Topological groups, 2022-2023

Tom Sanders

Course overview

Groups like the integers, the circle, and general linear groups (over R or C) share a number
of properties naturally captured by the notion of a topological group. Providing a unified
framework for these groups and properties was an important achievement of 20th century
mathematics, and in this course we shall develop this framework.

Highlights will include the existence and uniqueness of Haar integrals for locally compact
topological groups, the topology of dual groups, and the existence of characters in various
topological groups. Throughout, the course will use the tools of analysis to tie together the

topology and algebra, getting at superficially more algebraic facts by analytic means.

Course synopsis

[7 lectures| Definition of topological groups. Examples and non-examples, and basic topo-
logical properties. Subgroups. Quotient groups. The Open Mapping Theorem.

[4 lectures] Complete regularity of topological groups. Continuous partitions of unity and
Fubini’s Theorem. Existence and uniqueness of Haar integrals.

[5 lectures] The Peter-Weyl Theorem for compact topological groups. Dual groups of topo-

logical groups. Local compactness of the dual of a locally compact topological group.

References

There are other notes on similar topics with a slightly different focus e.g. [Fol95, [Ko6r08,
Kral7, Megl7] and [Rud90].

General prerequisites

The course is designed to be pretty self-contained. We assume basic familiarity with groups
as covered in Prelims Groups and Group Actions (see e.g. [Earl4]). We shall also assume
familiarity with Prelims Linear Algebra (see e.g. [May20]) and Part A: Metric Spaces and
Complex Analysis (see e.g. [McG19]) for material on metric and normed spaces.
Familiarity with topology is essential, though not much is required content-wise. What

we use (and more) is covered in Part A: Topology (see e.g. [DL18]), with the exception
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of Tychonoff’s Theorem. This can be informally summarised as saying that a non-empty
product of compact spaces is compact, and there is no harm in taking it as a black box for
the course. Those interested in more detail may wish to consult Part C: Analytic Topology
(see e.g. [Knilg]).

The Axiom of Choice is sometimes formulated as saying that an arbitrary product of
non-empty sets is non-empty, and in this formulation it may be less surprising that it can
be used to prove Tychonoff’s Theorem. It turns out that the converse is also true, i.e.
Tychonoff’s Theorem (and the other axioms of set theory) can be used to prove the Axiom
of Choicdl]

Finally no familiarity with functional analysis is assumed, though there are clear simi-

larities and parallels for those who do have some. See e.g. [Pril7] and [Whil9].

Teaching

A first draft of these notes is on the website, but they will be updated after each lecture

with any resulting changes. This document was compiled on 25" May, 2023 at 09:44.
Lectures will be supplemented by some tutorial-style teaching where we can discuss the

course and also exercises from the sheets. Once I have a list of the MFoCS students attending

I shall be in touch to arrange these.

Contact details and feedback

Contact tom.sanders@maths.ox.ac.uk if you have any questions or feedback.

!Those unfamiliar and looking for a reference may wish to consult the notes [Ter10].
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Group notation

A group G is written multiplicatively if the binary operation of the group is written
G? — G;(z,y) — zy and called multiplication; the unique inverse is written = and the
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map G — G;x — x7 is called inversion; and the identity is written 15. Given S,T < G

we write
Sti={s':s5eS}and ST := {st:se S,teT}.

For n € Ny we define S™ inductively by
S%:={lg} and S™*! := S"S; and S7" = (S7)".

It will also be convenient to write xS := {z}S and Sz := S{z} for z € G, which aligns
the the usual notation for left and right cosets when S is a subgroup. /N This notation has
effect that in general SS™1 # S° and S? # {s* : s € S}.

/N As an exception to the above notation, G™ denotes the n-fold Cartesian product
G x --- x G not the product defined above; that product is just G.

We write (S) for the group generated by S, that is [|{H < G : S © H}, the intersection
of all the subgroups of GG containing S.

We say S < G is symmetric if S = S7!. If S and T are symmetric then S n T is
symmetric, and if S is symmetric then (S) = .oy, S™ by the Subgroup Test.

We write G°" for the opposite group, that is the group with the same base set as G but
group operation given by G* — G; (z,y) — yz. The identity element and the inverse map
on G° are the same as those on G, and the map G — G°";x — 27! is a group isomorphism.

If G is Abelian then it is written additively if the binary operation of the group is
written G* — G; (z,y) — z + y and called addition; inversion is written G — G;z — —z
and called negation; and the identity is written Og. /AN Al groups written additively are
Abelian, but not all Abelian groups will be written additively.

If G is written additively then the above notation changes in the obvious way so we write
—S instead of S™', S + T instead of ST, n.S instead of S™ etc.
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1 Groups with topologies

A group G that is also a topological space is called a topologized group. Without any
additional assumptions these are no more than their constituent parts: a group and a
topological space. When the group inversion G — G and the group operation G* — G are

both continuous, where G? has the product topology, we say G is a topological group.

Example 1.1 (Indiscrete groups). For any group G, we write Gy for G endowed with the
indiscrete topology. This is a topological group since any map into an indiscrete space is
continuous.

Any indiscrete space is compact since the indiscrete topology is finite, so Gy is a compact

topological group. Gy is Hausdorff if and only if G is the trivial group.

There are non-compact spaces that retain traces of compactness which we shall find it
useful to discuss: A topological space is locally compact if every element is contained
in a compact neighbourhood; and it is o-compact if it is a countable union of compact
sets. /N\Tn the literature sometimes different definitions of local compactness are used — see
Remark for an example that is relevant to us — but they usually coincide when the

space is additionally assumed to be Hausdorff.

Example 1.2 (Discrete groups). For any group G, we write Gp for G endowed with the
discrete topology. This is a topological group since the product of two copies of the discrete
topology is discrete — so both the topological spaces G and G? are discrete — and any map
from a discrete space is continuous.

Any discrete space is Hausdorff and locally compact since {z} is an open neighbourhood
of = which is compact, since it is finite, and disjoint from the open neighbourhood {y}
if x # y. Hence Gp is a locally compact Hausdorff topological group. Since the set of
singletons in Gp is an open cover of Gp, Gp is compact if and only if it is finite; and it is

o-compact if and only if it is countable.

The reals under addition may be endowed with the discrete or indiscrete topologies
to make them into a topological group as above. However, neither of these is the ‘usual’

topology which is generated by intervals without their endpoints.

Example 1.3 (The real line). The additive group R endowed with its usual topology is a
topological group which we call the real line, and which we also denote R. The relevant
continuity is just the algebra of limits: in particular, if x,, — zo then —(x,) = (-=1)z,, —
(—1)zg = —xo; and if additionally y, — o, then z,, + v, — xo + Yo.

The compact sets in the real line R are exactly the closed and bounded sets (this is the
Heine-Borel Theorem for R). We can use this to see that the real line is a non-compact

o-compact locally compact Hausdorff topological group. Local compactness follows since
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[t — 1,2 + 1] is a compact neighbourhood of z, and o-compactness follows since R =
U, en [=7,]. R is non-compact since {(—z,z) : € R} is an open cover without a finite
subcover, and R is Hausdorff since if z # y then putting ¢ := |z — y|/2 the sets (x — §, 2 + 9)
and (y — 0,y + §) are disjoint open neighbourhoods of x and y respectively.

Example 1.4 (The rationals). The additive group Q endowed with subspace topology

inherited from the real line is a topological group for the same reasons as in Example
Q is Hausdorff, but not locally compact (and so certainly not compact) — this is exactly

why one constructs the real line! — but is o-compact since QQ is a countable union of

singletons each of which is compact since it is finite.

Example 1.5 (Non-zero complex numbers). The non-zero complex numbers, C*, form a
multiplicative group and with the usual topology is a topological group: By the algebra of

V> zy . and if additionally v, — vy then z,y, — Zoyo.

limits, if z,, — x in C* then x
The compact sets in C are exactly the closed and bounded sets (this is the Heine-Borel
Theorem again, this time for R?). We can used this as in Example to see that C* is a

topological group that is non-compact, o-compact, locally compact, and Hausdorff.

Example 1.6 (The positive reals). The set R- of positive reals under multiplication with
the subspace topology inherited from the usual topology on C is a topological group for
the same reasons as in Example [1.5; it is non-compact, o-compact, locally compact, and
Hausdorft.

Example 1.7 (The circle group). The set S' := {z € C* : |z| = 1} under multiplication
with the subspace topology inherited from the usual topology on C is a topological group
for the same reasons as in Example [1.5| and we shall call it the circle group; it is compact
and Hausdorff.

We denote the topological groups of Examples 1.7 without subscripts and SMALL
CAPS, and in general only include disambiguating subscripts when the topology may not be

clear.

Group actions

Groups often arise with actions, and topological groups are no exception to this. For a
left action of a group G on a topological space X, we say it is an action by continuous
functions if the maps X — X;z — g.z are continuous for all g € G. /NTn the literature
the term ‘continuous group action’ is reserved for an action of a topological group G on a

topological space X that is continuous as a map G x X — X.

Observation 1.8. The maps X — X;x — g.x are continuous for all g € GG if and only if they

are homeomorphisms since g7'.(g.z) = x = g.(¢g7'.z) for all z € X and g € G.
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Example 1.9 (Homeomorphisms of topological spaces). For a topological space X and
group G of homeomorphisms of X under composition, the map G x X — X;(g,x) — g(z)
is an action by continuous functions, and is called the evaluation action.

The case of X a metric space, and GG a group of isometries is a special case of this.
/N While isometries are always injective, they need not be surjective. To form a group,

however, they must be invertible and so in particular surjective.
Some particular groups of homeomorphisms are studied in the Prelims Analysis II course:

Example 1.10. For X = [0, 1] with the subspace topology from R, let G be the group
of all homeomorphisms of X fixing the endpoints. Then — [Qia20, Theorem 1.3.31] — the

functions in G are exactly the strictly increasing bijections of X.

Given a left action of a group G on a topological space X, the topology of pointwise
converge on G w.r.t. this action is the weakest topology on G such that the maps

G — X; g+~ g.x are continuous for all x € X. In particular, given a base B for X, the sets
Ulxy,...,xn; Uy, .. Uy) i ={9geG:gx1 €Uy, ..., g2, €U,}

withxy,...,2, € X and Uy, ..., U, € B form a base for the topology of pointwise convergence

w.r.t. the given action.

Proposition 1.11. Suppose that X is a metric space and G is a group of isometries of
X. Then G with the topology of pointwise convergence w.r.t. the evaluation action is a

topological group.

Proof. Write d for the metric on X and B.(z) := {y € X : d(z,y) < €} so that the balls
{B.(x) : x € X,e > 0} form a base for the topology on X. If fo € U(xy,...,x,;Uq,...,U,)
then there is € > 0 such that

U(xy,...,xn; Be(fo(z1)), ..., Be(fo(xn))) € Uz, ..., 20 Ury oo, Up).

For f € G, since f is an isometry, we have

d(f_l(fo(fz))a fo_l(fo(xz'))) = d(fo(zi), f(z:)) = d(f(zi), fo(x:))

and so the preimage under inversion of U(xy,...,x,; U, ...,U,) contains the preimage of

U, o0 Bl fo(@1)), -, Be(fo(wn))), which is U(fo(z1), -, folwa)i Be(a), -, Bo(wa)
which is a neighbourhood of f;*. Hence inversion is continuous.

Now suppose foo go € U(z1,...,2n;Ur, ..., Uy), and f € U(go(21),--.,90(xn); Bea(fo ©
9o(x1)), -+ Bepa(fo 0 go(z1))) and g € U(zr, ..., 205 Bepa(go(21))), - - - Bepa(go(zn))) then
again since f is an isometry

d(f o g(xi), foo go(x:)) < d(f o g(xi), f o go(zi)) + d(f o golwi), fo o go(w:))
= d(g(x:), go(xi)) + d(f(90(2:)), folgo(z:))) <,
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and so fog e U(xy,...,x,; Uy, ..., U,). Inparticular the preimage of U(xy, ..., x,; Uy, ..., Uy)

under the group operation contains the open neighbourhood

U(Qo(%); S ,go(l’n); Be/Q(fO o 90(561)), cee ,Be/2(f0 o 90(951)))
x U(xy,... o Be/g(go(%))), e 7Be/2(90($n)))

of (fo,g0). Hence multiplication is continuous as a map G?> — G and G is a topological

group. O

Example 1.12 (Groups of unitary maps with the SOT). For V' an inner product space a
unitary map is a map ¢ : V — V such that (¢(v), p(w)) = (v,w) for all v,w € V', and we
write U(V') for the set of unitary linear maps V' — V' with unitary linear inverses.

V is, in particular, a metric space with metric d(z,y) := (z —y,z — y)"/2. The elements
of U(V) are isometries w.r.t. this metric and so by Proposition [1.11) U(V) is a topological
group with the topology of pointwise convergence. When V' is a Hilbert space (i.e. when V'
is additionally complete in the metic d) then this topology on U(V) is the strong operator
topology (SOT) restricted to U(V).

Between topologized and topological

To better understand topological groups we shall also look at some weaker structures with
some axioms stripped away — centipede mathematics. These structures are also studied in
their own right; for a much more detailed development including many examples and open
problems see [AT08, Chapters 1 & 2.

Suppose that G is a topologized group written multiplicatively. We say that left (resp.
right) multiplication is continuous if the maps G — G;y — zy (resp. G — G;y — yzx)
are continuous for all x € G. Such a group is said to be a left-topological (resp. right-
topological) group. A group which is both a left-topological and a right-topological group

is called a semitopological group.

Observation 1.13. Any Abelian left-topological group is semitopological since left multipli-

cation by y is the same as right multiplication by y.

Example 1.14 (The coset topology). For a group G and H < G, equipping G with the
topology whose closed sets are unions of left cosets of H makes it into a left-topological
group; we call this topology the coset topology (on G generated by H). /N This
terminology is not completely standard.

The open (and closed) sets in G are exactly the unions of left cosets of H, hence if
S < G then S = SH. Right multiplication is continuous (if and) only if H is normal
in G: Indeed, if right multiplication is continuous then since H is closed, Hy~! is closed
for all y, so Hy ' = SH for some S — G. Let x € S be such that y=! € xH, whence
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y'H=xH c SH = Hy ! and so H is normal in G. In particular there are left-topological

groups that are not semitopological.

