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Chapter 1: Discrete-time models for a single species

In this chapter we will explore models of a single species that can be assumed to evolve in

discrete generations. We will look at some simple techniques to explore the behaviours that can

be displayed by the models, before looking at bifurcations and oscillatory behaviour.

When there is no overlap in population numbers between each generation, it can be appropriate

to apply a discrete-time model:

Nt+1 = f(Nt) = Ntg(Nt). (1.1)

1.1 Examples

Exponential growth

A simple example is

Nt+1 = rNt, (1.2)

which implies

Nt = rtN0 →


∞ r > 1

N0 r = 1

0 r < 1

. (1.3)

Ricker model

An extension of the simple exponential model is called the Ricker model and it includes a

reduction of the growth rate for large Nt:

Nt+1 = Nt exp

[
r

(
1− Nt

K

)]
, r > 0 K > 0, (1.4)

or, in non-dimensionalised form (letting Nt = Kut),

ut+1 = ut exp [r (1− ut)] . (1.5)

1.2 Dynamic behaviour

Steady states. A steady state, Ns, for a discrete-time population model satisfies

Ns = f(Ns) = Nsg(Ns). (1.6)

1.2.1 Cobwebbing

We can start developing an idea of how this system evolves in time via cobwebbing, a graphical

technique, as shown in Figure 1.1 for the Ricker model. In particular, it is clear that the

behaviour sufficiently close to a fixed point, Ns, depends on the value of f ′(Ns).

1
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Figure 1.1: Dynamics of the Ricker model. The left-hand plot shows a plot of Nt+1 =

Nt exp [r (1−Nt/K)] alongside Nt+1 = Nt with the cobwebbing technique shown. The right-

hand plot shows Nt for successive generation times t = 1, 2, . . . , 10. Parameters are: N0 = 5,

r = 1.5 and K = 100.

For example:

• −1 < f ′(Ns) < 0

• f ′(Ns) = −1

• f ′(Ns) < −1
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Figure 1.2: Dynamics of the discrete-time logistic model. The left-hand plot shows results for

r = 1.5 whilst the right-hand plot shows results for r = 4.0. Other parameters are: N0 = 5 and

K = 100.

1.2.2 Linear stability

More generally, to consider the stability of a steady state algebraically, rather than graphically,

we write

Nt = Ns + nt, (1.7)

where Ns is the steady state. Note that Ns is time independent and satisfies Ns = f(Ns). Hence

Nt+1 = Ns + nt+1 = f(Ns + nt) = f(Ns) + ntf
′(Ns) +O(n2t ). (1.8)

Consequently, we have

nt+1 = f ′(Ns)nt, (1.9)

where f ′(Ns) is a constant, independent of t, and thus

nt =
[
f ′(Ns)

]t
n0. (1.10)

This means that Ns is linearly stable if |f ′(Ns)| < 1 and linearly unstable if |f ′(Ns)| > 1.

1.3 Further investigation

The equations are not as simple as they seem. For example, from what we have seen thus far,

the discrete-time logistic model seems innocuous enough.

Nt+1 = rNt

(
1− Nt

K

)
, r > 0, K > 0. (1.11)

One could be forgiven for thinking that, if we put in enough effort, the use of cobwebbing will

give a simple representation of solutions of this equation. However, the effects of increasing r

are stunning. Figure 1.2 shows examples of cobwebbing when r = 1.5 and r = 4.0. It should

now be clear that even this simple equation does not always yield a simple solution! How do we

investigate such a complicated system in more detail?

Bifurcation point. A bifurcation point is, in the current context, a point in parameter space

where the number of steady states, or their stability properties, or both, change.



Mathematical modelling in biology 4

0 1 2 3

0.0

0.2

0.4

0.6

0.8

Figure 1.3: Bifurcation diagram for the non-dimensional discrete-time logistic model. The non-

zero steady state is given, for r > 1, by N∗ = (r − 1)/r.

1.3.1 Bifurcations in the logistic growth model

We proceed to take a closer look at the non-dimensional discrete-time logistic growth model

(again, let Nt = Kut):

ut+1 = rut (1− ut) = f(ut), (1.12)

for different values of the parameter r, and, in particular, we seek the values where the number

or stability nature of the steady states change. Note that we have steady states at us = 0 and

us = (r − 1)/r, and that f ′(u) = r(1− 2u).

For 0 < r < 1, we have:

• us = 0 is a stable steady state since |f(0)| = |r| < 1;

• the steady state at us = (r − 1)/r is unstable. It is also unphysical, and thus irrelevant,

for physical initial conditions with u0 ≥ 0.

For 1 < r < 3 we have:

• us = 0 is an unstable steady state since |f ′(0)| = |r| > 1;

• us = (r − 1)/r is an stable steady state since |f ′((r − 1)/r)| = |2− r| < 1.

In Figure 1.3 we plot this information on a diagram of steady states, as a function of r, with

stable steady states indicated by solid lines and unstable steady states by dashed lines. When

r = 1 we have (r − 1)/r = 0, so both steady states are at us = 0, with f ′(us = 0) = 1. Clearly

we have a switch in the stability properties of the steady states, and thus r = 1 is a bifurcation

point.

What happens for r > 3? We have steady states at us = 0, u = (r−1)/r and f ′(us = (r−1)/r) <

−1 so that both steady states are unstable. Hence if the system approaches one of these steady

states the approach is only transient; it quickly moves away. We have a switch in the stability

properties of the steady states, and thus r = 3 is a bifurcation point.
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Figure 1.4: Dynamics of the non-dimensional discrete-time logistic model in terms of every

second iteration. The left-hand plot shows results for r = 2.5 whilst the right-hand plot shows

results for r = 3.5.

1.4 Periodic solutions

The mth composition of the function f is given by

fm(u) := [f ◦ f . . . f ◦ f ]︸ ︷︷ ︸
m times

(u). (1.13)

A point u is periodic of period m for the function f if

fm(u) = u, fi(u) 6= u, i ∈ {1, 2, . . .m− 1}. (1.14)

We can determine the linear stability of the periodic solution in the same way as before: suppose

us is a steady state of period m for the function f and let uis = fi(us) for i ∈ {1, 2, . . . ,m− 1}.
We define λ as

λ =
d

du
fm(u)

∣∣∣∣
u=us

=
d

du
[f(Q(u)]

∣∣∣∣
u=us

= f ′(Q(u))
d

du
Q(u)

∣∣∣∣
u=us

= f ′(um−1)
d

du
fm−1(u)

∣∣∣∣
u=us

, (1.15)

where Q(u) = fm−1(u). Hence, by iteration, we have that us is linearly stable if

m−1∏
i=0

[
f ′(uis)

]
< 1. (1.16)

1.4.1 Periodic solutions in the discrete-time logistic growth model

To consider the dynamics of this system once r > 3 we consider

ut+2 = f(ut+1) = f [f(ut)] := f2(ut) = r [rut(1− ut)] [1− rut(1− ut)] . (1.17)
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Figure 1.5: Bifurcation diagram for the non-dimensional discrete-time logistic model with inclu-

sion of the period 2 solutions.

