqy

“ xπW pgq, λxpπW pkqqy “ xλxpπW pkqq, πW pgqy.

Hence πW pgq ˚ g ˚ fpxq is a matrix coefficient. Since ϵ ą 0 was arbitrary the result is

proved.

Remark 5.14. !△There are other important parts to the Peter-Weyl Theorem which we

have not included here.

6 The dual group

Suppose that G is a topological group. We write pG for the set of continuous homomorphisms

G Ñ S1 (where S1 is as in Example 1.7), and call the elements of pG characters.

Remark 6.1. !△While characters are (by definition) elements of CpGq, they are not in CcpGq

unless G is compact.

We endow the set pG with the compact-open topology, that is the topology generated

by the sets γUpK, ϵq where γ P pG,

UpK, ϵq :“ tλ P pG : |λpxq ´ 1| ă ϵ for all x P Ku

and ϵ ą 0 and K is a compact subset of G.
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Proposition 6.2. Suppose that G is a topological group. Then pG is a Hausdorff Abelian

topological group with multiplication and inversion defined by

pγ, γ1
q ÞÑ px ÞÑ γpxqγ1

pxqq and γ ÞÑ px ÞÑ γpxqq,

and identity the character taking the constant value 1. Moreover, pUpK, δqqK,δ as K ranges

compact subsets of G and δ ą 0 is a neighbourhood base of the identity.

Proof. The fact that pG is an Abelian group is an easy check since S1 is an Abelian group

under multiplication and z´1 “ z when z P S1.

Since |γpxq ´ 1| “ |γpxq ´ 1| the inversion is certainly continuous. Now suppose that

γλ P µUpK, ϵq for some µ P pG. Since γλµ is continuous and K is compact |γλµ´1| achieves

its bounds on K and hence there is some δ ą 0 such that |pγλµqpxq ´ 1| ă ϵ ´ δ for all

x P K. But then if γ1 P γUpK, δ{2q and λ1 P λUpK, δ{2q we have

|pγ1λ1µqpxq ´ 1| ď |pγ1λ1µqpxq ´ pγλ1µqpxq| ` |pγλ1µqpxq ´ pγλµqpxq| ` |pγλµqpxq ´ 1|

ă δ{2 ` δ{2 ` ϵ ´ δ “ ϵ.

It follows that γ1λ1 P µUpK, ϵq and so the preimage of γλ contains a neighbourhood of pγ, λq

in pG ˆ pG i.e. multiplication is continuous. Finally, the topology is Hausdorff since if γ ‰ λ

then there is some x P G such that γpxq ‰ λpxq; put ϵ :“ |γpxq ´ λpxq|{2 and note that

γUptxu, ϵq and λUptxu, ϵq are disjoint open sets containing γ and λ respectively.

We call the group pG endowed with the compact-open topology the dual group of G, so

that the above proposition tells us that if G is a topological group then its dual group is a

Hausdorff Abelian topological group.

We call the identity, denoted 1
pG, the trivial character.

Proposition 6.3. Suppose that G is a compact topological group. Then pG is discrete.

Proof. Suppose that γ ‰ 1
pG so there is x P G such that γpxq ‰ 1. Let y P G be such that

|γpyq ´ 1| is maximal (which exists since G is compact and x ÞÑ |γpxq ´ 1| is continuous)

and note that by assumption this is positive. If |γpyq ´ 1| ă 1 then we have

|γpy2q ´ 1| “ |γpyq
2

´ 1| “ |p2 ` pγpyq ´ 1qq||γpyq ´ 1|

ě p2 ´ |γpyq ´ 1|q|γpyq ´ 1| ą |γpyq ´ 1|.

This is a contradiction, whence γ R UpG, 1q and t1
pGu is open so the topology is discrete.

Example 6.4. Suppose that G is a finite cyclic group endowed with the discrete topology.

Since G is cyclic it is generated by some element x, and the map

ϕ : G Ñ pG;xr ÞÑ pG Ñ S1;xl ÞÑ expp2πirl{|G|qq
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is a well-defined homeomorphic isomorphism. To see this note that ϕ is well-defined in the

sense that different representations of an element in the domain produce the same image:

since xr “ xr
1

implies |G|  r ´ r1 and hence expp2πirl{|G|q “ expp2πir1l{|G|q; and ϕ

is well-defined in the sense that ϕpxrq as defined is genuinely an element of pG: xl “ xl
1

implies |G|  l ´ l1 and hence expp2πirl{G|q “ expp2πirl1{|G|q so that ϕpxrq is itself a

well-defined function; it is continuous since G is discrete; and it is a homomorphism since

expp2πirpl ` l1q{|G|q “ expp2πirl{|G|q expp2πirl1{|G|q.