Proposition 1.15. Suppose that X is a topological space and G is a group of homeomor-
phisms of X. Then G with the topology of pointwise convergence w.r.t. the evaluation action

1s a semitopological group.
Proof. For x1,...,x,€ X and Uy,...,U, open in X we have
Uy, ..Uy U)g = Ulgr, .. g.an; Ur, ., Uy)
so right multiplication is continuous. Furthermore,
g U(x1, Uy U = U, w9 VU - g7 U,

so left multiplication is continuous since the sets ¢~ .Uy, ..., g '.U, are open because the

action is by continuous functions. O
The next example is not central to the course but may be contrasted with Example|1.12]

Example 1.16 (Groups of continuous maps with continuous inverses with the SOT). For
V' an inner product space we write GL(V') for the set of continuous linear maps V- — V
with continuous linear inverses.

With V' given the norm topology, that is the topology induced by the metric d as in
Example [1.12] GL(V) is a group of homeomorphisms of V. Hence if GL(V') is endowed with
the topology of pointwise convergence w.r.t. the evaluation action, then GL(V') becomes a
semitopological group; this topology is the strong operator topology restricted to GL(V).

By contrast with Example if V' is infinite dimensional then composition on GL(V)

need not be continuous nor need it have a continuous inverse.

A topologized group in which the group operation is continuous (as a map from the

product space G?) is called a paratopological group.

Example 1.17 (The reals with the right order topology). The set?] {(a, ) : —00 < a < o0}
is a topology on R which we call the right order topology (on R); we denote this
topologized group Rye.

Ry, is a paratopological group since for a € R,

{(z,y) :x+ye(a,0)} = U(a—b,oo) x (b, 0)

beR
so that the preimage of the open set (a,0) is open in the product topology. Inversion on
Ryo is not continuous since (—o0, —a) is not open (for any a € R), and hence Ry, is not a

topological group.

2For the avoidance of doubt (—00,0) := R and (0, ®0) := .
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Ryo is not Hausdorff: Any two non-empty open sets contain all sufficient large reals and
hence have non-empty intersection.

The sets [z, 00) are compact because any open cover has a set containing x, and that set
must have the form (a, o) for some a < z. This set on its own is a cover of [z, 00) and hence
the cover has a subcover with one set. It follows that Ry, is locally compact, since for x € R,
[x — 1,00) is a compact neighbourhood of z; and Ry, is o-compact since R = | J,_, [2, %0),
and [z, 00) is compact.

On the other hand, any set A with arbitrarily large negative elements is not compact
since {(a,0) : a € R} is an open cover of A, but any finite subset has a smallest element
and so is not a cover. In particular if A = R is non-empty then A = (—o0,sup A], and so

no non-empty closed set is compact, and Ry, itself is not compact.

Observation 1.18. Every paratopological group G is semitopological since the maps G —
G* z — (z,y) (and G — G* x — (y,x)) are continuous for all y € G, and the composition

of continuous maps is continuous.

A semitopological group in which inversion is continuous is called a quasitopological

group.

Example 1.19 (The reals with the cofinite and cocountable topologies). Write R¢ and R
for the additive group R equipped with the topology whose proper closed sets are the finite
sets, and whose proper closed sets are the countable sets respectively. These are genuinely
topologies and are called the cofinite and cocountable topologies respectively.

Rer and R are quasitopological groups because —x + U = U + (—x) is finite (resp.
countable) whenever U is finite (resp. countable), and —U is finite (resp. countable) when
U is finite (resp. countable).

If U,V < R are non-empty and open in the cofinite (resp. cocountable) topology, then
U+V =R: for z € R, 2 — U is infinite (resp. uncountable) and V¢ is finite (resp.
countable) and so z — U ¢ V¢ whence x € U+ V and U +V = R as claimed. In particular,
{(z,y) € R? : z +y # 0}, which is the preimage under addition of an open set in the cofinite
(resp. cocountable) topology, cannot contain a sum of non-empty open sets. It follows that
multiplication is not continuous and R¢y (resp. Rec) is not paratopological.

Rer and R are not Hausdorff: Any two non-empty open sets U and V' have finite (resp.
countable) complements, but R is infinite (resp. uncountable) and so U is infinite (resp.
uncountable) and U ¢ V¢ which is to say that U n'V # .

R¢r is compact: Indeed, the cofinite topology on any topological space is compact since
if U is an open cover, then let Uy € U be non-empty. U§ is finite, say U§ = {z1,...,2m},
and since U is a cover we may take U; € U such that x; € U;. The set {Uy, ..., U,,} is a finite

subcover of ¢ and our claim is proved.
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R¢c is not o-compact, nor is it locally compact: This follows from the fact that the
only compact sets in R are finite. To see this fact note that if X is infinite then it has a
countably infinite subset C', and {(R\C') u {x} : x € C} is an open cover of X with no finite

subcover.

Observation 1.20. Every left-topological group G with a continuous inverse is a quasitopo-
logical group, since for y € G the right multiplication map G — G;z +— zy = (y = 1)!
is continuous since it is a composition of inversion, left multiplication by y~!, and inversion
again.

The following diagram summarises the foregoing. The implications without any text
next to them follow a fortiori — i.e. by simply dropping hypotheses — and the missing
implications and non-implications can all be deduced from transitivity of implication and
the law of excluded middle.

Topological
4/11@@ e.g. [[19] ~
Quasitopological — Paratopological

Left-topological

) - Semitopological
& continuous inverse

/‘H/gz d H4G in e.g.
Left-topological - mes LI

Figure 1: Relationships between types of topologized groups

Basic tools

In this section there are a few key lemmas (Lemmas |1.21} [1.23] [1.32}f1.34} |1.36] & [1.41))

which we highlight in red because they each capture a crucial technique or idea.

Lemma 1.21 (Key Lemma I). Suppose that G is a topologized group in which inversion is
continuous. If U is a neighbourhood of 1 then U contains a symmetric open neighbourhood

of the identity and if S is symmetric then S is symmetric.

Proof. 1f U is a neighbourhood of 14 then U contains an open neighbourhood V' of 15. Put
S :=V ~n V! which is open and contains 1¢ (since 15" = 1¢) and moreover S = S~! so
that S is a symmetric open neighbourhood of 14 contained in U. For the second part, since
inversion is continuous the preimage of S under inversion is the set 5" and is closed and
contains S~1 = S. It follows that S < § . But § ' (?71)*] = S, and we conclude that
5 =5 O
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Remark 1.22. Every conclusion of Lemmall.21|may fail if ‘topologized group with continuous
inverse’ is replaced by ‘paratopological group’: In Ry, the only symmetric and open sets are
& and R, hence (—1, «0) is a neighbourhood of the identity that does not contain a symmetric
neighbourhood of the identity; and {0} = (—o0, 0] which is not symmetric despite {0} being

symmetric.

Lemma 1.23 (Key Lemma II). Suppose that G is a left-topological (resp. right-topological)
group, U is open, and V is any set. Then VU (resp. UV ) is open; U is a neighbourhood of
x if and only if x7'U (resp. Ux™') is a neighbourhood of the identity; and xV = zV (resp.
Vi=Vz).

Proof. First, VU = |, vU which is a union of open sets since G — G;z — v 'z is
continuous. Secondly, if U is a neighbourhood of z then there is an open set U, < U
containing x. Continuity of G — G z — xz then says that 271U, is an open set containing
1 and contained in 27U, which is to say 271U is a neighbourhood of the identity. Similarly
if 271U is a neighbourhood of the identity then U is a neighbourhood of x by continuity

of G — G;z — x7'2. Finally, since G — G;z — 27!z is continuous, xV is closed and

contains xV, hence 2V < xV. Apply this with = replaced by 27! and V replaced by 2V to

get V < 272V, whence 2V = V. The parenthetical results follow mutatis mutandis. O
The ideas of the last two lemmas can be used to contain compact sets in ‘nice’ sets:

Lemma 1.24. Suppose that G is a locally compact quasitopological group and K is a com-
pact set. Then there is a symmetric open neighbourhood of the identity containing K and

contained in a compact set.

Proof. Since G is locally compact there is a compact neighbourhood of the identity L; let V
be an open neighbourhood of the identity contained in L. The set {zV : x € K} is an open
cover of K and so there are x1,...,x,, € K such that K c z:V u--- U x,,V; let 24 := 14.
x;V < x;L and since left multiplication is continuous, x; L is compact, and since inversion is

1'is symmetric by design and open since left

continuous, (z;L)~! is compact. x;V U (z;V)~
multiplication and inversion are continuous. It follows that V := (JI", (z;V) U (2;V) 7 is a
symmetric open set contained in a finite union of compact sets. A finite union of compact

sets is compact and so V' is contained in a compact set and by design K < V and 1 e V. [

Remark 1.25. We cannot replace ‘quasitopological’ by ‘paratopological’ above: Ry, is a lo-
cally compact paratopological group, but the only set containing an open symmetric neigh-
bourhood of the identity is R which is not compact.

We also cannot drop the local compactness requirement: R is a quasitopological group

in which all the compact sets are finite while all neighbourhoods are infinite.
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We can also use Lemma to see what happens to subgroups under the process of

topological closure. We begin with a technical lemma.

Lemma 1.26. Suppose that G is a semitopological group and H  G. If H is closed under
multiplication (i.e. xy € H whenever x,y € H), then so is H; if H is a union of conjugacy
classes in G (i.e. tH = Hx for v € G) then so is H.

Proof. First, by Lemma hH = hH = H for all h e H. Hence Hw < H for all w € H.
Again by Lemma we have Hw = Hw < H = H, and hence H < T as required.
Secondly, by Lemma xH =xH = Hx = Hx for all z € G. n

Remark 1.27. We cannot replace ‘semitopological’ with ‘left-topological’ above: Suppose
that G is a group with subgroups H and K such that H K is not closed under multiplication.
Then G with the coset topology generated by K is left-topological but has H = HK, so

that even though H is closed under multiplication, its topological closure is not.

Proposition 1.28. Suppose that G is a quasitopological group and H < G. Then H is a
subgroup of G. Furthermore, if H is normal then so is H. In particular, {1¢} is a normal

subgroup of G.

Proof. By the first part of Lemma m, H is closed under multiplication and by Lemma
1.21], H ' =T. Since H is non-empty it follows that H is a group. If H is normal then H
is normal by the second part of Lemma Since {1} is a normal subgroup of G we then
get the last claim. O

Remark 1.29. We cannot replace ‘quasitopological’ by ‘paratopological’ above: {0} is a
subgroup of Ry but {0} = (—c0, 0] which is not a subgroup.
On the other hand, paratopological groups in which the closure of every subgroup is a

subgroup have been studied in [F'T'14].

Proposition 1.30. Suppose that G is a compact semitopological group. Then {1g} is a

normal subgroup of G.

Proof. Put H := @ then by Lemmam H? ¢ H and xH = Hux for all x € G. Now
consider H := {xH : x € H}. This is a set of closed subsets of H by Lemma [1.23] which
has the finite intersection property: suppose 1 H,...,x,H € H. Then v;H > ;- -z, H =
Hxy- -2, > 212, Hxy -2, = 21---2,H since x1---x;,_1,2;41---x, € H and H is
(multiplicatively) closed. Since G is compact, V := (|H is non-empty.

V' is closed and non-empty, so there is some y € V. By Lemma m yH = @ c V, but
then y?H € H and so y?H >V > yH, and since G is a group, yH > H. Now H € H, and
so H >V o yH o H — in other words V = H. But then for all x € H we have H < xH,
and since 1¢ € H we have some y € H such that xy = 15 and H is closed under inverses

and hence a subgroup. O
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Remark 1.31. In Exercise we give an example of a compact semitopological group that
is not quasitopological, so this result does not just follow from Proposition [1.28

We cannot relax ‘semitopological’ to ‘left-topological’: if G is a finite group with a non-
normal subgroup H then G with the coset topology generated by H has @ = H which is
not normal, but it is compact since G is finite. Similarly, we cannot relax the compactness
requirement to local compactness or o-compactness in view of the group Ry, in which the
closure of the identity is not even a group (see Remark .

Lemma 1.32 (Key Lemma III). Suppose that G is a left-topological (resp. right-topological)
group, S is a set and V is an open neighbourhood of the identity. Then SV < SVV ™! (resp.
VScv-ives).

Proof. Let A := G\(SVV~!) and B := G\(AV). B is closed since AV is open by Lemma
1.23] If € AV then there is some v € V such that zv=' € A, so zv=! ¢ SVV~!. Hence
SV < B and since B is closed SV < B. Now if x € B then z ¢ A since 1¢ € V, and hence

x € SVV ™1 as claimed. The parenthetical results follow mutatis mutandis. O

Corollary 1.33. Suppose that G is a left-topological group and H < G. If H is a neigh-
bourhood in G then H is open in G; if H is open in G then H is closed in G; if H is closed
in G and of finite index then H is open in G.

Proof. First, if H is a neighbourhood then there is a non-empty open set U < H. But then
H = HU is open by Lemma [1.23] For the second part, if H is open then by Lemma [1.32
Hc HH™' = H and so H is closed.

For the last part, since H is closed, every W € G/H is closed by Lemma m Since
H is of finite index, | J{W € G/H : W # H} is a finite union of closed sets and so closed.
Finally, since G/H is a partition of G containing H, H = G\| {W € G/H : W # H} is

open as required. OJ

Lemma 1.34 (Key Lemma IV). Suppose that G is a paratopological group and X is a
neighbourhood of z. Then there is an open neighbourhood of the identity V such that 2V? <

X. Moreover, if G is a topological group then V may be taken to be symmetric.

Proof. Let U < X be an open neighbourhood of z. The map (z,y) — xy is continuous and
so {(z,y) : zy € U} is an open subset of G x GG. By definition of the product topology there

is a set S of products of open sets in G such that
{(r,y) oy e U = | J{Sx T: S x T e S},
Since z1lg = z € U, there is some S x T € § such that (z,15) € S x T. Thus S is an open

neighbourhood of z and T is an open neighbourhood of the identity, so by Lemma [1.23
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V := (2718) n T is an open neighbourhood of the identity. Now zV < S and V < T and
so zV? < U as required. Moreover, if G is a topological group inversion is also continuous
so by Lemma V' contains a symmetric open neighbourhood of the identity, and the

conclusion follows by nesting. m

Remark 1.35. We cannot replace ‘paratopological’ by ‘quasitopological” above: In R¢p (Ex-
ample [1.19) if X is the complement of some = # z, then X is open but the sum of any two

non-empty open sets is the whole of R and so cannot be contained in X.