Figure 1.4 shows f2(ut) for r = 2.5 and r = 3.5 and demonstrates the additional steady states

that arise as r is increased past r = 3. The fixed points of f2 satisfy u2,s = f2(u2,s), which is

a quartic equation in u2,s. However, we know two solutions, the fixed points of f , i.e. 0 and

(r − 1)/r. Using standard techniques we can reduce the quartic to a quadratic, which can be

solved to reveal the further fixed points of f2, namely

u±2,s =
r + 1

2r
± 1

2r

√
(r − 1)2 − 4. (1.18)

These roots are real if (r − 1)2 > 4, i.e. r > 3.

In this case, the points u±2,s are points of period 2 for the function f with

u−2,s = f
(
u+2,s

)
, u+2,s = f

(
u−2,s

)
. (1.19)

For stability we require ∣∣∣f ′ (u+2,s) f ′ (u−2,s)∣∣∣ < 1. (1.20)

We can substitute to show that the steady states

u±2,s =
r + 1

2r
± 1

2r

√
(r − 1)2 − 4, (1.21)

are linearly stable for the dynamical system ut+1 = f2(ut), with r > 3, (r − 3)� 1.

We plot the fixed points of f2, which we now know to be stable, in addition to the fixed points of

f1, in Figure 1.5. The upper branch, u+2,s, is given by the positive root of equation (1.21) whilst

the lower branch, u−2,s, is given by the negative root. We have u−2,s = f(u+2,s), u
+
2,s = f(u−2,s).

Thus a stable, period 2, oscillation is present, at least for r > 3, (r− 3)� 1. Any solution that

gets sufficiently close to either u+2,s or u−2,s stays close.

Subsequent bifurcations

For higher values of r, there is a bifurcation point for f2; we can then find a stable fixed point

for f4(u) := f2[f2(u)] in a similar manner. Increasing r further there is a bifurcation point for

f4(u). To bring further understanding to this complex system, we can think an orbits: an orbit

generated by the point u0 is the set points {u0, u1, u2, , u3, . . .} where ui = fi(u) = f(ui−1). We
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Figure 1.6: The orbit diagram of the logistic map. For each value of r ∈ [3, 4] along horizontal

axis, points on the large time orbits of the logistic map are plotted.

are primarily interested in the large time behaviour of these systems in the context of biological

applications. Thus, for a fixed value of r, we start with a reasonable initial seed, say us = 0.5,

and plot the large time asymptote of the orbit of us, i.e. the points fi(us) once i is sufficiently

large for there to be no transients. This gives an intriguing plot; see Figure 1.6. In particular,

we have regions where, for r fixed, there are three points along the vertical corresponding to

period 3 oscillations. This means any period of oscillation exists and we have a chaotic system1.

1This can be proved using Sharkovskii’s theorem. See P. Glendinning, Stability, Instability and Chaos for more

details on chaos and chaotic systems.



Chapter 2: Discrete-time models for interacting species

We will first explore models that explicitly take into account different ages within a population.

These models will consist of different species that represent different age categories. Although

not strictly “interacting species”, such models can be analysed in much the same way as more

traditional interacting species models such as predator-prey. We will consider these models in

the second half of this chapter.

2.1 Discrete-time age-structured models

The models that we have looked at thus far describe populations for which it is sensible to

assume that, for example, birth and death rates of individuals do not depend on age, sex or

genetic make up. In this section we will look at a simple model that takes into account variation

in birth and death rates depending on the age of the individual.

2.1.1 A simple example

Suppose that a population can be divided into two age classes that differ in their reproduction

rates. Denoting n1t as the (expected) number of individuals in age class 1 at time t, and n2t as

the (expected) number of individuals in age class 2 at time t we can write

n1t+1 = f1n
1
t + f2n

2
t , (2.1)

n2t+1 = s1n
1
t , (2.2)

where f1 and f2 are the reproductive rates of individuals in age classes 1 and 2, respectively,

and s1 is the survival probability for individuals in age class 1 to reach age class 2. Note that

all individuals are born into age class 1. Our goal for this simple model will be to analyse the

population growth rate.

2.1.2 Leslie matrix

More generally, and with ω classes within the population, we can write an age-structured model

in the general form

nt+1 = Lnt where L =


f1 f2 · · · fω−1 fω

s1 0 · · · 0 0

0 s2 · · · 0 0
...

...
...

...

0 0 · · · sω−1 0

 =⇒ nt = Ltn0, (2.3)

where n = [n1, n2, . . . , nω]T . In the above, the si are the probabilities of surviving from age i to

age i + 1 and each individual of age i produces fi offspring on average over a generation. The

matrix L is knows as a Leslie matrix or population projection matrix.

8
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Theorem. For any Leslie matrix, L, there exists a real positive eigenvalue λ1 that is a simple

root of the characteristic equation

det(L − λI) = 0. (2.4)

This eigenvalue, which is called the dominant eigenvalue, is strictly greater in magnitude than

any other eigenvalue. The associated right eigenvector, w1, and left eigenvector, v1, are both

real and the only strictly positive right and left eigenvectors of L.

Corollary. The dominant eigenvalue determines the long time properties of the population:

• if λ1 > 1 then nt ∼ Aλt1w1;

• if λ1 < 1 then nt → 0 as t→∞.

The right eigenvector, w1, is proportional to the stable age distribution. It can be rescaled to

give either the proportion or the percentage of individuals in each age class. The left eigenvector

is the reproductive value of the population. That is the number of offspring that an individual

may expect to have in the future at their current age. This vector may be scaled so that its first

element is one.

2.2 A discrete-time predator-prey model

We will consider interactions between predators, P , and prey, N , of the form

Nt+1 = rNtf(Nt, Pt), (2.5)

Pt+1 = Ntg(Nt, Pt). (2.6)

Here, r > 0 is the net linear birth rate of prey, and f is represents the influence of the predator

on the birth rate. The function g describes the efficiency with which the predator searches for

the prey.

We will first consider a model where the predators search over a constant area, and have an

unlimited capacity for consuming prey:

Nt+1 = rNte
−aPt , (2.7)

Pt+1 = Nt

(
1− e−aPt

)
, (2.8)

where a > 0 represents the strength of the predation effect.

2.2.1 Linear stability analysis

The model has steady states

(Ns, Ps) = (0, 0) and (Ns, Ps) =

(
r ln r

a(r − 1)
,
ln r

a

)
, (2.9)

where the second steady state exists only for r > 1.