ϕ is a homomorphism since expp2πipr ` r1ql{|G|q “ expp2πirl{|G|q expp2πir1l{|G|q. ϕ is

injective since if expp2πirl{|G|q “ 1 for all l then |G|  r so xr “ 1G. ϕ is surjective since if

γ : G Ñ S1 is a homomorphism then γpxq|G| “ 1 so γpxq “ expp2πir{|G|q for some r P Z,
and γ “ ϕpxrq.

We conclude that ϕ : G Ñ pG is a bijective group homomorphism and hence ϕ´1 is a

group homomorphism. Since G is finite, G is compact and so pG is discrete by Proposition

6.3 and hence ϕ´1 is continuous as required.

Example 6.5. WhenG is a group with the indiscrete topology the only continuous functions

are constant and so pG is the trivial group with one character taking the constant value 1

(and there is only one topology on a set with one element) so that we have completely

determined the topological group pG.

Example 6.5 gave topological reasons for the dual group being trivial, but there can also

be algebraic reasons:

Example 6.6 (Non-Abelian finite simple groups). Suppose that G is a non-Abelian finite

simple9 topological group.

Suppose that γ : G Ñ S1 is a homomorphism. Since G is non-Abelian there are elements

x, y P G with xy ‰ yx, but then xyx´1y´1 ‰ 1G while

γpxyx´1y´1
q “ γpxqγpyqγpxq

´1γpyq
´1

“ 1

since S1 is Abelian. We conclude that the kernel of γ is non-trivial, but all kernels are

normal subgroups and since G is simple it follows that ker γ “ G i.e. γ is trivial. In other

words pG “ t1
pGu.

The topology on G and pG are quite closely related: if G is compact then pG is discrete

(Proposition 6.3), and the other way round we have the following:

Proposition 6.7. Suppose that G is a discrete topological group. Then pG is compact.

9A simple group is a group whose only normal subgroups are the trivial group and the whole group

e.g. An, the alternating group on n elements, when n ě 5. (The Abelian finite simple groups are the cyclic

groups of prime order and their dual groups are described in Example 6.4.)
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Proof. The set pG is a subset of the topological space M of functions G Ñ S1 endowed

with the product topology, which itself is compact by Tychonoff’s theorem (c.f. the set F

considered in the proof of Theorem 4.11.). Since G is discrete the only compact sets in G

are finite and hence the topology on pG is the subspace topology induced by viewing it as

a subspace of M . It remains to check that pG is closed at which point it follows that it is

compact. To see it is closed, note that the sets tf : G Ñ S1 : fpxyq “ fpxqfpyqu are closed

for each x, y P G, and hence

č

ttf : G Ñ S1 : fpxyq “ fpxqfpyqu : x, y P Gu

is closed. This is the set of all homomorphisms G Ñ S1, but every homomorphism is

continuous since G is discrete and hence this set equals pG.

We can make use of the Haar integral we have developed to show that if G is a locally

compact topological group then the dual group is also locally compact. To do this we need

a lemma.

Lemma 6.8. Suppose that G is a locally compact topological group supporting a Haar integral
ş

, f0 P C`
c pGq has

ş

f0 ‰ 0, and κ, δ ą 0. Then there is an open neighbourhood of the identity

Lδ,κ such that if
ˇ

ˇ

ş

f0γ
ˇ

ˇ ě κ then |1 ´ γpyq| ă δ for all y P Lδ,κ.

Proof. Write K for a compact set containing the support of f0 and U for a compact neigh-

bourhood of the identity. UK is compact by Lemma 1.36. Apply Corollary 3.15 to get a

continuous compactly supported F : G Ñ r0, 1s such that F pxq “ 1 for all x P UK.

By Proposition 4.3 there is an open neighbourhood of the identity Lδ,κ (which we may

assume is contained in U since U is a neighbourhood and so contains an open neighbourhood

of the identity) such that }λypf0q´f0}8 ă δκ{
ş

F for all y P Lδ,κ. (Note
ş

F ą 0 by Corollary

4.10.) For y P Lδ,κ, the support of λypf0q ´ f0 is contained in UK (since Lδ,κ Ă U) and so

ż

|λypf0q ´ f0| ď }λypf0q ´ f0}8

ż

F ă δκ.