Lemma 1.36 (Key Lemma V). Suppose that G is a paratopological group and Ki,..., K,
are compact subsets of G. Then Ky --- K, is compact. In particular, if K is compact then

K™ is compact for alEl n € Ny.

Proof. The (topological) product of two compact sets is compact so if K; - - - K, is compact
and K, is compact then (K;--- K, _1) x K, is compact. But then the continuous image of
a compact set is compact and so K;--- K, = (K- - K, 1)K, is compact and the result

follows by induction on n. O]

Remark 1.37. Exercisel|l.5| gives an example of a quasitopological group where the conclusion

above does not hold.

Corollary 1.38. Suppose that G is a locally compact topological group. Then there is a

o-compact, locally compact open subgroup of G.

Proof. Apply Lemma to get a symmetric open neighbourhood of the identity S con-
tained in a compact set L. Then H := (S is a subgroup of G which is locally compact and
open and closed by Corollary . It is contained in | J, .. (L n H)", and since H is closed
H n L is compact, and so this union is a countable union of compact (by Lemma sets.

TLENQ

The result is proved. [

Remark 1.39. In Exercise [[.§| we ask for an example to show that the hypotheses of Corollary
may not be relaxed from ‘topological’ to ‘paratopological’, and in Exercise [[.4] that the

hypothesis ‘locally compact’ may not be changed to ‘c-compact’.

A cover U is a refinement of a cover V of a set X if U is a cover of X and each set in

U is contained in some set in V.

Observation 1.40. Refinements are transitive meaning that if W is a refinement of V and V

is a refinement of U then W is a refinement of /.

3Note that K" = {1} by definition and so is compact since it is finite.
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Lemma 1.41 (Key Lemma VI). Suppose that G is a paratopological group, K < G™ =
G x ---x G 1is compact for somen € N, and U is an open cover of K. Then there is an open
neighbourhood of the identity U < G such that {z1U x -+ x 2, U, Uxy x --- x Uz, : x € K}

is a refinement of U. If G is a topological group then U may be taken to be symmetric.

Proof. First, the structure of the product topology (and Lemma means that we can
pass to a refinement of i/ where for each x € K there are open neighbourhoods of the identity
Ul(‘r), e U (our notation is a little clumsy here to make the z-dependence explicit) such
that xlUl(z) X o X xnUy) is in this refinement. The set ﬂ?:l Uz-(z) is an open neighbourhood
of the identity and so by Lemma[I.34] there is a open neighbourhood of the identity U, such
that U2 < Ui(x) for all 1 <4 < n. In particular, V := {z1U, x --- x x,U, : x € K} is an open
cover of K and a refinement of U.

By compactness of K there is a finite set ' < K such that W := {a|Uy x - - -x 2 Uy : 2’ €
F}is a cover of K. Let U := (), Uy which is a finite intersection of open neighbourhoods
of the identity and so a open neighbourhood of the identity. Since W is a cover of K, for

each z € K there is some 2’ € F' such that z € /U, x -+ x 2] U, and hence

U x - x 2,U c 2{UpU x -+« x 2l UpU

c U x - x 2 U2 < 2,U™) x - x 2/ U
so that {z1U x -+ x x,U : x € K} is a refinement of V which in turn is a refinement of U.

Apply this to G°F, with the same topology, we get another neighbourhood of the identity
U’ such that {U'zxy x --- x U'z, : © € K} refines Y. Taking the intersection of U and U’
gives the result. If G is topological then by Lemma U contains a symmetric open
neighbourhood of the identity and we may pass to this. O]

Remark 1.42. The lemma above is not unrelated to the Generalised Tube Lemma from
topology (see e.g. [Mun00, Lemma 26.8]), which is also known as Wallace’s Theorem.

With the results we have now established we can explain the lack of examples of compact

paratopological groups that are not topological groups:

Theorem 1.43. Suppose that G is a compact paratopological group. Then G is a topological

group.

Proof. Suppose that K < G is closed and # ¢ K~'. For y € K, if yz € {1_0} then by
Proposition z7'y~! € {1} and so by Lemma tle{lgly={yy c K =K, a
contradiction. Hence yx ¢ m and again, by Lemma m there is an open neighbourhood
U, of y such that Uyx n {1_G} = J and in particular 1 ¢ Uyx.

Apply Lemma to the cover {U, : y € K} of K to get an open neighbourhood of the
identity U such that for all y € K we have yU < U, for some z = z(y) € K. It follows that
lg¢ yUx forallye K,so K 'nUxz = . Thus K~! is closed and the result is proved. [
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Remark 1.44. We cannot replace ‘paratopological’ by ‘quasitopological’ in view of R, which
is a compact quasitopological group that is not a topological group. We also cannot relax
‘compact’ to ‘locally compact’ since Ry, is a locally compact paratopological group that is
not a topological group.

VAN [Rav15] it states that every locally compact paratopological group is a topological
group. This does not contradict the above, it is simply using a different definition of local

compactness in which every element is contained in a closed compact neighbourhood.

A topological space X is said to be regular if for all x € X every neighbourhood of z
contains a closed neighbourhood of x. /N The literature is inconsistent on the meaning of

regular, and for some other authors a regular space is required to be Hausdorff.
Proposition 1.45. Suppose that G is a topological group. Then G is regqular.

Proof. Let V be a neighbourhood of x € G. By Lemma there is a symmetric open
neighbourhood of the identity U such that xU? < V, and so by Lemmas & xU <
2UU = 2U? < V as required. [

Remark 1.46. The quasitopological group R, is not regular because the only closed neigh-
bourhood is the whole of R which cannot be contained in any neighbourhood that is not

the whole of R; and the paratopological group Ry, is not regular for the same reasons.

There are also purely topological conditions that give rise to regularity:

Proposition 1.47. Suppose that X s a locally compact Hausdorff topological space. Then

X is reqular.

Proof. Let V be an open neighbourhood of x € X, which by local compactness we may
assume is contained in a compact neighbourhood U. For all x # y € X there is an open set
U, containing y which is disjoint from an open set V,, containing z. {U, : y € U\V'} is an open
cover of a closed subset of the compact set U and so has a finite subcover, say U,,,...,U,,..
But U is a compact subset of a Hausdorff topological space, so (U\U,,) n--- n (U\U,,,) is

closed, contained in V', and contains Vi, n--- nV,  which is an open set containing x. [

In the above we used that compact subsets of Hausdorff topological spaces are closed, and

for non-Hausdorff spaces that are regular the following lemma helps recover the situation:

Lemma 1.48. Suppose that X is a reqular space and K < X is compact. Then K is

compact.

Proof. Suppose U is an open cover of K. Then for each z € K there is an open neighbour-
hood of = in U, call it U,. By regularity there is an open neighbourhood of z, call it V,
such that V,  U,. The set {V, : x € K} is an open cover of K and so by compactness has
a finite subcover, say K < V,, u--- u V,, and hence K c Uz, v---uU,. Thus U has a

finite subcover of K, and the result is proved. O
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Remark 1.49. The reals with the cocountable topology has every compact set being finite,
and also all finite sets are closed hence if K is compact then K = K is compact in this
topology, but this space is not regular.

Since every topological group is regular the closure of a compact subset of any topological
group is compact. We cannot relax ‘topological’ to ‘paratopological’ here since {0} is a
compact subset of Ry, whose closure is (—o0, 0] which is not compact. Similarly we cannot
relax ‘topological’ to ‘quasitopological’: Exercise gives an example of a quasitopological
group that is not locally compact but which has a compact dense subgroup. In particular,

this means that there are paratopological and quasitopological groups that are not regular.

Lemma 1.50. Suppose that X is a reqular space and K is a compact set inside an open set
B. Then there is an open set C > K with C < B. If X is, additionally, locally compact

then C' may be taken to be compact.

Proof. Since B is open, for each x € K there is an open set U, containing x and contained
in B, and since X is regular, there is an open neighbourhood V, of x with V., < U,. Since
K is compact K <V, u---uV, for some zy,...,2,,€ K. Put C .=V, u---uV, and
get the result. If X is locally compact then we may assume that U, is compact and hence

C' is compact as claimed. O

2 Continuous homomorphisms

The maps which will concern us the most are continuous homomorphisms, and also contin-
uous open homomorphisms, that is continuous homomorphisms in which the image of an

open set is open.

Example 2.1. The map 0 : R — S'; 2 — exp(2mix) from the real line to the circle group

is a surjective continuous open homomorphism.

Example 2.2. The maps R — R;x — ax for a € R are continuous homomorphisms of the
real line. For o = 0 this map is not open; for o # 0, this map has an inverse of the same

form and so is open and in fact a homeomorphic isomorphism.

Example 2.3. If GG is a topologized group with continuous inverse and G° is given the

1'is a homeomorphic isomorphism,

because it has a continuous homomorphic inverse G — G;z > z7 1.

same topology as G, then the map G — G°";z — z~

Example 2.4. Suppose that GG is a semitopological group. Then for a € G, conjugation by a,

l'is an isomorphism with inverse map G — G;z — a 'za.

that is the map G — G;x — azra™
Both these maps are homeomorphisms for fixed a since left and right multiplication is
continuous and the composition of continuous maps is continuous. /A We do not need

inversion to be continuous.
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Example 2.5. For a topologized group G, the identity map 6 : Gp — G;x — x from G with
its discrete topology to GG with the given topology is a continuous homomorphism, because
the identity map is a homomorphism and any map from a discrete space is continuous.

&GD is a topological group, but in general G need not even be a left-topological group.

In left-topological groups, the algebraic structure makes checking continuity and open-
ness a little easier: First, recall that a neighbourhood base of a point x in a topological
space X is a family B = (B;);e; of neighbourhoods of z such that if U is an open set

containing x then there is some ¢ € I such that B; < U.

Proposition 2.6. Suppose that G and H are left-topological groups and B = (B;)ics is a
neighbourhood base of the identity in H. Then a homomorphism 0 : G — H is continuous if
(and only if) 071 (B;) is a neighbourhood of the identity for all i € I; and a homomorphism
0 : H — G is open if (and only if) 0(B;) is a neighbourhood of the identity for all i€ I.

Proof. Suppose that U < H is open and #(y) € U. By Lemma there is an open
neighbourhood of the identity V; such that 6(y)V, < U, and hence i € I such that B, < V.
Thus 671(B;) < 671(V,,) so y§~(B;) < 67(U) (using that 6 is a homomorphism) and hence
0~1(U) contains a neighbourhood of y i.e. ~*(U) is open. The parenthetical ‘only if’ follows
since B; contains an open neighbourhood of 15 and 0(1g) = 1g. The result for open maps

follows similarly.
O

Corollary 2.7. Suppose that G is a semitopological group and B = (B;)is i a neighbour-
hood base of the identity such that B; " is a neighbourhood of the identity for alli € I. Then

G s quasitopological.
Proof. Since G is semitopological the map G — G°";x — 27! is a homomorphism between

left-topological groups, and so Proposition gives the result. O

The initial topology, subgroups, and product groups

Given a function f : X — Y into a topological space the initial topology on X w.r.t.
f is the topology {f~!(U) : U is open in Y'}. In words it is the weakest topology (meaning

coarsest topology, or topology with the fewest open sets) on X making f continuous.

Proposition 2.8. Suppose that G is a topologized group, 6 : H — G is a group homomor-

phism, and H is given the initial topology w.r.t. 8. Then (0 is continuous and)
(1) if group inversion is continuous on G, then it is continuous on H;

(11) if left (resp. right) multiplication is continuous on G, then it is continuous on H;
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(iii) and if multiplication is continuous on G* then it is continuous on H?.

In particular if G is a topological (resp. paratopological, quasitopological, semitopological,

left-topological or right-topological) group then so is H.

Proof. Suppose U is an open set in H so that there is W, open in G, such that U = 61 (W).

For [()} note that U™t = (9=4(W))~! = 6~ (W), but W~ is open in G and so U~*
is open in H. For (i), given z € H, 2U = z0~'(W) = 671(0(z)W), but §(x)W is open
in G and so zU is open in H, so left multiplication is continuous. The result for right
multiplication follows similarly. Finally, for , let S be a set of products of open sets in
G such that {(z,y) € G* : 2y e W} = JS. Then

{(x,y) e H* 1 xy e U} = {(x,y) € H* : 0(x)0(y) € W}
= {(z,y) e H* : (0(x),0(y)) € S x T for some S x T e S}
= U{Q_I(S) x 0HT): S xTeS},

and this last set is a union of open sets and so open. The result is proved. O

We say that a topologized group H is a topological subgroup of a topologized group
G if H is a subgroup of GG and has the subspace topology i.e. has the initial topology w.r.t.
the inclusion homomorphism H — G;x — .

Note from the proposition that if G is a topological (resp. paratopological, quasitopo-

logical, semitopological, left-topological or right-topological) group then so is H.

Example 2.9. A number of the topological groups from the introduction are examples of
topological subgroups: Q (from Example is a topological subgroup of the real line R;
and R-¢ (from Example and S' (from Example are topological subgroups of C*.

Example 2.10 (p-divisor topology on Z). Write Z,_p,, for the group Z and the initial
topology w.r.t. the quotient map Z — (Z/pZ),; x — x + pZ, which is a topological group
by Proposition [2.8, This is the same as the coset topology on Z generated by pZ.

The group Z/pZ is finite — this follows from the division algorithm — and so all topologies

on Z/pZ are finite and so in particular the topology on Z,_,y is finite.

It can be useful to have the initial topology with respect to multiple functions, and to

this end we need the direct product of topologized groups:

Proposition 2.11. Suppose that (G;)ier is a family of topologized groups. Then [ [,.; G; is a
topologized group when it is given the group structure of the product group, and the topological
structure of the product topology, and for j € I the projection map p; : | [..; Gi — Gj; 2 — x;
1s a continuous open homomorphism. Furthermore, for each j € I there are continuous

homomorphisms v; : G; — [ [..; Gi such that G; has the initial topology w.r.t. v;, and
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(i) if inversion is continuous on all of the G;s then it is continuous on | [,.; Gi;

(1) if left (resp. right) multiplication is continuous on all the G;s then it is continuous on
Hie[ Gi;

(iii) and if multiplication is continuous on all of the G%s then it is continuous on ([ ],.; Gi)*.

iel

In particular if G; is a topological (resp. paratopological, quasitopological, semitopological,

left-topological or right-topological) group for all i € I then so is | [,.; Gi-

Proof. The first part is just a statement of the usual results concerning product groups and

product topologies. The sets of the form [ [._; U; where U; is open for all i € I, and U; = G;

iel
for all but finitely many ¢ € I, form a base B for the product topology.