We can explore the linear stability of these steady states by writing

Nt = Ns + nt, Pt = Ps + pt, (2.10)

substituting into equations (2.7)-(2.8) and keeping terms up to first order.
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For the trivial steady state we have

nt+1 = rnt, pt+1 = 0. (2.11)

Hence for r < 1 the steady state (Ns, Ps) = (0, 0) is linearly stable, whilst for r > 1 it is unstable.

For the non-zero steady state we can write(
nt+1

pt+1

)
=

(
1 −Nsa

1− 1/r Nsa/r

)(
nt

pt

)
:= A

(
nt

pt

)
. (2.12)

We seek solutions of the form (
nt

pt

)
= B

(
1

1

)
λt, (2.13)

where B is an arbitrary, constant 2× 2 matrix. Substituting into equation (2.12) shows that for

a non-trivial solution we require

det(A− λI) = 0 =⇒ det

(
1− λ −Nsa

1− 1/r Nsa/r − λ

)
= 0, (2.14)

and so

λ1,2 =
1

2

1 +
ln r

r − 1
±

√(
1 +

ln r

r − 1

)2

− 4
r ln r

r − 1

 . (2.15)

The term under the square root is negative, so λ1,2 are complex conjugates, and

|λ1|2 =
r ln r

r − 1
> 1 for r > 1. (2.16)

This means that nt and pt become unbounded as t → ∞ and so the non-zero steady state is

unstable. Since λ1,2 are complex conjugates then nt and pt increase in an oscillatory manner.

The take home message from this simple example, is that this model is too simple (neglects key

biological phenomena) to be useful in modelling any real, practical situation.

2.2.2 A modified predator-prey model

One simple assumption of the previous model was that the prey grows unboundedly in the

absence of predators (consider the linear stability of the trivial steady state for r > 1). A more

realistic model could include saturation in the prey population. For example:

Nt+1 = rNt exp

[
r

(
1− Nt

K

)
− aPt

]
; (2.17)

Pt+1 = Nt

(
1− e−aPt

)
. (2.18)

In the absence of predators, growth of the prey population is governed by the Ricker model,

equation (1.4). It can be shown that there is a steady state with both prey and predator

populations non-zero, that is linearly stable for some r > 0.



Chapter 3: Continuous-time models for a single species

We will now move to look at modelling the dynamics of biological populations using continuous-

time models. Such models can be used to describe the dynamics of a far wider range of biological

phenomena. In this chapter we will consider models for a single species, taking into account the

effects of other species (for example, predatory effects or harvesting) in a simple way. We will

conclude with a brief look at the role of delays.

3.1 Introduction

A core feature of population dynamics models is the conservation of population number, i.e.

rate of increase of population = birth rate− death rate (3.1)

+ rate of immigration− rate of emigration.

We will make the assumption the system is closed and thus there is no immigration or emigration.

Let N(t) denote the population at time t. Equation (3.1) can be written

dN

dt
= f(N) = Ng(N), (3.2)

where g(N) is defined to be the intrinsic growth rate.

A steady state is a point where the dynamics does not change in time. Thus, in our specific

context of dN/dt = f(N), the steady states, Ns, are such that f(Ns) = 0.

3.1.1 Simple examples

The Malthus (exponential) model

In the Malthus model, we have

f(N) = (b− d)N := rN, (3.3)

where b and d are constant birth and death rates. Thus, the population grows (or decays)

exponentially,
dN

dt
= rN =⇒ N(t) = N0e

rt. (3.4)

The Verhulst (logistic) model

In the logistic model we have

f(N) = rN

(
1− N

K

)
. (3.5)

11
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Figure 3.1: Logistic growth for u0 < 1 and u0 > 1.

Here, r is defined to be the linear birth rate and K is defined to be the carrying capacity. We

can non-dimensionalise by taking N = Ku and t = τ/r, so that

du

dτ
= u(1− u). (3.6)

For u� 1 (equivalently, N � K) the growth rate is approximately linear in u,

du

dτ
≈ u =⇒ u ≈ u0 et, (3.7)

and as u→ 1 (equivalently, N → K),
du

dτ
→ 0. (3.8)

We can solve explicitly to give

u(t) =
u0e

t

1 + u0(et − 1)
→ 1 as t→∞. (3.9)

Sketching u(τ) against time, τ yields solutions as plotted in Figure 3.1: solutions monotonically

relax to u = 1 as τ →∞.

3.1.2 Investigating model dynamics

There are two techniques we can use to investigate the model

dN

dt
= f(N) = Ng(N). (3.10)

Analytic solution

For the initial conditions N(0) = N0, with N0 fixed, we can we formally integrate equation

(3.10) to give N(t) = N∗(t), where N∗(·) is the inverse of the function F (·) defined by

F (x) =

∫ x

N0

1

f(s)
ds. (3.11)

However, unless integrating and finding the inverse function is straightforward, there is an easier

way to determine the dynamics of the system.
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Figure 3.2: Growth according to the dynamics f(N) = N(N − 1)(N − 2)(3−N).

Sketch the graph of f(N)

Plot dN/dt = f(N) = Ng(N) as a function of N . For example, with

f(N) = Ng(N) = N(N − 1)(N − 2)(3−N), (3.12)

we have the plot shown in Figure 3.2. We see that:

• when N0 ∈ (0, 2) the large time asymptote is N(∞) = 1;

• for N0 > 2 the large time asymptote is N(∞) = 3;

• N(t) ≡ 0 if N(0) = 0.

3.2 Steady states

The two main aspects of the model we generally wish to understand are the steady states and

their stability. A steady state is stable if a solution starting sufficiently close to the steady state

remains close to the steady state. A rigorous definition is as follows: let NN0(t) denote the

solution to dN/dt = f(N) with initial condition N(0) = N0. A steady state Ns is stable if, and

only if, for all t > 0 and ε > 0 there exists a δ such that if |N0−Ns| < δ then |NN0(t)−Ns| < ε.

3.2.1 Linear stability

Suppose Ns is a steady state of dN/dt = f(N). If we wish to determine its linear stability, we

can do so by making a small perturbation about Ns:

N(t) = Ns + n(t), |n(t)| � Ns. (3.13)

We have, by using a Taylor expansion of f(N) and denoting ′ = d/dN , that

f (N(t)) = f (Ns + n(t)) = f(Ns) + n(t)f ′(Ns) +
1

2
n(t)2f ′′(Ns) + . . . , (3.14)

and hence

dn

dt
=

dN

dt
= f (N(t)) = f(Ns) + n(t)f ′(Ns) +

1

2
n(t)2f ′′(Ns) + . . . . (3.15)
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The linearisation of dN/dt = f(N) about the steady state Ns is given by neglecting higher order

(and thus smaller) terms to give

dn

dt
= f ′(Ns)n(t) =⇒ n(t) = n(0) exp

[
t

df

dN
(Ns)

]
. (3.16)

The steady state Ns is linearly stable if n(t)→ 0 as t→∞. In other words, Ns is linearly stable

if
df

dN
(Ns) < 0. (3.17)

Example 1

To understand which of the steady states of the system

dN

dt
= f(N) = N(N − 1)(N − 2)(3−N), (3.18)

are linearly stable, we consider the graph of f(N). Steady states with negative gradient are

linearly stable (see Figure 3.2).