Now, if y P Lδ,κ then

|1 ´ γpyq|κ ď

ˇ

ˇ

ˇ

ˇ

pγpyq ´ 1q

ż

f0γ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

f0λy´1pγq ´

ż

f0γ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

λypf0qγ ´

ż

f0γ

ˇ

ˇ

ˇ

ˇ

ď

ż

|λypf0q ´ f0| ă δκ.

Dividing by κ gives the claim.

Theorem 6.9. Suppose that G is a locally compact topological group. Then pG is locally

compact.
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Proof. Let
ş

be a left Haar integral on G (which exists by Theorem 4.11). Since
ş

is non-

trivial there is f0 P C`
c pGq such that

ş

f0 ‰ 0 and we may rescale so that
ş

f0 “ 1. Write K

for a compact set containing the support of f0 and define

V :“ tγ P pG : |γpxq ´ 1| ď 1{4 for all x P Ku,

so that V certainly contains, UpK, 1{4q, an open neighbourhood of the identity.

As in the proof of Proposition 6.7 we write M for the set of maps G Ñ S1 endowed

with the product topology so that M is compact. The set pG is contained in in the set M ,

but the compact-open topology on pG is not, in general, the same as that induced on pG as a

subspace of M . Our aim is to make use of the compactness on M to show that pG is locally

compact in the compact-open topology.

First we restrict to homomorphisms: write H for the set of homomorphisms G Ñ S1,

which is a closed subset of M since it is the intersection over all pairs x, y P G of the set of

f P M such that fpxyq “ fpxqfpyq. Write

C :“
č

δą0,xPLδ,3{4

tf P H : |fpxq ´ 1| ď δu

which is also closed as an intersection of closed sets. By Proposition 2.6 as sets we have

C Ă pG since the sets tz P S1 : |1 ´ z| ď δu form a neighbourhood base of the identity in

S1, and if f P C then f´1ptz P S1 : |1 ´ z| ď δuq Ą Lδ,3{4 which is a neighbourhood of the

identity in G.

If γ P V then
ˇ

ˇ1 ´
ş

f0γ
ˇ

ˇ ď
ş

f0|1 ´ γ| ď 1{4, so by the triangle inequality |
ş

f0γ| ě 3{4

and hence the claim tells us that γ P C. Thus (as sets) V Ă C Ă pG and so

V “
č

xPK

tf P C : |fpxq ´ 1| ď 1{4u,

which is again a closed subset of M .

Our aim is to show that V is compact in the compact-open topology on pG. This follows

if every cover of the form U “ tγUpKγ, δγq : γ P V u (where Kγ is compact and δγ ą 0) has

a finite subcover. Write Lγ :“ Lδγ{2,1{2 and note that by compactness of Kγ there is a finite

set Tγ such that Kγ Ă TγLγ. Write

Uγ :“ tf P M : |fpxq ´ 1| ă δγ{2 for all x P Tγu

which is an open set in M since Tγ is finite. Suppose that λ P pγUγq X V . Then since

γ, λ P V , the triangle inequality gives
ˇ

ˇ

ˇ

ˇ

1 ´

ż

f0γλ

ˇ

ˇ

ˇ

ˇ

ď

ż

f0|1 ´ γλ| “

ż

f0|1 ´ γ ` γ ´ γλ|

ď

ż

f0|1 ´ γ| `

ż

f0|1 ´ λ| ď 1{2.
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Hence
ˇ

ˇ

ş

f0γλ
ˇ

ˇ ě 1{2 by the triangle inequality again. The claim gives |1´ γpyqλpyq| ă δγ{2

for all y P Lγ. But γλ P Uγ so we also have |1 ´ γpzqλpzq| ă δγ{2 for all z P Tγ. Thus, if

x P Kγ then there is z P Tγ and y P Lγ such that x “ zy and

|1 ´ γpxqλpxq| ď |1 ´ γpzqλpzq| ` |γpzqλpzq ´ γpzyqλpzyq|

“ |1 ´ γpzqλpzq| ` |1 ´ γpyqλpyq| ă δγ.

We conclude that γUγ X V Ă γUpKγ, δγq X V . Finally tγUγ : γ P V u is a cover of V by sets

that are open in M . M is compact and V is closed as a subset of M so V is compact as a

subset of M , and hence tγUγ : γ P V u has a finite subcover which leads to a finite subcover

of our original cover U . The result is proved.

Remark 6.10. The above shows that the dual of a locally compact Hausdorff Abelian topo-

logical group is a locally compact Hausdorff Abelian topological group. Pontryagin duality

is a powerful strengthening of this in which a crucial part is showing that characters separate

points. This can be deduced from the Peter-Weyl Theorem.
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