We define ¢; : G; — [ [,c; Gi by letting 7;(¢;(x)) = « for all x € G; and 7;(¢j(x)) = 1¢,
for all # # j. This is a continuous homomorphism, and the initial topology on G; w.r.t. ¢; is
{m;(U) : U is open in | [, ; G;} which is exactly the set of open subsets of G, in its original
topology. In other words the topology on Gj is initial as described.

For , by definition of inversion in the product group, ([ [,c; Ui)™" = [, U7 ', and if
U; = G, then U[l = (G, so if inversion is continuous for all of the G;s and [ [,_; U; € B then
(I'l,e; Ui)~ € B and the result is proved.

For given € [[,.;G: and [[,.; Ui € B we have 27 ' [[.., Ui = [l,c;2;'U; by
definition of the group operation in the product group. z; 'U; is open for all i € I by Lemma
, and if U; = G, then x;'U; = Gy, so 71 [[,.; Ui € B. Tt follows that left multiplication
by x is continuous. Similarly for right multiplication.

Finally, for , if [ [,c; Ui € B let J c I be finite such that U; = G, for all i ¢ J. Then

Vii=A{(zi,vi) i,y € Ui} = U{Sz xT;:8; xT; € S}
for some set S; of products of open sets in GG;, and if U; = G; then V; = GG; x G; whence

S; xT;eS; forallieJ }

{(:L‘,y):a:yEHUi} ZU{HSiXHTi'and S;=T,=G@G, foralli¢.J

iel iel iel
which is a union of sets in B x B and so open. The result is proved. O]

We call the topologized group above the topological direct product of the groups
(Gy)ie1, and given n topologized groups G, H, ..., K, we write G x H x --- x K for
l_[ie{L_Mn} G; where G, =G, Gy :=H, ..., G, = K.

Remark 2.12. Suppose that G is a group and (G} );e; are copies of the group G with different
topologies. Then we write Ga for the group G with initial topology w.r.t. the diagonal

homomorphism G — []..; Gi;x — (z,...,z). Concretely this is just the topology on G

iel
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generated by all the topologies together — that is the set of unions of sets of the form
(i Ui where J < I is finite and U; is open in G; for all i € J.

In particular, combining Propositions & , if G; is a topological (resp. paratopo-
logical, quasitopological, semitopological, left-topological or right-topological) group for all

1 € I then so is Ga.

Example 2.13 (Prime divisor topology on Z). By the preceding remark we may give Z the
topology generated by the topological groups Z,_p; — that is Z with the p-divisor topology
from Example [2.10]— as p ranges the primes. This makes Z into a topological group denoted
Lpp.

The topology of Zpp, is Hausdorff: if x # y then without loss of generality (xr+1)—y > 1.
Every natural number bigger than 1 has a smallest factor bigger than 1, and this factor will
be prime, so there is a prime p with x+1—y € pZ. Then z+pZny+pZ = (y—1)+pZny+pZ.
Since p f 1 we have y — 1 + pZ # y + pZ and since the intersection of two cosets is either a
coset or empty we have that the open sets x + pZ and y + pZ are disjoint giving the claimed

result.

Quotient groups

For G a topologized group and H < @, the quotient topology on left cosets G/H has
U < G/H open if and only if | JU is open in G or, equivalently, C' = G/H closed if and
only if [ JC is closed in G.

Remark 2.14. This topology is the final topology on G/H w.r.t. the quotient map ¢ : G —
G/H;x — xH — it is the strongest topology (meaning finest topology, or topology with the

most open sets) on G/H making ¢ continuous.

Lemma 2.15. Suppose that G is a left-topological group and H < G is dense. Then G/H

with the quotient topology is indiscrete.

Proof. Suppose that C' < G/H is closed and non-empty. Then | JC' is closed and contains
xH for some x € G. However zH = 2H = 2G = G by Lemma and so | JC = G and
hence the only non-empty closed set in G/H is G/H and the result is proved. ]

Proposition 2.16. Suppose that G is a right-topological group and H < G. Then for G/H
with the quotient topology, the quotient map q : G — G/H is open.

Proof. If U is open in G then UH is open by Lemma [1.23] (for right-topological groups).
But | Jq(U) = UH, and so ¢(U) is open in G/H by definition. O

Quotient maps are not necessarily closed:
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Example 2.17. Q is a dense subgroup of the real line R and so Lemma tells us that
R/Q has the indiscrete topology. The quotient map ¢ : R — R/Q;z — x + Q is not closed
since ¢({0}) = {Q} is not closed in R/Q.

Corollary 2.18. Suppose that G is a topologized group, and H < G. Then G/H with the
quotient topology is compact (resp. o-compact) if G is compact (resp. o-compact); and if
G is right-topological and locally compact, then G/H with the quotient topology is locally

compact.

Proof. The quotient map ¢ is continuous and the continuous image of a compact set is
compact, so if G is compact then so is G/H, and if G is o-compact so that G = | J
for compact sets K, then G/H = q(G) = {J,,e, 9(Kn) is o-compact.

Now let zH € GG/H, and suppose G is locally compact. There is an open set U containing

nENo

x and contained in a compact set K. Since ¢ is open (Proposition [2.16)), ¢(U) is an open
set containing xH and contained in ¢(K). The latter is compact since ¢ is continuous and

so G/H is locally compact as claimed. O

Proposition 2.19. Suppose that G is a topologized group and H is a normal subgroup of
G. Then

(1) if group inversion on G is continuous, then it is continuous on G/H;
(1) if left (resp. right) multiplication is continuous on G, then it is continuous on G/H ;
(iii) and if multiplication is continuous on G? then it is also on (G/H)?.

In particular, if G is a topological (resp. paratopological, quasitopological, semitopological,

left-topological or right-topological) group then so is G/H.

Proof. Suppose that U < G/H is open. If inversion is continuous on G then

UU_I=U{($H)_1::EHEU}zU{a:_lH:xHEU}: {:L‘_IZZL“EUU}Z <UU>

and so U~ ! is open in G/H by definition since | JU is open in G. If left multiplication on G

-1

is continuous, then for x € G,

UxH )'U = U{ H)(yH):yHeU} = U{a: "WH:yHeU} =z UU

and so (xH)~'U is open in G/H and hence left multiplication by zH is continuous. Similarly
for right multiplication.

Finally suppose multiplication on G is continuous. Define

W :={(zH,wH) € (G/H)*: (zH)(wH) e U} and V := {(z,w) eG?:zwe UU}
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Suppose that (zH,yH) € W. Then zy € (xH)(yH) < | JU so (x,y) € V and since V is open
there are open sets S,T < G suchthat z € S, yeT,and SxT c V. Ifse SandteT,
then st € [ JU, and since the latter is a union of cosets of H we have (st)H < | JU. Since
H is normal we have (sH)(tH) = (st)H < |JU, and so SH x TH c V.

By Lemma , SH and TH are open sets, and so the sets S' := {sH : s € S} and
T :={tH : t € T} are open in G/H; xH € S’ and yH € T'; and S’ x T" < W. It follows

that W is open, and multiplication on G/H is continuous. O

Example 2.20 (The real line modulo 1). The real line R (Example has a (normal)
subgroup Z and so the group R/Z may be given the quotient topology making it into a
topological group by Proposition [2.19

/NTn the literature on topological spaces (though not in these notes) the notation R/Z
is sometimes used to refer to a different space, called the adjunction space in which all the
integers in R are identified but the rest of R remains the same. In other language this is a

countably infinite bouquet of circles all connected at the point Z.

Example 2.21 (The reals with the circle topology). By Proposition R is a topological
group (which we shall denote R¢) when endowed with the initial topology w.r.t. the quotient
map ¢ : R — R/Z where R/Z is the reals (mod 1) (Example [2.20). We call this the circle
topology on R. The open sets in the circle topology have the form U + Z where U < R is
open in the real line.

Since R¢ has the initial topology, a set A < R, is compact if (and only if) g(A) is
compact in R/Z: Indeed, if U is an open cover of A, we can write U = {¢~' (V) : V € V} for
some set V of open subsets of R/Z. Now, if ¢(A) is compact then there are V3,...,V, € V
such that g(A) c Vy u--- UV, and hence A = ¢ ! (q(A)) c ¢ * (Vi) u--- U g 1 (V,) and so
{¢*OV),...,q 5 (V,,)} is a finite subcover of U.

A\ In particular, A := [0,1] and B := [0,1/2)u[3/2,2] are compact, but AnB = [0,1/2)
is not compact. This phenomenon of the intersection of two compact sets not being compact
cannot happen in a Hausdorff space where every compact set is closed, and hence where the
intersection of two compact sets is an intersection of a closed set with a compact set which

is, therefore, compact.

The open mapping theorem

Example shows that there are continuous bijective group homomorphisms that are not
homeomorphic isomorphisms. This is by way of contrast with the purely algebraic situation
where any bijective group homomorphism is a group isomorphism (i.e. has an inverse that
is a homomorphism), but in alignment with the topological situation where continuous
bijections need not be homeomorphisms. With a few mild conditions on the topology we

can recover the algebraic situation:
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Theorem 2.22 (Open Mapping Theorem). Suppose that G is a o-compact left-topological
group, H s a locally compact Hausdorff left-topological group, and 7 : G — H is a continuous

bijective homomorphism. Then m is a homeomorphic isomorphism.

Proof. Since the inverse of a bijective group homomorphism is a group isomorphism, it
suffices to show that 7(C') is closed whenever C' is closed in G. Let K, be compact in G
such that G = |, oy K-

Claim. There is some n € N such that 7(K,) is a neighbourhood.

Proof. We use a Baire Category argument, though no familiarity with these is assumed. We
construct a nested sequence of closed neighbourhoods inductively: Let Uy be a compact (and
so closed since H is Hausdorff) neighbourhood in H, and for n € N let U,, € w(K,,)¢ N U,—1
be a closed neighbourhood.

This is possible since (by the inductive hypothesis) U,_; is a neighbourhood and so
contains an open neighbourhood V,,_;. But then 7(K,)¢ n V,_; is open and non-empty
since otherwise 7(K,) contains a neighbourhood. It follows that 7(K,,)¢ n U,—1 contains an
open neighbourhood and so it contains a closed neighbourhood since H is locally compact
and regular.

Now by the finite intersection property of the compact space Uy, the set [, U, is non-

empty. This contradicts surjectivity of  since G = J, . K, and the claim is proved. [

neN

Claim. If X ¢ H is compact then 7=(X) is compact.

Proof. By the previous claim 7(K,) contains a neighbourhood (and hence so does z7(K,)
by Lemma and the set {x7(K,,) : x € H} covers X, so by compactness of X there are
elements 1, ..., 2, such that X < (J", z;7(K,,) and hence 7~ *(X) < | J-, 7 *(z;) K, (by
injectivity of 7). 771(z;) K,, is compact by Lemma and since a finite union of compact
sets is compact it follows that 77!(X) is contained in a compact set. Finally, X is closed so

771(X) is closed and a closed subset of a compact set is compact as required. [

Finally, suppose that C' < G is closed, and y is a limit point of 7(C). H is locally
compact so y has a compact neighbourhood X. Now 7!(X) is compact and so 771 (X) nC

is compact. But then X n 7(C) is compact since 7 is continuous, and hence closed since H
is Hausdorff. But by design y € X n7(C) = X n7(C) < «(C). O

Corollary 2.23. Suppose that G is a countable locally compact Hausdorff topological group.
Then G is discrete. In particular, if G is a compact Hausdorff topological group then G is

either finite or uncountable.

Proof. Gy, is a o-compact semitopological group by Example 1.2 and the identity map

Gp — G is a continuous bijective homomorphism (Example [2.5). Hence by the Open
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Mapping Theorem this is a homeomorphism and so G is discrete. Finally, if G is compact

and countable then it is compact and discrete and so finite. O

Remark 2.24. None of the hypotheses may be dropped: The real line is an example of an un-
countable locally compact Hausdorff topological group that is not discrete (since singletons
are not open), and the rationals as a topological subgroup are an example of a countable
Hausdorff topological group that is not discrete. Finally, Qp, that is Q with the indiscrete

topological, is a countable (locally) compact topological group that is not discrete.

Remark 2.25. Furstenberg [Furbf] gave a proof that there are infinitely many primes in
topological language and here we can dress this up in terms of topologized groups:

Suppose, for a contradiction, that there were finitely many primes. Then the topology
of Zpp (from Example [2.13)) is generated by a finite collection of finite topologies and so is
itself a finite topology and hence compact. But we saw in Example that it is Hausdorff
so by Corollary Zypyp is finite giving the contradiction claimed.

3 Continuous complex-valued functions on topological
groups

For a topological space X we write C(X) for the set of continuous functions X — C. This
is closed under pointwise addition and multiplication of functions and contains the constant

functions, so it is a C-algebra.

Remark 3.1. For any indiscrete space X, the space C'(X) contains only the constant func-

tions; and for any discrete space X, the space C'(X) contains all functions X — C.

Constructing non-constant continuous functions

In view of the preceding remark it is not always possible to construct non-trivial continuous
functions, but for topologies that are sufficiently rich in open sets we have a chance: First,
the dyadic rationals in [0,1] are the set D := | J;~, D;, where

Do := {0/1,1/2}, Dy = {0/2,1/2,2/2}, Dy := {0/4,1/4,2/4, /3/4,4/4}, &.

In particular D is dense in [0, 1]; we have the nesting Dy < Dy < ...; and every element of
D;1\D; can be written in the form %(q + ¢') where ¢ and ¢ are consecutive elements of D;.
Write S° for the interior of .S, that is the set of x € S that are contained in an open set

contained in S. In particular S° is an open subset of S, and S° = S if and only if S is open.