Example 2

Plotting f(N) for the logistic model shows that Ns = 0 is unstable, whilst Ns = K is stable.

Example 3

Note that we can find functions f(N) such that dN/dt = f(N) has a steady state which is stable

and not linearly stable. For example, the function

f(N) = (1−N)3, (3.19)

gives f ′(1) = 0 and is therefore not linearly stable (see Figure 3.3).

3.3 Models of predation

In this section we will consider two models that include the effects of predation upon population

evolution and persistence.
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Figure 3.4: The Allee effect. Left: orange – strong Allee effects; black – weak Allee effects.

Right: time series in the strong Allee effect case. Parameters for the strong Allee case are

α = 0.004 and η = 70, while in the weak case they are α = 0.0005 and η = 29.1. In both cases

r = 2.

3.3.1 The Allee effect

The Allee effect is the phenomenon that individuals within a species generally require the as-

sistance of another for more than simple reproductive reasons in order to persist. Examples of

these can easily be seen in animals that hunt for prey or defend against predators as a group.

A simple model that includes the Allee affect can be written

dN

dt
= N

(
r − α (N − η)2

)
. (3.20)

The system has steady states Ns = 0, Ns = η +
√
r/α and Ns = η −

√
r/α, where the final

steady state exists only when η >
√
r/α. We can use graphical means to determine stability of

the steady states as α and η are varied. Figure 3.4 shows that for η <
√
r/α the dynamics look

very similar to the logistic case, with Ns = 0 unstable and Ns = η+
√
r/α stable. However, for

η >
√
r/α, we have Ns = 0 stable, and the intermediate steady state, Ns = η−

√
r/α, unstable.

This means that if the population falls below Ns = η−
√
r/α (due to, for example, fluctuations)

then the model predicts the species will become extinct.

3.3.2 The spruce budworm model

First introduced by Ludwig in 1978, the model supposes budworm population dynamics can be

modelled by the following equation:

dN

dt
= rBN

(
1− N

KB

)
− p(N), p(N) :=

BN2

A2 +N2
. (3.21)

The first term of the right-hand side assumes logistic growth of the population, with carrying

capacity KB and linear growth rate rB. The function p(N) is taken to represent the effect

predation by birds upon the budworm population.

Non-dimensionalisation

Let

N = N∗u, t = t∗τ, (3.22)
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Figure 3.5: Dynamics of the non-dimensional insect outbreak model. Left: plots of the functions

f1(u) (dashed line) and f2(u) (solid line) with parameters r = 0.2, 0.4, 0.6, q = 10, 15, 20,

respectively. Right: plot of f(u; r, q) with parameters r = 0.6 and q = 3, 6, 9.

where N∗, N have units of biomass, and t, t∗ have units of time, with N∗ and t∗ constant. Then

N∗

t∗
du

dτ
= rBN

∗u

(
1− N∗u

KB

)
− B(N∗)2u2

A2 + (N∗)2u2
, (3.23)

=⇒ du

dτ
= rBt

∗u

(
1− N∗u

KB

)
− Bt∗N∗u2

A2 + (N∗)2u2
. (3.24)

Hence with

N∗ = A, t∗ =
A

B
, r = rBt

∗ =
rBA

B
, q =

KB

N∗
=
KB

A
, (3.25)

we have
du

dτ
= ru

(
1− u

q

)
− u2

1 + u2
:= f(u; r, q). (3.26)

Thus we have reduced the number of parameters in our model from four to two, which substan-

tially simplifies our subsequent study.

Steady states

The steady states are given by the solutions of

ru

(
1− u

q

)
− u2

1 + u2
= 0. (3.27)

Clearly us = 0 is a steady state. We proceed graphically to consider the other steady states

which are given by the intersection of the graphs

f1(u) = r

(
1− u

q

)
and f2(u) =

u

1 + u2
. (3.28)

The top left plot of Figure 3.5 shows plots of f1(u) and f2(u) for different values of r and q. We

see that, depending on the values of r and q, we have either one or three non-zero steady states.

Noting that
df(u; r, q)

du

∣∣∣∣
u=0

= r > 0, (3.29)

typical plots of du/dτ as a function of u are shown in Figure 3.5 for a range of values of r and

q.
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Figure 3.6: Left: du/dτ = f(u; r, q) in the non-dimensional insect outbreak model as q is varied.

For small q there is one, small, steady state, for q ∈ (q1, q2) there are three non-zero steady

states and for large q there is one, large, steady state. Right: the steady states plotted as a

function of the parameter q reveals the hysteresis loop.

Hysteresis

A system displaying hysteresis exhibits a response to the increase of a driving variable which is

not precisely reversed as the driving variable is decreased. Suppose that we fix r = 0.6 in the

insect outbreak model. For small values of q there is only one non-zero steady state, S1. As q

is increased past q1, three non-zero steady states exist, S1, S2, S3, but the system stays at S1.

As q is increased further, past q2, the upper steady state S3 is all that remains and hence the

system moves to S3. If q is now decreased past q2, three non-zero steady states (S1, S2, S3)

exist but the system remains at S3 until q is decreased past q1. Figure 3.6 shows f(u; r, q) for

different values of q. The red line shows a plot for q = q1 whilst the blue line shows a plot for

q = q2. We could ask “What is the biological interpretation of the presence of hysteresis in this

model?” If the carrying capacity, q, is accidentally manipulated such that an outbreak occurs

(S1 → S3) then reversing this change is not sufficient to reverse the outbreak.

3.4 Harvesting

We wish to consider simple models of harvesting and determine the maximum sustainable yield.

We will look at two different types harvesting: constant yield, Y ; and constant effort, E.

First, we will briefly discuss the notion of recovery times. Suppose, in the absence of harvesting,

we have logistic growth:
dN

dt
= rN

(
1− N

K

)
. (3.30)

We consider a perturbation from the non-zero steady state, N = K. Thus we write N = K +n,

and find, on linearising,
dn

dt
= −rn ⇒ n = n(0)e−rt. (3.31)

Hence, defining the recovery time to be the time for a perturbation to decrease by a factor of e

according to the linearised equations about the non-zero steady state, we see that the logistic

growth model predicts a recovery time of 1/r.
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Figure 3.7: Dynamics of the constant yield model for Y0 = 0.00, 0.15, 0.30. As Y0 is increased

beyond a critical value the steady states disappear and N → 0 in finite time. Parameters are:

K = 100 and r = 0.01.

3.4.1 Constant yield

For a constant yield, Y = Y0, we have

dN

dt
= rN

(
1− N

K

)
− Y0 := f(N ;Y0). (3.32)

Plotting dN/dt as a function of N reveals (see Figure 3.7) that the steady states disappear as

Y0 is increased beyond a critical value, and then N → 0 in finite time.

The steady states are given by the solutions of

rNs −
rNs

2

K
− Y0 = 0 ⇒ Ns =

r ±
√
r2 − 4rY0/K

2r/K
. (3.33)

Therefore extinction will occur once

Y0 >
rK

4
. (3.34)

3.4.2 Constant effort

For harvesting at constant effort we have

dN

dt
= rN

(
1− N

K

)
− EN := f(N ;E) = N(r − E)− rN2

K
, (3.35)

where the yield is Y (E) = EN . The question is: how do we maximise Y (E) such that the

steady state still recovers?

The steady states, Ns, are such that f(Ns;E) = 0 (see Figure 3.8). Thus the non-zero steady

state is

Ns(E) =
(r − E)K

r
=

(
1− E

r

)
K, (3.36)

and hence

Ys(E) = ENs(E) =

(
1− E

r

)
KE. (3.37)
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Figure 3.8: Dynamics of the constant effort model. Left: the logistic growth curve (solid line)

and the yield, Y = EN (dashed lines), for two values of E. Right: the ratio of recovery times,

TR(Y )/TR(0), with the negative root plotted as a dashed line and the positive root as a solid

line. Parameters are: K = 100 and r = 0.01.

Maximum yield

The maximum yield, Y max
s , and corresponding value of Ns, are given by the value of E such

that
dYs
dE

= 0 =⇒ E =
r

2
, Y max

s =
rK

4
, Nmax

s =
K

2
. (3.38)

We linearise about the steady state Ns(E) by letting N = Ns(E) + n to give

dn

dt
' f(Ns;E) +

df(N ;E)

dN

∣∣∣∣
N=Ns

n+ . . . = −(r − E)n+ . . . (3.39)

We see that the recovery time is given by

TR(E) =
1

r − E
, (3.40)

and hence, at the maximum yield state,

TR(E) =
2

r
since E =

r

2
at maximum yield. (3.41)

As we measure Y it is useful to rewrite E in terms of Y to give the ratio of recovery times in

terms of the yield, Y (E), and the maximum yield, Y max
s . Using equation (3.37) we have

E =
r ± r

√
1− 4Ys/Kr

2
=⇒ r − E =

r

2

[
1∓

√
1− Ys

Y max
s

]
. (3.42)

Substituting into equation (3.40) gives

TR(Y )

TR(0)
=

2

1±
√

1− Y/Y max
s

. (3.43)

Plotting TR(Y )/TR(0) as a function of Y/Y max
s yields some interesting observations, as shown

in Figure 3.8. For example, as TR increases the population recovers less quickly, and therefore

spends more time away from the steady state, Ns. The biological implication of this is that, in

order to maintain a constant yield, E must be increased. This, in turn, implies TR increases,

resulting in a positive feedback loop that can have disastrous consequences upon the population.
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Figure 3.9: Schematic of the oscillatory nature of solutions.

3.5 Delays

A disadvantage of simple population models is that they do not take account of time delays.

These arise, for example, due to the time taken for an organism to reach maturity or due to

finite gestation periods. Delays can be incorporated by using the framework of delay differential

equation models of the form:
dN

dt
= f (N,N(t− T )) , (3.44)

where T > 0 is the delay.

3.5.1 The delayed logistic model

A commonly used example of a delay model is the delayed logistic model:

dN

dt
= rN(t)

(
1− N(t− T )

K

)
, (3.45)

where the constants are as defined previously. Note that to compute the solution we need to

specify N(t) for −T ≤ t ≤ 0.

We can get some idea of the possible behaviour of the model using heuristic reasoning (see

Figure 3.9). Suppose that at t = t1, N(t1) = K, and that for some time t < t1, N(t− T ) < K.

Then at this time t, dN/dt > 0 and so N(t) is increasing. Also, when t = t1 + T , dN/dt = 0.

For t1 + T < t < t2, dN/dt < 0 and so N(t) decreases until t = t2 + T when dN/dt = 0 again.

Therefore there is the possibility of oscillatory behaviour. We expect that the period of these

limit cycle solutions will be approximately 4T .

The solutions of (3.45) can exhibit stable limit cycle periodic solutions for a large range of values

of rT . This means that if tp is the period then N(t + tp) = N(t), and if the perturbation is

imposed then the solution returns to the original periodic behaviour as t→∞ (although a phase

shift may occur).

Note. Single species populations models without delays cannot exhibit limit cycle behaviour.

To see this, suppose that such a model as equation (3.2) has a periodic solution with period tp.

Then ∫ t+tp

t

(
dN

dt

)2

dt =

∫ t+tp

t
f(N)

dN

dt
dt =

∫ N(t+tp)

N(t)
f(N)dN = 0, (3.46)

since N(t+ tp) = N(t). Since the left-hand-most term in above is non-negative this means that

dN/dt ≡ 0 and hence we have a contradiction.
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Figure 3.10: Dynamics of the non-dimensional delayed logistic model with T = 2 and N(t) = 1

for −2 ≤ t ≤ 0.

3.5.2 Linear analysis of delayed population models

We will use the delayed logistic model as an example, and investigate the linear stability of

the steady states N = K and N = 0. We non-dimensionalise as before by letting N = KN∗,

t = t∗/r and T = T ∗/r to give (dropping the asterisks for notational convenience):

dN

dt
= N(t) [1−N(t− T )] , (3.47)

and steady states N = 0 and N = 1. We will investigate the linear stability of the steady state

N = 1.

First we linearise about the steady state by writing N(t) = 1 + n(t) so that

dn(t)

dt
≈ −n(t− T ). (3.48)

Seeking solutions of the form n(t) = c exp(λt) gives

λ = −e−λT . (3.49)

This is a transcendental equation for λ that has infinitely many roots. To determine the linear

stability we require an understanding of whether there are solutions with Re(λ) > 0. To in-

vestigate, we let λ = µ + iω and explore the values of the delay, T , for which µ is positive or

negative.

Substituting into equation (3.49) we have equations that define µ and ω in terms of T :

µ = −eµT cos(ωT ); (3.50)

ω = e−µT sin(ωT ). (3.51)

We would like to determine the range of values for T such that µ < 0. Suppose first that ω = 0.