Example 3.2 (The real line contd., Example . /N The interior of the closure of B may
be very different to B, even if B is open: there are open dense subsets S of [0, 1] of arbitrarily

small measure, so that S~ = (0,1), but S itself is much smaller.
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Proposition 3.3. Suppose that G is a paratopological group, A, B < G with A compact
and A < B". Then there are sets (Uy)gep with Uy = A, Uy = B, and U, < Uy whenever
q,4 € D have q < ¢'.

Proof. By Lemmal/[l.41| there is an open neighbourhood of the identity U such that AU < B,
and by Lemma there are open neighbourhoods V; of the identity such that V2, <V,
for all i € Ny and V@ < U,

We set Uy := A and U; := B and define U, for ¢ € D;;\D; iteratively for ¢ € Ny.
Suppose that at step i, for all consecutive pairs ¢ < ¢’ in D; we have U,V; < U, — this is
certainly true for ¢ = 0. For ¢ < ¢’ consecutive elements of D; set U1 (g+q) = FWH so that

a) U,Vis1 © U1 (g+q); and b) U1 (grq)Vit1 C UqViHViH c UV? 1 C U,y = Uy by Lemma

1.23, Every element of DZH\D is the average of two consecutive elements of D;, and the

result is proved. O

Proposition 3.4. Suppose that X is a locally compact regular topological space, A, B < X
with A compact and A < B° Then there are open sets (U,)gep with A < Uy, Uy < B, and
U, < U_qfo whenever q,q € D have ¢ < ¢'.

Proof. We set Uy := A and U, := B and define U, for ¢ € D;.1\D; iteratively for i € Ny.
Suppose that at step i, for all consecutive pairs ¢ < ¢’ in D; we have Vq c U_q/cz'rc and Fq

compact — this is certainly true for ¢ = 0 by Lemma [1.48 For ¢ < ¢’ consecutive elements

of D;, apply Lemma |1.50| to get an open set U L(g+q) containing Uq and contained in U_q/o,

with compact closure, and the result is proved. O

Lemma 3.5. Suppose that X is a topological space, and (Uy)4ep are such that Vq c U_q/o
whenever ¢ < ¢'. Then there is a continuous function g : X — [0,1] with g(x) = 0 for
ze Uy, and g(x) =1 forx ¢ Uy .

Proof. For z € G let S(z) == {ge D : z € U, } and define g : G — [0,1] by g(z) :=
inf S(x) U {1}. This certainly maps into [0,1]. If z € Uy then ¢ € S(z) for all ¢ > 0
by nesting, and hence g(z) = 0; if ¢ U; , then S(x) = & by nesting, and so g(z) =
1. It remains to establish that g is continuous: First, for @ < 1 we have ¢~ !([0,q)) =
U{U,” : ¢ < a} is open. The harder case is showing for o > 0 that g~ *((a,1]) is open;
suppose that g(x9) > a. Then there is ¢ € D with g(zo) > ¢ > a, and hence zy ¢ U, . Now,
if z ¢ U, then by nesting g(2) = ¢ > a, and hence o € G\U, = g~ *((«,1]). Thus every
element of g7!((«, 1]) is contained in an open subset of g7!((«, 1]), and so g~!((a, 1]) itself
must be open. Finally, the half-open sets (a, 1] and [0, «) for « € [0, 1] form a base for the

topology on [0, 1] and hence ¢ is continuous as required. O

Corollary 3.6. Suppose that G is a regqular paratopological group, and A < B are compact
and open sets respectively. Then there is a continuous function g : G — [0, 1] with g(z) =0

forallze A and g(x) =1 for all x ¢ B.
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Proof. Since the topology is regular and A is compact there is an open set C' containing A
with C' = B. Apply Proposition and then Lemma to get g : G — [0, 1] continuous
with g(z) = O forall z € A, and g(z) = 1 for all z ¢ C". The result follows since C° < B. [

Remark 3.7. We know from Proposition that every topological group is regular, hence
every topological group is a regular paratopological group so in particular the above corollary
applies to all topological groups. It is sometimes called the ‘complete regularity of topological

groups’.

Example 3.8. For the rationals (Example [L.4), the function g : Q — C with g(z) = 0 if
22 < 2 and g(x) = 1 if 2% > 2 is continuous because for every z € Q there is an interval on
which it is constant (on the rationals in that interval), and it has g(0) = 0 and g(z) = 1 for
all z not in the open set {y € Q : y*> > 2}. This is not the sort of function that is constructed
by the argument of Corollary [3.6] and suffers from not having a continuous extension to the

reals because it is not uniformly continuous.

Remark 3.9. ACorOHary does not assume that G is not indiscrete so that there may
not be any non-constant continuous functions. Exercise asks for a proof that if G is a
topological group and the only continuous functions are constant then G is indiscrete, and

also for examples to show how things differ for quasitopological and paratopological groups.

Corollary 3.10. Suppose that X s a locally compact reqular topological space, and A < B
are compact and open sets respectively. Then there is a continuous function g : G — [0, 1]
with g(x) =0 for all z € A and g(x) = 1 for all x ¢ B.

Proof. By exactly the same argument as Corollary [3.6| with Proposition [3.4] replacing Propo-
sition 3.3l O

Compactly supported continuous functions

Given a topological space X the support of a (not necessarily continuous) function f :
X — C, denoted supp f, is the set of z € X such that f(x) # 0; f is said to be compactly
supported if its support is contained in a compact set. We write C.(X) for the subset
of functions in C'(X) that are compactly supported. /N As we have defined it the support
of a function that is compactly supported need not actually be a compact set; it is simply

contained in one.

Remark 3.11. The set C.(X) is a subalgebra of C'(X) since the union of two compact sets
is compact and the support of the sum of two functions is contained in the union of their
supports; and the support of the product of two functions is the intersection of their supports

which is certainly contained in a compact set if one is. More than this, the function

[l := sup {|f (z)] : 2 € X}
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is a norm on C.(X). It is well-defined since every continuous (complex-valued) function on
a compact set is bounded, and the axioms of a norm are easily checked.

A1n general | - |, is not a norm on C(X) since we are not assuming the elements of
C(X) are bounded.

An general C,(X) is not complete despite the fact that the uniform limit of continuous

functions is continuous since this limit function may not be compactly supported.

Remark 3.12. /N\Tf f,g € C(X) then the support of g is open and there is a continuous
function A : supp g — C such that f = gh, but in general this needﬁ not have a continuous
extension to the whole of X. By way of contrast, if f, g € C.(X) and supp f < supp g then
there is h € C.(X) such that f = gh.

Proposition 3.13. Suppose that G is a left-topological group and C.(G) contains a function

that is not identically zero. Then G s locally compact.

Proof. Suppose that f € C.(G) is not identically zero. Then supp f is open (since f is
continuous), non-empty and contained in a compact set K (since f is compactly supported).
It follows that K is a compact neighbourhood of some point x € G, and by Lemma [1.23
yx 1K is then a compact neighbourhood of y for y € G as required. m

Example 3.14. /\For the rationals (Example we have C,.(Q) = {0}.

For us Corollary will be crucial in providing a supply of compactly supported func-

tions in locally compact topological groups.

Corollary 3.15. Suppose that G is a locally compact topological group and K < G is
compact. Then there is a continuous compactly supported f : G — [0, 1] such that f(x) =1
forall x e K.

Proof. Since G is locally compact it contains a compact neighbourhood of the identity
L; let H < L be an open neighbourhood of the identity. K H is open by Lemma [1.23]
Apply Corollary to get a continuous f : G — [0,1] with f(z) = 1 for all x € K and
supp f € KH < KL which is compact by Lemma [1.36 O

Furthermore, we can produce continuous partitions of unity:

Corollary 3.16. Suppose that G is a locally compact topological group, F : G — [0, 1] is
continuous, K 1is a compact set containing the support of F, and U is an open cover of
K. Then there is some n € N and continuous compactly supported functions fi,..., fn :
G — [0,1] such that F = f1 + -+ + fu; and for each 1 < i < n there is U; € U such that
supp f; < U;.

4Consider, for example, the functions f(z) = x and g(x) = 2% in C(R). Then h(z) = 1/x for all z € supp g

but A has no continuous extension to R.
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Proof. Since U is an open cover of K, for each x € K there is an open neighbourhood of
x, call it U, € U, and by Proposition there is a closed neighbourhood V, < U, of x.
Since each V, is a neighbourhood and {V, : x € K} is a cover of K, compactness tells us
that there are elements z;,...,x, such that K < V,, u--- UV, . By Lemma K is
compact and so for each ¢ the set V, N K is a closed subset of a compact set and so compact.
Apply Corollary to V,, n K < U,, to get a continuous function g; : G — [0, 1] such that
gi(x) =1forall z € V,, n K and supp g; < U,,.

Since the sets V,,,...,V,, are closed, K c Ve, - UV, . and so since the g;s are

non-negative we have

Thus (see Remark there is h € C,(G) such that F' = h(g1 + - - - + g,) and since F' maps
into [0,1] and g;(z) + - -+ + gn(z) = 1 on the support of F', we conclude that h maps into
[0,1]; for 1 <i < n put f; = g;h.

It remains to check the properties of the f;s. First, f; is a continuous function G — [0, 1]
by design of h and g;. Secondly, F' = f; + --- + f, by design. Finally, supp f; < suppg; <
U., € U. Moreover, since the f;s are non-negative supp f; < K so f; has compact support.

The result is proved. [

Integrals of continuous functions

We say that a complex-valued function f from a set X is non-negative if f(z) = 0 for all
x € X; we say a linear functional { from a complex vector space of complex-valued functions
V is non-negative if { f > 0 whenever f is non-negative.

Our motivating example of an integral is the Riemann integral:

Example 3.17. The set R of Riemann integrable functions R — C has some basic properties
often established in first courses on analysis e.g. [Gre20]. In particular, R is a complex vector

space under point-wise addition and scalar multiplication of functions, and
o0
J:R—>(C;f'—>f f(x)dx
—00
is a non-negative linear map. Furthermore, C.(R) is a subspace of R, and S restricted to
C.(R) is non-trivial (meaning not identically zero).

Remark 3.18. /A We are only concerned with proper integrals, and though the integral in
S appears to be improper we are restricting attention to compactly supported functions so

the integrals are, in fact, proper.

Remark 3.19. Non-triviality of § when restricted to C.(R) is important; see Exercise [[IL.7]

for a contrasting situation.
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Given a topological space X if f,g € C.(X) are both real-valued then we write f > g if
f — g is non-negative, and C(X) for the set of f € C.(G) such that f > 0, where 0 is the

constant 0 function.

Remark 3.20. The functions C —» R;z — Rez, C > R; 2z — Im z, R — R.g; z — max{z, 0}
and R — Rop; 2 — max{—=z,0} are continuous and so any f € C.(X) can be written as
f=fi—fo+ifs—ify for f1, fo, f3, f1 € CF(X), and this decomposition is unique. We
shall frequently have call to understand elements of C.(X) through this linear combination

of elements of CF(X).

Remark 3.21. If f,g € C.(X) are real-valued with f > ¢ and { is a non-negative linear
functional C.(X) — C then § f > {g; and if f € C.(G) then |{ f| < §|f].

Remark 3.22. The decomposition in Remark can be used to show that if { is a non-
negative linear functional then S_f = { f for all fe C.(X).

Remark 3.23. We think of non-negative linear functionals as integrals and in fact the Riesz-
Markov-Kakutani Representation Theorem tells us that if X has a sufficiently nice topology
then every non-negative linear map C.(X) — C arises as an integral against a suitably

well-behaved measure on X.

Remark 3.24. Suppose that f € C'(X). By the triangle inequality if A := {z € C : |z| < €¢/2}
and f(z), f(y) € z + A then |f(z) — f(y)| < € and hence U := {f7'(z2 + A) : 2 € C} is an
open cover of X such that if U e Y and z,y € U then |f(z) — f(y)| <e.

Given a further topological space Y and F': X x Y — C and z € X, we write Sy F(z,y)
for the functional { : C.(Y) — C applied to the function Y — C;y — F(x,y) (assuming this
function is continuous and compactly supported), and similarly for y € Y and Sx F(z,y). Tt
will be crucial for us that the order of integration can be interchanged and this is what the

next result concerns:

Theorem 3.25 (Fubini’s Theorem for continuous compactly supported functions). Suppose
that G is a locally compact topological group, § and S/ are non-negative linear functionals
Ce(G) = C, and F € C.(G x G). Then the map x — S; F(x,y) is continuous and compactly
supported, so that Sm S; F(x,y) exists. Similarly y — Sgg F(z,y) is continuous and compactly

supported, so that S; Sx F(x,y) exists and moreover

LL/F(Ly):LLF(:r,y)-

Proof. In view of the decomposition in Remark and linearity of { and S/ it is enough to
establish the result for F' non-negative.
Since F' € CF (G x G) has support contained in a compact set K, and since the coordinate

projection maps G x G — G are continuous (and the union of two compact sets is compact)
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there is a compact set L such that K < L x L. It follows that the maps x — F(x,y) for
y € G and y — F(z,y) for z € G are continuous and have support in the compact set L.

We also need an auxiliary ‘dominating function” which is a compactly supported con-
tinuous function on whose support all of the ‘action” happens. For those familiar with the
theory of integration, the Dominated Convergence Theorem may come to mind. Concretely,
by Corollary there is a continuous function f : G — [0,1] with f(z) = 1 for all x € L
supported in a compact set M.

For ¢ > 0 (by Remark let U be an open cover of G x G such that |F(x,y) —
F(z',y)| < eforall (z,y), (¢,y) € U e U. M x M is compact and so by Lemmal(l.41] there is
a symmetric open neighbourhood of the identity U in G such that U’ := {zU xyU : z,y € M}
is a refinement of U (as a cover of M x M not of G x G). First, the support of S; F(x,y) is
contained in the (compact) set L and if 2’ € zU then by design and non-negativity of S, we

have

[Fa = [ Fe i < [ Fa +as6) = f Fa)+e| 7

y y y
Since U is symmetric we have z € 2'U and similarly S; F(z,y) < S; F(o',y) + eS’f and
hence \S; F(x' y) — S; F(z,y)| < el f. Since ¢ is arbitrary (and { f does not depend on
€) it follows that = — S; F(z,y) is continuous (and compactly supported) and similarly for
y—§, F(z,y).