Then equation (3.51) is satisfied, and equation (3.50) gives µ = − exp(µt) which has no positive

roots. Suppose now that ω 6= 0. If ω is a solution then so is −ω, so without loss of generality let

ω > 0. From equation (3.50), µ < 0 (stability) requires 0 < ωT < π/2. We are interested in the

understanding when, as we increase the value of T , µ(T ) first becomes positive. As T increases

from zero, µ first becomes zero when ωT = π/2, and at this point (from equation (3.51)) we see
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that ω = 1. Hence the steady state first becomes unstable at the bifurcation point T = Tc = π/2

i.e. N = 1 is stable for 0 < T < π/2.

Going back to the dimensional model, this means that the steady state N(t) = K is stable if

0 < rT < π/2 and unstable for rT > π/2, and we anticipate stable limit cycle behaviour in the

latter case. Figure 3.10 illustrates the stable limit cycle behaviour that can arise in the delayed

logistic model. We see oscillations that gradually increase to have stable amplitude, with period

approximately 4T .



Chapter 4: Continuous-time models for interacting species

We begin this chapter with a brief recap of the “recipe” for determining linear stability for a

two-species model. We then consider three types of canonical interactions between two species.

4.1 Introduction

We will consider models of two species, u and v, whose dynamics can be described using the

system of coupled ordinary differential equations

du

dt
= f(u, v), (4.1)

dv

dt
= g(u, v), (4.2)

where f and g are prescribed functions that model the interactions between the species. Our

“recipe” for analysing these models is to find their steady states, conduct a linear stability

analysis and sketch the phase plane.

4.1.1 Steady states

The steady states, (us, vs), satisfy f(us, vs) = 0 and g(us, vs) = 0. We can often make progress

in determining the number and nature of steady states by drawing the null clines. These are

defined as the curves in phase space where either du/dt = 0 or dv/dt = 0. The steady states

are then given by the intersections of the u and v null clines.

4.1.2 Linear stability analysis

We analyse the linear stability of any steady states by making small perturbations about the

steady states: let

u(t) = us + ũ and v(t) = vs + ṽ. (4.3)

Substituting into equations (4.1)-(4.2) and retaining only first order terms in ũ, ṽ we have

d

dt

(
ũ

ṽ

)
=

(
f(us + ũ, vs + ṽ)

g(us + ũ, vs + ṽ)

)
(4.4)

=

(
f(us, vs)

g(us, vs)

)
+

(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)
(us,vs)

(
us

vs

)
(4.5)

=

(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)
(us,vs)

(
us

vs

)
. (4.6)

23
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As in the Differential Equations I course, we determine linear stability by consider the eigenvalues

of the (constant) Jacobian matrix

J =

(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)
(us,vs)

. (4.7)

4.2 Predator-prey models

The most common predator-prey model is the Lotka-Volterra model. With N the number of

prey and P the number of predators, this model can be written

dN

dt
= aN − bNP, (4.8)

dP

dt
= cNP − dP, (4.9)

with a, b, c, d positive parameters and c < b.

4.2.1 Non-dimensionalisation

Non-dimensionalising with u = (c/d)N , v = (b/a)P , τ = at and α = d/a, we have

1

1/a

d

c

du

dτ
=
ad

c
u− bd

c

a

b
uv ⇒ du

dτ
= u− uv = u(1− v) := f(u, v), (4.10)

1

1/a

a

b

dv

dτ
= c

d

c

a

b
uv − da

b
v ⇒ dv

dτ
= α(uv − v) = αv(u− 1) := g(u, v). (4.11)

4.2.2 Linear stability analysis

There are steady states at (u, v) = (0, 0) and (u, v) = (1, 1). The Jacobian, J , is given by

J =

(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)
(us,vs)

=

(
1− vs −us
αvs α(us − 1)

)
. (4.12)

At (0, 0) we have

J =

(
1 0

0 −α

)
, (4.13)

with eigenvalues 1, −α. Therefore the steady state (0, 0) is an unstable saddle.

At (1, 1) we have

J =

(
0 −1

α 0

)
, (4.14)

with eigenvalues ±i
√
α. Therefore the steady state (1, 1) is a centre (not linearly stable).

4.2.3 Analytic solution

These equations are special in that we can integrate them once, as follows, to find a conserved

constant:
du

dv
=

u(1− v)

α(u− 1)v
⇒

∫
u− 1

u
du =

∫
1− v
αv

dv. (4.15)



Mathematical modelling in biology 25

0.0 1.0 2.0 3.0 4.0 5.0
0.0

1.0

2.0

3.0

4.0

5.0

0 4 8 12 16
0.0

1.0

2.0

Figure 4.1: Dynamics of the non-dimensional Lotka-Volterra system for α = 1.095 and H =

2.1, 2.4, 3.0, 4.0. The left-hand plot shows the dynamics in the (u, v) phase plane whilst the

right-hand plot shows the temporal evolution of u and v.

Hence

H = constant = αu+ v − α lnu− ln v. (4.16)

This can be rewritten as (
ev

v

)(
eu

u

)α
= eH , (4.17)

from which we can deduce that the trajectories in the (u, v) plane take the form shown in

Figure 4.1. Thus u and v exhibit temporal oscillations, though not in phase, and hence we have

a prediction; predators and prey population numbers oscillate out of phase. There are often

observations of this e.g. hare-lynx interactions.

4.3 Finite predation

The common predator-prey model assumes that as N → ∞ the rate of predation per predator

becomes unbounded, as does the rate of increase of the predator’s population. However, with

an abundance of food, these quantities will saturate rather than become unbounded. Thus, a

more realistic incorporation of an abundance of prey requires a refinement of the Lotka-Volterra

model. A suitable, simple, model for predator-prey interactions under such circumstances would

be (after non-dimensionalisation)

du

dτ
= f(u, v) = u(1− u)− auv

d+ u
, (4.18)

dv

dτ
= g(u, v) = bv

(
1− v

u

)
, (4.19)

where a, b, d are positive constants. Note the effect of predation per predator saturates at high

levels of u whereas the predator levels are finite at large levels of prey and drop exceedingly

rapidly in the absence of prey.

4.3.1 Linear stability analysis

There is one non-trivial steady state, (us, vs), satisfying

vs = us where (1− us) =
aus
d+ us

, (4.20)
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and hence

us =
1

2

[
−(a+ d− 1) +

√
(a+ d− 1)2 + 4d

]
. (4.21)

The Jacobian at (us, vs) is

J =

(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)
(us,vs)

(4.22)

where
∂f

∂u
(us, vs) = 1− 2us −

aus
d+ us

+
ausvs

(d+ us)2
= −us +

a(us)
2

(d+ us)2
. (4.23)

∂f

∂v
(us, vs) = − aus

d+ us
, (4.24)

∂g

∂u
(us, vs) =

b(vs)
2

(us)2
= b, (4.25)

∂g

∂v
(us, vs) = b

(
1− 2

vs
us

)
= −b. (4.26)

The eigenvalues satisfy(
λ− ∂f

∂u

)(
λ− ∂g

∂v

)
− ∂f

∂v

∂g

∂u
= 0 =⇒ λ2 −

(
∂f

∂u
+
∂g

∂v

)
λ+

(
∂f

∂u

∂g

∂v
− ∂f

∂v

∂g

∂u

)
= 0.