By Corollary applied to f supported on the compact set M with the open cover
{zU : x € M}, there are continuous compactly supported fi,..., f, : G — [0, 1] such that
fi+-+ fo=f and supp f; < x;U for some z; € M. Now, F(x,y) = F(x,y)f(z)f(y) and

f=li+ -+ fa,s0

INgE

n
=17

By design of U" and U, for 1 <i,j < n there is \; ; = 0 such that |F(z,y) — \; ;| < € for all
(x,y) € supp f; x supp f;. We conclude that

F(z,y)fi(x)f;(y) for all z,y € G.

Il
—_

n

SN A ) () — ef @) () ZZ Ao fil@) fi(y) + ef (2) £ (9).

i=17=1

Since { and S/ are non-negative linear functionals, we conclude that

Pl - X0 [5 [ sl <e 1] 1

and

L/LF(:U,Z/)—ZH:Z”:)\M Pfi ij <€ffff_

J J

The result is proved by the triangle inequality since e is arbitrary (and § f and {' f do not
depend on €). O
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Remark 3.26. /Nt is not enough to assume that F' : G x G — C is such that the maps
G - Ciz — S; F(z,y) and G — C;y — { F(z,y) are well-defined, continuous, and

compactly supported. Exercise [[11.4] asks for an example.

4 The Haar integral

We now turn to one of the most beautiful aspects of the theory of topological groups. This
describes the way the topology and the algebra naturally conspire to produce an integral.

Given a topological group G and a function f € C(G) we write
Ae(f)(2) = f(z7'2) for all 2,z € G.

Remark 4.1. \,(f) € C(G) for all f € C(G) and x € G (since left multiplication is continuous
and the composition of continuous functions is continuous), and \ is a left action meaning
Aay(f) = Aa(Ay(f)) for all z,y € G and A\, (f) = f, and the maps A, are linear on the
vector space C(G). /N Without inversion this is naturally a right action.

Remark 4.2. For a topological group G, \ restricts to an action on the space C.(G) and this

action is isometric with respect to | - [|o .. [|[Az(f)]eo = || f]o0 for all z € G.

Proposition 4.3. Suppose that G is a topological group and f € C.(G). Then G —
Co(G);x— N (f) is continuous.

Proof. Let W < C.(G) be open and suppose = € G has \.(f) € W. Since W is open there
is € > 0 such that A,/ (f) € W whenever |\/(f) — A\u(f)|lw < €. We shall show that there is
an open neighbourhood of the identity V' such that |Ay(f) — A\e(f)[leo < € for all 2" € 2V
from which the result follows.

Let K be a compact set containing the support of f. As in Remark let U be an
open cover of G such that |f(y) — f(y/)| < € for all y,y' € U € Y. By Lemma[L.4]] there is a
symmetric open neighbourhood of the identity V' such that {Vy :y € K} is a refinement of
U (as a cover of K).

Suppose that v € V and y € G is such that A\,(f)(y) — f(y) # 0. Then either f(y) # 0
so y € K, but then V~ly = Vy is a subset of an element of & and so |\, (f)(y) — f(y)| < €
or A\,(f)(y) # 0s0 v~y e K, but then V(v™1y) is a subset of an element of I and so again
A (f)(y) — f(y)] < e. Since \,(f) — f is continuous and compactly supported it attains its
bounds so |A,(f) — flo < €. Finally, since A is an action, the map A, is linear, and this
action is isometric (Remark we have

H)‘wv(f) - Ax(f)HOO = H>‘x()‘v(f) - f)HOO = ”)‘v(f) - fHOO < €.

The result is proved. O
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Given a topological group G we say that { : C.(G) — C is a (left) Haar integral on G

if { is a non-trivial (meaning not identically zero) non-negative linear map with

J)\x(f) = ff for all x € G and f € C.(G).

We sometimes call this last property (left) translation invariance.

Remark 4.4. Our definition of Haar integral requires C.(G) to be non-trivial and hence (c.f.
Proposition 3.13)) for G to support a Haar integral it must be locally compact. It will turn
out in Theorem that this is enough to guarantee that there is a Haar integral.

Remark 4.5. There is an analogous notion of right Haar integral which we shall not pursue

here.

Example 4.6 (The Riemann Integral). The map § in Example restricted to C.(R) is

a Haar integral, with the only property not already recorded being translation-invariance.

Example 4.7. If GG is a discrete group then it supports a left Haar integral:

f:cu(G) Gt Y S,

zeG
Remark 4.8. See Exercise [[II.1| for a partial converse.

The integral of a non-negative continuous function that is not identically 0 is positive,
and this already follows from the axioms of a Haar integral. To establish this we begin with

a lemma on the comparability of functions:

Lemma 4.9. Suppose that G is a topological group, f,g € CH(G) and f is not identically

zero. Then there isn €N, ¢q,...,¢, =0 and yy,...,y, € G such that
g(z) < Z cidg: (f)(z) for all x € G.
i=1

Proof. Since f is not identically zero there is some zy € G such that f(zy) > 0 and hence
(by Lemma |1.23)) an open neighbourhood of the identity U such that f(xoy) > f(xq)/2 for
all y € U. Let K be compact containing the support of g. Then {axU : z € K} is an open

cover of K and so there are elements x4, ..., z, such that z,U, ..., z,U covers K. But then
9(x) < 2f (o) Mgl Y fxor; x) = 2f (w0) M glow X At () () for all w € G,
i=1 =1

and the result is proved. O

Corollary 4.10. Suppose that G is a topological group, § is a left Haar integral on G, and
feCHG) has § f =0. Then f is identically zero.
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Proof. We suppose, for a contradiction, that f is not identically zero. Then by Lemma
for g € CF(G) we have g < 3", ¢\, (f) for e1,...,¢, =0 and yy,...,y, € G. By linearity,

non-negativity, and translation invariance of the Haar integral

fggiczf&h(f) :icijfzo-

Since g = 0, non-negativity of the Haar integral implies { g > 0, and hence {g = 0.
Now, in view of Remark we have that {h = 0 for all h € C.(G) i.e. | is identically

zero contradicting the non-triviality of the Haar integral. The lemma follows. O]

Existence of a Haar Integral

Our first main aim is to establish the following.

Theorem 4.11 (Existence of a Haar integral). Suppose that G is a locally compact topolog-

ical group. Then there is a left Haar integral on G.

We begin by defining a sort of approximation: for f, ¢ € C}(G) with ¢ not identically 0
put

(f; ) :=inf{ch:neN;cl,...,cn>O;y1,...,yneG; and f < ch)\yj_l(qﬁ)}. (4.1)
j=1

J=1

We think of this as a sort of ‘covering number’ and begin with some basic properties:

Lemma 4.12. Suppose that f,g,,1 € C+(G) with ¢ and & are not identically 0. Then
(i) (f:¢) is well-defined;
(ii) (4;¢) <1;
(iii) (f;¢) < (g;¢) whenever [ < g;
(iv) (f+9g:0) < (f:0) + (9:0);
(v) (uf;0) = p(f;0) for p=0;
(vi) (Aa(f);0) = (f;0) for allz € G;

(vii) (f;9) < (f;0)(¢59).
Proof. Lemma shows that the set on the right of (4.1)) is non-empty; it has 0 as a lower
bound. follows immediately. For i note that ¢ < 1.)\151(@ so that (¢;¢) < 1. [(iii)}

, , and are all immediate. Finally, for suppose ¢y, ..., ¢, = 0 are such that
f<>i Cj)\y;1(¢), so that by ((iii)} [(iv)} [(v)} and |(vi)| we have (f;v)) < .7 ¢j(¢;4). The

result follows on taking infima. ]

5As it happens it is easy to prove equality here but we do not need it.
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To make use of (- ;-) we need to fix a non-zero reference function f, € CF(G) and for

¢ € CF(G) not identically zero we put

(f; )
(fo;¢)

where the inequality follows from Lemma [(viD)]
Many of the properties of Lemma [£.12] translate into properties of I,,. In particular, we

Iy(f) :=

< (fa fO)J (42>

have I,(fi1 + f2) < I5(f1) + 1,(f2); for suitable ¢ we also have the following converse.

Lemma 4.13. Suppose that G is a locally compact topological group, fi,fo € CH(G) and
€ > 0. Then there is a symmetric open neighbourhood of the identity V such that if ¢ €
CH(Q) is not identically 0 and has support in V' then Is(f1) + 1s(f2) < Is(fi + f2) + €.

Proof. Let K be a compact set containing the support of both f; and fy (possible since
the union of two compact sets is compact) and apply Corollary to get F': G — [0,1]
continuous, compactly supported, and with F(z) =1 for all z € K.

For j € {1,2} let g; be continuous such that (f; + fo + €F")g; = f; (possible in view of
Remark and use that supp f; ¢ K < F~'({1}) < supp F). By Remark (and the
fact that the intersection of two open covers is an open cover) there is an open cover U of G
such that if x,y € U € U then |g;(x) — g;(y)| < e for j € {1,2}. K is compact; apply Lemma
to U to get a symmetric open neighbourhood of the identity V' such that {yV : y € K}
refines U (as a cover of K).

Now suppose that ¢ € CF(G) is not identically 0 and has support in V, and that
C1,...,¢, = 0and y,...,y, € G are such that

n

fi(x) + fo(z) + eF(x) < Zcigb(yi:z:) for all x € G.

i=1
If ¢(y;x)gj(z) # 0 then x € K and y; ' € 2V (using V = V1), but 2V is a subset of a set
in U so gj(z) < g;(y; ') + € and hence

n n

filz) < Z cio(yir)gi(x) < Z ci(gi(yi ) + €)p(y;) for all x € G, j € {1,2}.

i=1 =1

By Lemma .12 [W)|[Gid)} [(iv)[(v)] & we have

(f5: 9) ZCZ gj yl ) +¢€) for all j € {1,2},
i=1

but gi1(y™') + g2(y™!) < 1forall y e G, so

n

(fl> f27 Zcz +26

i=1
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Taking infima and then applying Lemma and and the inequality in (4.2)) we
get

I(f1) + 1o(f2) < (1 +26)I4(f1 + fa + €F)
< (L+26)(Is(f1 + fa) + ely(F))
< Ly(f1 + fo) + 2(f1 + fos fo) + (F; fo) + 2€(F; fo) )e.

The result follows since € > 0 was arbitrary and F', fi, f» and fy do not depend on e. [
With these lemmas we can turn to the main argument.

Proof of Theorem[{.11. By Corollary (applied with K = {15}) thereis fy € CF(G) with
fo not identically 0. Write F' for the set of functions I : CF(G) — Rsq with I(f) < (f; fo)
for all f € CF(G) endowed with the product topology i.e. the weakest topology such that
the maps F' — [0,(f; fo)]; I — I(f) are continuous for all f € CH(G). Since the closed
interval [0, (f; fo)] is compact, F is a product of compact spaces and so compact. Let X be
the set of I € F' such that

I(fo) =1 (4.3)
I(pf) = pI(f) for all >0, f € C(G), (4.4)

and
IN(f) = I(f) for all 2 € G, f € CH(G). (4.5)

The set X is closed as an intersection of the preimage of closed sets. Moreover, by Lemma

I, € X for any ¢ € CF(G) that is not identically zero: the fact that I(f) € [0, (f; fo)]
follows from the inequality in ; by design; by and by .

This almost gives us a Haar integral (on non-negative functions) except that in general
the elements of X are not additive, meaning we do not in general have I(f+f") = I(f)+I(f').
To get this we introduce some further sets: for € > 0 and f, f' € CF(G) define

B(f, fi€) ={T e X [I(f+ f) = I(f) = I(f)| < ¢}

As with X, the sets B(f, f’;¢€) are closed. We shall show that any finite intersection of
such sets is non-empty: For any fi, f1, f2, fo, - [u, [ € CH(G) and €y,...,¢, > 0, by
Lemma there are symmetric open neighbourhoods of the identity Vi, ..., V,, such that
if p € C'F(G) is not identically 0 and is supported in V; then

Lo (fi + f1) — Is(fi) — Ls(f)] < €. (4.6)

Since G is locally compact by Lemma there is a symmetric open neighbourhood of the
identity H contained in a compact set L; set V := H n ()., V; which is also a symmetric
open neighbourhood of the identity and by Corollary there is ¢ € C*(G) that is not
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identically 0 with support contained in V', and hence in the compact set L which is to say
it has compact support. I, enjoys for all 1 < < n, and we noted before that /, € X,
hence I, € (i, B(fi, f{,€;). We conclude that {B(f, f';¢) : f, f' € C(G),e > 0} is a set of
closed subsets of I’ with the finite intersection property, but F' is compact and so there is
some [ in all of these sets. Such an I is additive since |[I(f + f') — I(f) — I(f")| < € for all
f,f and € > 0. It remains to define { : C.(G) — C by putting

Jf = I1(f1) = I(f2) +il(fs) —il(fs) where f = fi — fo+ifs—ify for f1, fo, f3, fa € CH(G).

This decomposition of functions in C.(G) is unique (noted in Remark and so this is
well-defined. Moreover, { is linear since [ is additive and enjoys ; it is non-negative since
I is non-negative (and /(0) = 0); it is translation invariant by (4.5]); and it is non-trivial by
(4.3]). The result is proved. O

Uniqueness of the Haar integral

Our second main aim is to establish the following result.

Theorem 4.14 (Uniqueness of the Haar Integral). Suppose that G is a locally compact
topological group and § and S/ are left Haar integrals on G. Then there is some A > 0 such
that { = .

For this we introduce a little more notation: Given a topological group G and f € C.(Q)

~

we write f(z) = f(z™1).

Remark 4.15. 7 is a conjugate-linear multiplicative involution on C.(G), since complex con-

1

jugation and x — x~' are both continuous (and continuous images of compact sets are

compact).

Proof of Theorem[{.1] Suppose that fy, f1 € C.F(G) are not identically 0 and write K for a
compact set containing the support of fy and f; (which exists since finite unions of compact
sets are compact). By Lemma there is a symmetric open neighbourhood of the identity,
H | contained in a compact set L.

First, by Corollary there is a continuous compactly supported function F' : G —
[0,1] with F(z) = 1 for all z € KL (this set is compact by Lemma [1.36] and hence the
corollary applies).