(4.27)

Hence

λ2 − αλ+ β = 0 =⇒ λ =
α±

√
α2 − 4β

2
, (4.28)

where

α = −us +
au2s

(us + d)2
− b, β = b

(
us −

au2s
(us + d)2

− (us − 1)

)
. (4.29)

Note that

β = 1− au2s
(us + d)2

= 1− us(1− us)
(us + d)

=
(us + d)− us + u2s

us + d
=
d+ (us)

2

d+ us
> 0. (4.30)

Thus, if α < 0 we have either a stable node (α2 − 4β > 0) or stable focus (α2 − 4β < 0) at the

steady state (us, vs). If α > 0 we have an unstable steady state at (us, vs).

4.3.2 Phase plane

The u null clines are given by

f(u, v) ≡ 0 =⇒ u ≡ 0 and v =
1

a
(1− u)(u+ d). (4.31)

The v null clines are given by

g(u, v) ≡ 0 =⇒ v ≡ 0 and v = u. (4.32)

A sketch of the null clines and the behaviour of the phase plane trajectories for the case where

the steady state is stable is shown in Figure 4.2.
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Figure 4.2: The (u, v) phase plane for the finite predation model when the steady state is stable.

The u null clines are plotted in orange and the v null clines in blue. Trajectories for a number of

different initial conditions are shown as dashed lines. Parameters are: a = 2.0, b = 0.1, d = 2.0.

4.3.3 Limit cycle dynamics

In this model, α > 0 implies we have limit cycle dynamics. This is because for α > 0 the steady

state is an unstable node or spiral. Further, we can find a simple, closed boundary curve, C, in

the positive quadrant of the (u, v) plane such that on C phase trajectories always point into the

domain, D, enclosed by C. Applying the Poincaré-Benedixon Theorem gives the existence of a

limit cycle1. This means that the predator and prey population densities oscillate out-of-phase.

4.4 Competitive exclusion

We consider an ordinary differential equation model of two competitors. An example might be

populations of red squirrels and grey squirrels. Here, both populations compete for the same

resources and a typical model for their dynamics is

dN1

dt
= r1N1

(
1− N1

K1
− b12

N2

K1

)
, (4.33)

dN2

dt
= r2N2

(
1− N2

K2
− b21

N1

K2

)
, (4.34)

where K1, K2, r1, r2, b12, b21 are positive constants. Let us associate N1 with red squirrels and

N2 with grey squirrels in our example.

In particular, given a range of parameter values and some initial values for N1 and N2 at t = 0,

we would typically like to know if the final outcome is one of the following possibilities:

• the reds become extinct, leaving the greys;

• the greys become extinct, leaving the reds;

• both reds and greys become extinct;

• the reds and greys co-exist. If this system is perturbed in any way will the reds and greys

continue to coexist?

1See J. D. Murray, Mathematical Biology Volume I (Chapter 3.4) for more details.



Mathematical modelling in biology 28

This model can be non-dimensionalised to give

du1
dτ

= u1(1− u1 − α12u2) := f1(u1, u2), (4.35)

du2
dτ

= ρu2(1− u2 − α21u1) := f2(u1, u2), (4.36)

where ρ = r2/r1.

4.4.1 Linear stability analysis

The steady states are

(u1,s, u2,s) = (0, 0), (u1,s, u2,s) = (1, 0), (u1,s, u2,s) = (0, 1), (4.37)

and

(u1,s, u2,s) =
1

1− α12α21
(1− α12, 1− α21), (4.38)

if α12 < 1 and α21 < 1 or α12 > 1 and α21 > 1.

The Jacobian is

J =

(
1− 2u1 − α12u2 −α12u1

−ρα21u2 ρ(1− 2u2 − α21u1)

)
. (4.39)

Steady state (u1,s, u2,s) = (0, 0).

J− λI =

(
1− λ 0

0 ρ− λ

)
⇒ λ = 1, ρ. (4.40)

Therefore (0, 0) is an unstable node.

Steady state (u1,s, u2,s) = (1, 0).

J− λI =

(
−1− λ −α12

0 ρ(1− α21)− λ

)
⇒ λ = −1, ρ(1− α21). (4.41)

Therefore (1, 0) is a stable node if α21 > 1 and a saddle point if α21 < 1.

Steady state (u1,s, u2,s) = (0, 1).

J− λI =

(
1− α12 − λ 0

−ρα21 −ρ− λ

)
⇒ λ = −ρ, 1− α12. (4.42)

Therefore (0, 1) is a stable node if α12 > 1 and a saddle point if α12 < 1.

Steady state (u1,s, u2,s) = 1
1−α12α21

(1− α12, 1− α21).

J− λI =
1

1− α12α21

(
α21 − 1− λ α12(α12 − 1)

ρα21(α21 − 1) ρ(α21 − 1)− λ

)
. (4.43)

Existence and stability depends on α12 and α21.

There are several different possible behaviours. The totality of all behaviours of the above model

is reflected in how one can arrange the null clines within the positive quadrant. However, for

competing populations these straight line null clines have negative gradients. Figure 4.3 shows

the model behaviour for different sets of parameter values.
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Figure 4.3: Dynamics of the non-dimensional competitive exclusion system. Top left: α12 =

0.8 < 1, α21 = 1.2 > 1 and u2 is excluded. Top right: α12 = 1.2 > 1, α21 = 0.8 < 1 and u1 is

excluded. Bottom left: α12 = 1.2 > 1, α21 = 1.2 > 1 and exclusion is dependent on the initial

conditions. Bottom right: α12 = 0.8 < 1, α21 = 0.8 < 1 and we have coexistence. The stable

steady states are marked with ∗’s and ρ = 1.0 in all cases. The orange lines indicate f1 ≡ 0

whilst the blue lines indicate f2 ≡ 0.

Note. In ecology the concept of competitive exclusion is that two species competing for exactly

the same resources cannot stably coexist. One of the two competitors will always have an ever

so slight advantage over the other that leads to extinction of the second competitor in the long

run (or evolution into distinct ecological niches).