Now, suppose € > 0 and use Remark (and the fact that intersections of open covers
are open covers) to get an open cover U of G such that if x,y € U € U then |fi(x) — fi(y)| <€
for i € {0,1}. By Lemma applied to U and the compact set KL there is a symmetric
open neighbourhood of the identity V' such that {zV : x € KL} is a refinement of U (as
a cover of K L), and by Corollary there is a continuous function h : G — [0, 1] that is
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not identically zero and is supported in V' n H, and in particular supported in L so it has
compact support.
For x € (G, translation invariance of S (and Remark -D tells us that

£My%»—£%@lw—£ﬁm1w—£ﬁ@»—fﬁ

For i € {0,1}, the map = — Sly fi(x)h(y~tz) = fi(x) g’ﬁ is continuous and is supported in K

and so is compactly supported and § S; fi(z)h(y ') exists and equals § f; S/ﬁ (by linearity
of { and {{'). On the other hand the map (z,y) — fi(z)h(y ') is continuous and supported
on K x L and so is compactly supported and hence by Fubini’s Theorem (Theorem [3.25)),

y — §_ fi(x)h(y ') exists, and (using translation invariance of {) we have

fﬁfﬁ=LLﬁumwfm=LLﬁ@mwﬂm=LLA@@M@

Since {yV :y e KL} refines U (as a cover of K'L) we have |f;(yx) — fi(y)| < € for z € V and
y € KL; and for x € H and f;(yx) # 0 or fi(y) # 0 we have y € KH whence F(y) = 1. It
follows that

fiw)h(z) — eF(y)h(z) < filyz)h(z) < fiy)h(z) + eF(y)h(z) for all z,y € G,

and so by non-negativity and linearity of { and S/ we have

LLﬁ@M@—LLJ( jffw ffﬁ >+£Lw

It follows (using linearity of §) that | { f; (A —§ f; g’ﬁ\ < €| F{h, and hence by the triangle
inequality (and division, which is valid since { fo, { f1 # 0 by Corollary as fo and f; are
{ Al Ih Th

not identically zero) that
! 1 1
v N (v v i vA R K (s v

Since € was arbitrary (and in particular fy, fi, and F' do not depend on it) it follows that
S/ f/§ f is a constant X for all f € CF(G) not identically zero. This constant must be non-
zero since S/ is non-trivial, and it must be positive since X/ and { are non-negative. The result
follows from the usual decomposition (Remark [3.20)), and the fact that {0, {0 = 0. O

{5 §hl_

Sh

5 The Peter-Weyl Theroem

Suppose that G is a topological group, and for an inner product space V' recall the definition

of U(V) from Example A finite dimensional unitary representation of G is a
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continuous homomorphism G — U(V') for some finite dimensional complex inner product
space V.

A function f: G — C is said to be a matrix coefficient if there is a finite dimensional
unitary representation = : G — U(V), and elements v,w € V' such that f(z) = (7(z)v,w)
for all x € G.

Example 5.1. Suppose that 7 : G — U(V) is a finite dimensional unitary representation
of a topological group G and ey, ..., e, is an orthonormal basis for V. If we write A, ; :=
{m(z)e;, e;) and suppose that A € C" is the vector for v € V written w.r.t. the basis eq, ..., e,
(i.e. N\; = (v,€;)), then AA — the matrix A pre-multiplied by the row vector A —is 7(z)v

written w.r.t. the basis ey, ..., e,. This is the reason for the terminology ‘matrix coefficient’.

Remark 5.2. All matrix coefficients are continuous, since continuity of 7 : G — U(V') and
the definition of the topology on U(V') means that = — 7(x)v is continuous for all v € V,
and the projections v — (v, w) are continuous for all w € V', so the resulting composition is

also continuous.

Lemma 5.3. Suppose that G is a compact topological group. Then there is a unique left
Haar integral § on G with {1 =1 such that

()= f 17 for all f.g € C(C)

is an inner product on C(G) and for each x € G, N\, is unitary w.r.t. this inner product.
Furthermore, | f|2 := (f, Y)Y and | f|1 := | f| define norms on C(G) and

[flly < Ul < [flleo for all f € C(G).

Proof. By Theorem m there is a left Haar integral S/ on . Since G is compact the
constant function 1 is compactly supported and so by Corollary , S’ 1 > 0. Diving by
this positive constant we get a left Haar integral { with {1 = 1. Now suppose that {  is
another left Haar integral with S/ 1 =1. By Theorem S/ = A { for some A > 0, but since
{1=1= {1 we conclude that A\ = 1 and { = {’ giving the claimed uniqueness.

Linearity in the first argument and conjugate-symmetry of (-, -) follow from linearity
of the Haar integral and Remark respectively. (f, f) = 0 for all f € C(G) since | is
non-negative and ¢, -) is then positive definite by Corollary .

The Haar integral is left-invariant so

() = f 17 = j Me(f7) = j Me()Nlg) for all f,g € C(C),

and the first part is proved.
For any inner product f +— {f, )2 is a norm, so || - | is a norm. Absolute homogeneity

of | - [ follows from the fact that the modulus of a complex number is multiplicative and {
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is linear, and the triangle inequality follows from, non-negativity, linearity and the triangle
inequality for the modulus of a complex number. | f[; = 0 by non-negativity of {, and finally
| |1 is positive definite by Corollary [4.10]

Since G is compact the constant functions 1 and | f||% are both in C(G). By the Cauchy-

Schwarz inequality (which holds for all inner products) we have

[ £l = flfl = (LD < [l A1z = 1f]2 for all f e C(G);

and by non-negativity of { we have

w%=[uﬁ<fm&=w&mwmfaﬂm.

The result is proved. [

Remark 5.4. For the remainder of this section we write { for the unique Haar integral in
Lemma [5.3} and use the notation {-,-), || - |2 and || - |; as in this lemma.

Remark 5.5. Convergence in | - |, is called convergence in Ly or uniform convergence;
convergence in |- |3 is called convergence in Lo; and convergence in |- |; is called convergence
n Ll.

The second inequality in Lemma tells us that uniform convergence implies conver-

gence in Lo, and the first that convergence in Lo implies convergence in L.

For f, g € C(G) we define their convolution to be the function
v frgla) = [ Faly ) = (A0
Yy

Lemma 5.6 (Basic properties of convolution). Suppose that G is a compact topological

group. Then
(i) C(G) — C(G)ig — g+ f is well-defined and linear for all f € C(G);
(ii) hx (g f) = (h=g)=f for all f,g,heC(G);
(iii) Au(g* f) = Xa(g) = [ forallz e G, f,g€ C(G);
(iv) (g [,y =g, h+ > for all f,g,h e C(G) (recall J from just before Remark[4.13);
() |hx flloo < mind[By [ oo [Rl2] Fll2} for all f,h e C(G).

Proof. By the first part of Fubini’s Theorem (Theorem [3.25)) the function g+ f € C'(G) since
(z,y) — g(x)f(z~'y) is continuous and compactly supported. Since {_is linear, g — g f
is well-defined and linear giving [(i)]
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For we apply A, to the integrand z — ¢(z)f(z 'y 'z) using that SZ is a left Haar
integral; then Fubini’s Theorem (Theorem [3.25)) since (z,y) — h(y)g(y~12)f(z " x) is con-

tinuous; and finally linearity of Sy to see that

bl D) = |

)

= b [ ot tase = | ( ) b)) F712) = (heg) + f(2)

hy) f 9(2) (= y )

as claimed.
For [(iii)| note that Ai(g « f)(2) = g = f(t7'2) = (g, M1(F)) = (g A (Nu() =

Ol9), A () = Melg) * f(x) since A, is unitary w.r.t. -,-) by Lemma
For , since the function (z,y) — g(z)f(z 'y)h(y) is continuous and compactly sup-

ported, by Fubini’s Theorem (Theorem D and linearity of Sy; and then Remark we

have

(o fihy = f | st it

~

- [t f i) = [ g<x>fyh<y> (v12) = (g, b+

as required.
Finally, [(v)| follows on the one hand since

e f@) < [ I ) < [ 171 = el

and on the other since |h + f(z)] = Kb, A(F)] < [R]2|Xe(F)]2 = |2]2] fll2. The result is
proved. O

Remark 5.7. As usual, in view of the associativity in there is no ambiguity in omitting

parentheses when writing expressions like h = g = f.

Remark 5.8. The linearity of the maps in|(i)|and inequality mean that convolution maps

convergence in L; to uniform convergence c.f. Remark [5.5

Before beginning our main argument we need one more tool which will deal with the

fact our inner product spaces are not in general complete.

Remark 5.9. A complete inner product space is called a Hilbert space and the results of this
section are usually developed with respect to these. VAN particular, a unitary represen-
tation is usually a continuous group homomorphism 7 : G — U(H) for a complex Hilbert
space H, not merely a complex inner product space. Every finite dimensional complex inner
product space is complete and so a Hilbert space, and so our definition at the start of the

section is not at variance with this, but in general care is warranted.
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Proposition 5.10. Suppose that G is a compact topological group G, f € C(G) and (gn)nen
is a sequence of elements of C(G) with |gn|1 < 1. Then there is a subsequence (gn,)ien Such

that g, = [ converges uniformly to some element of C(G) as i — 0.

Proof. For each j € N, Remark gives us an open cover U; of G such that if z,y €
U € U; then |f(x) — f(y)| < 1/j. Since G is compact apply Lemma to get an open
neighbourhood of the identity U; such that {zU; : € G} refines U;; and by compactness
again there is a finite cover {x1;Uj, ..., xy;) ,;U;} which refines {2U; : v € G}. By Lemma
gn = f(x) € [=|floos I fllec]- The interval [—| f|o,[|f]e] is sequentially compact,
meaning every sequence has a convergent subsequence. A countable product of sequentially
compact spaces is sequentially compactflso there is a subsequence (n;); such that g,, * f(zy ;)
converges, say to h(zy ), as ¢ — oo for all 1 <k < k(j) and j e N.

Suppose € > 0 and let j := [3¢7!]. For all 1 < k < k(j) let M, be such that |g,, =
f(xrj) — h(zg;)| < €/6 for all i = My; let M := max{M} : 1 <k < k(j)} and suppose that
i,i" = M.

For z € G there is some 1 < k < k(j) such that = € z;, ;U; and hence for all y € G we have
ytx,y tay ;€ ylay,;U; which is a subset of an element of Uj, so |f(y'z) — f(y tay,)| <
1/j. Thus for g € C(G) with |g]; < 1 we have

9+ £(2) — g = Fr)] = 10 AalF) = Ao, (D)
< 1glAa(F) = Aoy (Pl < sup £ (37"a) - f(y-lxj,k>\<§<e/3.

yE
In particular this holds for g = g,, and g = gy, so that

| Gni * F(2) = Gnyy * F(2)] < |gny * f(2) = gy * [(@rg)| + Gn; * f(205) — P(T15)]
+ W Trs) = Gny * f(@hg)| + Gny * [(Trg) = gn, = f(2)] <€

Since = € G was arbitrary it follows that the sequence of functions (g,, * f); is uniformly

Cauchy and so converges to a continuous function on GG. The result is proved. O
We say that V < C(G) is invariant if A\ (v) € V for all v e V.

Example 5.11. Suppose that V < C(G) is invariant and finite dimensional. Then 7 : G —

U(V);z— (V= V;v+— A\ (v)) is a finite dimensional unitary representation.
For any V < C(G) write V* for the set of w € C(G) such that (v,w) =0 for allve V.

Proposition 5.12. Suppose that G is a compact group and f € C(G). Then there is an
invariant space W < C(G) with dim W < 72| f|3 such that if g € W= then g+ flla < €g]l2.

6The proof of this is just Cantor’s diagonal argument.
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Proof. Let V be the set of vectors of the form
hy .+ hy, where n € N, hy = f = f = \hy and \; > € for all 1 <i < n. (5.1)

This is an invariant space by Lemma . For v € V' we shall write v = hy +--- + h,, to
mean a decomposition as in (5.1]) with the additional requirements that h; is not identically
zero (so |h;|3 # 0 since h; is continuous), and \; # \; for ¢ # j, which is possible since the
map T : C(G) — C(G);h +— h =+ [ f is linear. (The zero vector is represented as a sum
with no terms.)

In fact T is positive definite and so the h;s, which are eigenvectors with corresponding
eigenvalues \;, are perpendicular for different eigenvalues. In our language the relevant parts
of this follow since if h; = f % f = \ih; and h; = f » f = A;h;, then

Nilhi, hyy = (i by = Chg s o by = Chayhy s o fy = Chay Ajhyy = NjCha, hy).

Applying this identity with j = ¢ for some h; # 0 we see that ); is real. Then applying
it again with A\; # \; we have (h;, h;) = 0. In particular, if v = hy + --- + h,, in the way
discussed after (5.1]) then

n

[v = fI5 == fo foo) = D Nlhals = € ) Ihalls = €]lo]3. (5.2)
i=1

i=1

If V' contains n linearly independent vectors, then by the Gram-Schmidt proces&ﬂ there are

orthonormal vectors vy,...,v, € V. For x € G, by Bessel’s inequalityﬁ

Z [, A (FDI? < IA()IE = IF15.

"Given ey, e, ... linearly independent, the Gram-Schmidt process in an inner product space defines

i1
=e; — Z {ej, vy and v; := u;/||ug|.
k=1

It can be shown by induction that vy, vs,... is an orthonormal sequence.
8Bessel’s inequality is the fact that if vq,vs,... is an orthonormal sequence in an inner product space

then Y1 | [{v;, v)[? < |[v]? for all v. To prove it note that because the v;s are orthonormal we have

v>vZ

= Z Z Cwi, 0w, v)wi, 03y = 3 K, ).

Hence by the Cauchy-Schwarz inequality

(i |<vi,v>|2> = ’<U7 i <%U>Uz‘>

Cancelling gives the inequality.

2 n

2 2 (v, v)v;

i=1

< o

= Jol? (Z |<vi,v>|2> .
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Integrating against = and using ([5.2]) we have

net < 3 | oo Pl = | Rl MO < | 1518 = 17
=17 =1 @
It follows that dim V' < e 2|| f3.

Write W = {k * f: k € V}, which is invariant by Lemma and the fact V' is
invariant. Let M := sup{|g* f|2: g€ W' and |g|. < 1}. We shall be done if we can show
that M? < €.

Claim. If h e V' then |h+ f|s < M|hs.