4.5 Mutualism (symbiosis)

We consider a very similar ordinary differential equation model for two species, but this time

with positive interactions,

dN1

dt
= r1N1

(
1− N1

K1
+ b12

N2

K1

)
, (4.44)

dN2

dt
= r2N2

(
1− N2

K2
+ b21

N1

K2

)
, (4.45)
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Figure 4.4: Dynamics of the non-dimensional symbiotic system. The left-hand figure shows

population explosion (α12 = 0.6 = α21) whilst the right-hand figure shows population coexistence

(α12 = 0.1 = α21). The stable steady states are marked with ∗’s and ρ = 1.0 in all cases. The

orange lines indicate f1 ≡ 0 whilst the blue lines indicate f2 ≡ 0.

where K1, K2, r1, r2, b12, b21 are positive constants. The model can be non-dimensionalised to

give

du1
dτ

= u1(1− u1 + α12u2) := f1(u1, u2), (4.46)

du2
dτ

= ρu2(1− u2 + α21u1) := f2(u1, u2). (4.47)

In this model of symboisis, the straight line null clines will have positive gradients. There are

three steady states that have either u1 or u2, or both, equal to zero. As additional steady state

with both u1 and u2 non-zero exists in some parameter regimes. The two possible behaviours

displayed by the model are shown in Figure 4.4. We see that when a non-zero steady state exists

it is stable, and the populations coexist. However, when this steady state does not exist, but

populations grow unboundedly.



Chapter 5: Infectious disease modelling

Finally, we will look briefly at models of infectious diseases. The study of infectious diseases has

a long history and there are numerous detailed models of a variety of epidemics and epizootics

(i.e. animal epidemics). We can only possibly scratch the surface. In the following, we consider

a simple model but even this is capable of highlighting general aspects of epidemics and, in fact,

approximately describes some specific epidemics.

5.1 The SIR model

Consider a disease for which the population can be placed into three compartments:

• the susceptible compartment, S, who can catch the disease;

• the infective compartment, I, who have and transmit the disease;

• the removed compartment, R, who have been isolated, or who have recovered and are

immune to the disease, or have died due to the disease during the course of the epidemic.

5.1.1 Assumptions

• The epidemic is of short duration course so that the population is constant (counting those

who have died due to the disease during the course of the epidemic).

• The disease has a negligible incubation period.

• If a person contracts the disease and recovers they are immune (and hence remain in the

removed compartment).

• The rate at which new infections occur is proportional to the number of contacts between

infectives and susceptibles.

• Infectives recover (and become immune) or die at a constant rate.

5.1.2 The model

The equations describing the time evolution of numbers in the susceptible, infective and removed

compartments are given by

dS

dt
= −rIS, (5.1)

dI

dt
= rIS − aI, (5.2)

dR

dt
= aI, (5.3)

31
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Figure 5.1: Numerical solution of the SIR model, equations (5.1)-(5.3), where the solid lines

indicate the phase trajectories and the dashed line S + I = S0 + I0. Parameters are as follows:

r = 0.01 and a = 0.25.

subject to

S(0) = S0, I(0) = I0, R(0) = 0. (5.4)

Note that, as we would expect from the assumptions,

d

dt
(S + I +R) = 0 =⇒ S + I +R = S0 + I0. (5.5)

5.1.3 Key questions

The key dynamics of the model can be seen by looking at the phase plane dynamics, shown

in Figure 5.1. However, we can also gain quantitative insights into the model behaviour by

investigating the questions outlined below.

Question 1. First, we would like to know whether the disease will spread, i.e. will the number

of infectives increase, at least in the short-term?

From equations (5.1)-(5.2) we have that

dS

dt
= −rIS =⇒ S is decreasing and therefore S ≤ S0. (5.6)

dI

dt
= I(rS − a) < I(rS0 − a). (5.7)

Therefore, if S0 < a/r the infectives never increase, at least initially.

The parameter ρ := a/r is sometimes called the relative removal rate, and the parameter R0 :=

rS0/a the basic reproductive rate. This is the average number of secondary infections produced

by one primary infection in a wholly susceptible population. From our analysis, we see that if

R0 > 1 then an epidemic occurs.

Question 2. Secondly, if the disease spreads, what will be the maximum number of infectives

at any given time?

Again, using equations (5.1)-(5.2), we can write

dI

dS
= −(rS − a)

rS
= −1 +

ρ

S
. (5.8)
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Integrating gives

I + S − ρ lnS = I0 + S0 − ρ lnS0, (5.9)

and so, noting that dI/dS = 0 for S = ρ, the maximum number of infectives is given by

Imax =

{
I0 S0 ≤ ρ
I0 + S0 − ρ lnS0 − ρ ln ρ− ρ S0 > ρ

. (5.10)

Question 3. Finally, how many people in total catch the disease?

From the first question, we know that I → 0 as t→∞. Therefore the total number who catch

the disease is

R(∞) = N0 − S(∞)− I(∞) = N0 − S(∞), (5.11)

where S(∞) < S0 is the root of

S∞ − ρ lnS∞ = N0 − ρ lnS0, (5.12)

obtained by setting S = S∞ and N0 = I0 + S0 in equation (5.9).

5.2 Incubation periods

Suppose now that the disease has a small incubation period, τ , where 0 < τ � 1, such that a

susceptible who has been infected only enters the infective compartment a time τ after they are

exposed to the disease. In this case, the model becomes

dS

dt
= −rI(t− τ)S(t− τ), (5.13)

dI

dt
= rI(t− τ)S(t− τ)− aI(t), (5.14)

dR

dt
= aI(t), (5.15)

along with suitable initial conditions.

We can make progress in analysing the dynamics of the model by writing

I(t− τ)S(t− τ) = I(t)S(t)− τI ′(t)S(t)− τI(t)S′(t) +O(τ2) (5.16)

= I(t)S(t)− τ (I(t)S(t))′ +O(τ2). (5.17)

We have that

τ (I(t)S(t))′ = rI(t)S(t)[S(t)− I(t)] + rτ [I(t)− S(t)](I(t)S(t))′ (5.18)

=
I(t)S(t)[r(S(t)− I(t))− a]

1− rτ(I(t)− S(t))
. (5.19)

Substituting into equations (5.13)-(5.14) gives

dS

dt
= −rIS − τISf(I, S, r, a), (5.20)

dI

dt
= rIS − aI + τISf(I, S, r, a), (5.21)

where

f(I, S, r, a) =
r[r(S − I)− a]

1− rτ(I − S)
. (5.22)



Mathematical modelling in biology 34

We can then divide one by the other and collect terms to give

dI

dS
=
rS − a
−rS

(
1 +O(aτ, τ2)

)
. (5.23)

This means that if we neglect terms that are O(aτ) and O(τ2) the dynamics are the same as in

the non-delayed case.

5.2.1 Quarantine and the number of infected individuals

Suppose that a quarantine is imposed once the number of infected individuals reaches some

threshold value I∗. Using previous results, we know that I∗ satisfies

S∗ − ρ lnS∗ = N0 − I∗ − ρ lnS0, (5.24)

and so the total number that catch the disease is

Ndisease = S0 − S∗ +

∫ τ

0
rI(t∗ − q)S(t∗ − q)dq (5.25)

≈ S0 − S∗ + rτI∗S∗ +O
(
τ2
)
. (5.26)

where t∗ is the time that the quarantine is imposed.