Proof. First, h = ]? e W+t: To see this, for v € V write v = hy + --- + h,, to mean a
decomposition as in (5.1)). Then

hos fovs fy =3 Chohas Fo fy = 3 Asch, hiy = 0.
i=1 i=1

Now let k € W* have k|, = 1 such that |k = flo = (hx fL k) = Chokos f) < ||k = fl2 <
M| h|s as claimed. O

Let g, € W+ have |g, = f|o — M and |g,|> < 1. By Cauchy-Schwarz we have ||g,|; <1
and we may apply Proposition to pass to a subsequence which converges uniformly.
Hence by relabelling we may now additionally assume that g, = f — h uniformly for some
h € C(G). In particular, |g, = flla — |hl2 and <{h, g, = f> — ||h]|3 and hence |h[y = M.
Moreover, if v € V then (g, = f,v) = {(g,,v * f> = 0, and the former converges to {h,v),
whence h e V*.

Combining this with the claim above we have

s = Mgl = [« I = 200° ReChs [ gu) + M gal3
< MR — 202 Re<h, g, « f) + M* = 0.

Hence M2g, — h+f in |||, and since convergence in ||- |, is mapped to uniform convergence
by convolution operations we have M?2g, * f — h = ]?* f. Uniqueness of limits then ensures
M?h = h*f* f. If M? > €% then h € V, but then since h € V* we see h is not identically zero.
In that case M = |[h]s = 0 and certainly M? < €* as required. The result is proved. O

Theorem 5.13 (The Peter-Weyl Theorem). Suppose that G is a compact topological group.
Then matriz coefficients are dense in C(G) with the uniform norm.
Proof. Suppose that f € C(G) and let € > 0. Remark gives us an open cover U; of

G such that if z,y € U € U; then |f(x) — f(y)| < €/2. Since G is compact, by Lemma
there is an open neighbourhood of the identity U such that {zU : z € G} refines U,
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and by Lemma there is an open set V such that V? < U. By Corollary , there is
g € C(G) non-negative and not identically 0 such that suppg < V. By rescaling g we may
assume that {¢g = 1. The support of ¢ = ¢ is contained in V? < U and by Fubini’s Theorem
(Theorem we therefore have { g+ g = 1. But then

lg+g = F(@) - F(a)] = j g+ g Flya) — F(x)

for all z € G and so ||[f — g+ g * f[o < €/2.

Let 6 < €]gl3] fll5"/2 for reasons which will be come clear shortly. By Proposition
there is a finite dimensional invariant space W < C(G) such that |h = g|2 < J|h]2 for all
h e W, Write my : C(G) — C(G) for the map projecting onto W. Then g — my(g) € W+
and so [ g+ g — mw(g) * gl2 < 6[g — 7w (g)[2 < ] g2 By Lemma we have

lg =g+ f—mw(g)*g*Flo < 8lglzlf]2-
By the triangle inequality we have || f — 7y (g) * g * f| < €. Finally, writing k := (g* f)~ we

have by definition; since A, is unitary; since W is invariant; since myy is self-adjoint (meaning

(mwv,w)y = (v, Tyw) for all v,w € C(G)); and again since A, is unitary, that

mw(g) g+ f(2) = (mw(9), Aa(k)) = o1 (mw (9)), k)
= {mw (Ae1(mw (9))), k)
= A1 (mw(9)), Tw (K))
= (mw (9), Aa(mw (K))) = Qa(mw (K)), 7w (9))-

Hence mw(g) * g » f(x) is a matrix coefficient. Since ¢ > 0 was arbitrary the result is

proved. O

Remark 5.14. /N\There are other important parts to the Peter-Weyl Theorem which we

have not included here.

6 The dual group

Suppose that G is a topological group. We write G for the set of continuous homomorphisms

G — S! (where S! is as in Example , and call the elements of G characters.
Remark 6.1. /\'While characters are (by definition) elements of C'(G), they are not in C.(G)

unless G is compact.

We endow the set G with the compact-open topology, that is the topology generated
by the sets yU (K, €) where v € G,

U(K,e):={AeG:|\a)—1| <eforall ze K}

and € > 0 and K is a compact subset of G.
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Proposition 6.2. Suppose that G is a topological group. Then Gisa Hausdorff Abelian

topological group with multiplication and inversion defined by

(7.7) = (& = y(2)y (2)) and v — (x — y(z)),

and identity the character taking the constant value 1. Moreover, (U(K,d))ks as K ranges

compact subsets of G and § > 0 is a neighbourhood base of the identity.

Proof. The fact that G is an Abelian group is an easy check since S* is an Abelian group
under multiplication and z~! = Z when z € S*.

Since |y(z) — 1| = |y(z) — 1| the inversion is certainly continuous. Now suppose that
YA € pU (K, €) for some p € G. Since YAf is continuous and K is compact |[yAf — 1| achieves
its bounds on K and hence there is some § > 0 such that |(yAz)(z) — 1] < € — 4 for all

z € K. But then if v/ € yU(K,6/2) and X € A\U(K, 6/2) we have

(YN () = 1] < |(AE)(2) = (GNE)(@)] + [(WN ) () — (yAm) ()] + [(vAm) () — 1
<0/2+d/24+€e—0d =ce

It follows that v'\ € uU (K, ¢€) and so the preimage of vy contains a neighbourhood of (v, \)
in G x G ie. multiplication is continuous. Finally, the topology is Hausdorff since if v # A
then there is some x € G such that v(x) # A(z); put € := |y(z) — A(z)|/2 and note that
YU ({z},€) and AU ({z}, €) are disjoint open sets containing v and A respectively. O

We call the group G endowed with the compact-open topology the dual group of G, so
that the above proposition tells us that if G is a topological group then its dual group is a
Hausdorff Abelian topological group.

We call the identity, denoted 14, the trivial character.

Proposition 6.3. Suppose that G is a compact topological group. Then G is discrete.

Proof. Suppose that v # 15 so there is € G such that y(z) # 1. Let y € G be such that
|7(y) — 1| is maximal (which exists since G is compact and z — |y(x) — 1| is continuous)

and note that by assumption this is positive. If |y(y) — 1| < 1 then we have

(W) =1 = (@) =1 =2+ (v(y) — ) (y) — 1]
> (2 - v(y) = 1DIv(y) — 1] > [v(y) — 1].

This is a contradiction, whence v ¢ U(G, 1) and {15} is open so the topology is discrete. [

Example 6.4. Suppose that G is a finite cyclic group endowed with the discrete topology.

Since G is cyclic it is generated by some element x, and the map

¢:G - Gia" — (G — St — exp(2mirl/|G)))
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is a well-defined homeomorphic isomorphism. To see this note that ¢ is well-defined in the
sense that different representations of an element in the domain produce the same image:
since 2" = 2" implies |G| | 7 — ¢’ and hence exp(27irl/|G|) = exp(2mir'l/|G|); and ¢
is well-defined in the sense that ¢(z") as defined is genuinely an element of G: ! = z
implies |G| | | — I’ and hence exp(2mirl/G|) = exp(2mirl’/|G|) so that ¢(z") is itself a
well-defined function; it is continuous since G is discrete; and it is a homomorphism since
exp(2mir(l + ") /|G|) = exp(2mirl/|G|) exp(2mirl’ /|G]).

¢ is a homomorphism since exp(27i(r + 1')l/|G|) = exp(2mirl/|G|) exp(2mir'l/|G|). ¢ is
injective since if exp(2mirl/|G|) = 1 for all [ then |G| | r so 2" = 1g. ¢ is surjective since if
7 : G — S'is a homomorphism then ()¢ = 1 so v(z) = exp(27ir/|G|) for some r € Z,
and v = ¢(z").

We conclude that ¢ : G — Gis a bijective group homomorphism and hence ¢~! is a
group homomorphism. Since G is finite, G is compact and so G is discrete by Proposition
and hence ¢! is continuous as required.

Example 6.5. When G is a group with the indiscrete topology the only continuous functions
are constant and so G is the trivial group with one character taking the constant value 1
(and there is only one topology on a set with one element) so that we have completely

determined the topological group G.

Example [6.5] gave topological reasons for the dual group being trivial, but there can also

be algebraic reasons:

Example 6.6 (Non-Abelian finite simple groups). Suppose that G is a non-Abelian finite
simpleﬂ topological group.
Suppose that v : G — S' is a homomorphism. Since G is non-Abelian there are elements

x,y € G with zy # yx, but then zyz~'y~! # 15 while

Y(wyay™h) = y(@)v(y)y(@) ) =1

since S' is Abelian. We conclude that the kernel of ~ is non-trivial, but all kernels are
normal subgroups and since G is simple it follows that kerv = G i.e. v is trivial. In other
words G = {1}

The topology on G' and G are quite closely related: if G' is compact then G is discrete
(Proposition , and the other way round we have the following:

Proposition 6.7. Suppose that G is a discrete topological group. Then G is compact.

9A simple group is a group whose only normal subgroups are the trivial group and the whole group
e.g. A,, the alternating group on n elements, when n > 5. (The Abelian finite simple groups are the cyclic
groups of prime order and their dual groups are described in Example )
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Proof. The set G is a subset of the topological space M of functions G — S' endowed
with the product topology, which itself is compact by Tychonoft’s theorem (c.f. the set F
considered in the proof of Theorem ) Since G is discrete the only compact sets in GG
are finite and hence the topology on G is the subspace topology induced by viewing it as
a subspace of M. It remains to check that G is closed at which point it follows that it is
compact. To see it is closed, note that the sets {f : G — S*: f(xy) = f(z)f(y)} are closed

for each x,y € GG, and hence

({{f:G— 8" flay) = f(2)f(y)} 12,y € G)

is closed. This is the set of all homomorphisms G — S!, but every homomorphism is

continuous since G is discrete and hence this set equals G. O

We can make use of the Haar integral we have developed to show that if GG is a locally
compact topological group then the dual group is also locally compact. To do this we need

a lemma.

Lemma 6.8. Suppose that G is a locally compact topological group supporting a Haar integral
§, foe CH(G) has § fo # 0, and r,8 > 0. Then there is an open neighbourhood of the identity
Ls,. such that if ‘Sfoﬂ > K then |1 —~(y)| <0 for all y € Ls,.

Proof. Write K for a compact set containing the support of fy and U for a compact neigh-
bourhood of the identity. UK is compact by Lemma Apply Corollary to get a
continuous compactly supported F': G — [0, 1] such that F(z) =1 for all x € UK.

By Proposition there is an open neighbourhood of the identity Ls, (which we may
assume is contained in U since U is a neighbourhood and so contains an open neighbourhood
of the identity) such that | A, (fo)— folew < dr/§ F forally € Ls .. (Note { F' > 0 by Corollary
m) For y € Ls,, the support of A\,(fo) — fo is contained in UK (since L;, < U) and so

f|>‘y(f0) — fol < [IA,(fo) — fO’ooJF < Ik.

Now, if y € Ls,, then

u—wwm<kww—nfhv

=Uh%%ﬂ—fﬁv

— U/\y(fo)W - wa < J|/\y(f0) — fo| < Ok

Dividing by  gives the claim. O

Theorem 6.9. Suppose that G is a locally compact topological group. Then G is locally

compact.
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Proof. Let § be a left Haar integral on G (which exists by Theorem [4.11]). Since § is non-
trivial there is fo € C./(G) such that { fo # 0 and we may rescale so that { fo = 1. Write K

for a compact set containing the support of fy and define
Vi={yeG:|y(x)—1] <1/4forall z € K},

so that V' certainly contains, U(K,1/4), an open neighbourhood of the identity.

As in the proof of Proposition we write M for the set of maps G — S! endowed
with the product topology so that M is compact. The set G is contained in in the set M ,
but the compact-open topology on G is not, in general, the same as that induced on G as a
subspace of M. Our aim is to make use of the compactness on M to show that G is locally
compact in the compact-open topology.

First we restrict to homomorphisms: write H for the set of homomorphisms G — S?!,

which is a closed subset of M since it is the intersection over all pairs x,y € G of the set of
f € M such that f(xy) = f(x)f(y). Write

Ci= () {feH:|f(x)-1]<d}
§>0,0€L5 54

which is also closed as an intersection of closed sets. By Proposition [2.6] as sets we have
C < G since the sets {z € S': |1 — 2| < §} form a neighbourhood base of the identity in
St and if f e C then f~'({z € S': |1 — 2| < §&}) D Lz which is a neighbourhood of the
identity in G.

If v € V then |1 —§ foy| < § foll — 7| < 1/4, so by the triangle inequality | § foy| > 3/4
and hence the claim tells us that v € C. Thus (as sets) V < C < G and so

V= {feC:|flx) -1 <1/4},

zeK

which is again a closed subset of M.

Our aim is to show that V' is compact in the compact-open topology on G. This follows
if every cover of the form U = {yU(K,,d,) : 7€ V} (where K, is compact and 6, > 0) has
a finite subcover. Write L., := L;. /2 1/2 and note that by compactness of K, there is a finite
set T, such that K, < T, L,. Write

U,:={feM:|f(x)—-1] <d,/2forall z e T}

which is an open set in M since T is finite. Suppose that A € (yU,) n V. Then since
v, A € V' the triangle inequality gives

1= [ < [l -7 = [l -7 +7 -7
< [plt=sl+ [ flt-a <12
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Hence ‘S f(ﬁ)\‘ > 1/2 by the triangle inequality again. The claim gives |1 —v(y)A\(y)| < d.,/2
for all y € L,. But 3\ € U, so we also have |1 —vy(2)A(2)| < §,/2 for all z € T,. Thus, if
x € K, then there is z € T, and y € L, such that z = zy and

1= 1(@)A@)] < [1 = 7(2)AE)] + (A=) = 71(z29) M (zy)]

= [1=7(2)AM=)| + 1 =y (W)AY)| < 6.
We conclude that yU, n'V < yU(K,,0,) n'V. Finally {yU, : v € V} is a cover of V' by sets
that are open in M. M is compact and V' is closed as a subset of M so V' is compact as a

subset of M, and hence {yU, : v € V'} has a finite subcover which leads to a finite subcover

of our original cover Y. The result is proved. [

Remark 6.10. The above shows that the dual of a locally compact Hausdorff Abelian topo-
logical group is a locally compact Hausdorff Abelian topological group. Pontryagin duality
is a powerful strengthening of this in which a crucial part is showing that characters separate

points. This can be deduced from the Peter-Weyl Theorem.
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