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Graphs

Graph theory is the mathematical theory of networks.

A graph has ‘nodes’ called vertices.
These are connected by ‘lines’ called edges.

We will give a formal definition shortly.
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Colouring maps

A famous result in graph theory is the Four Colour Theorem.

This answers a question first posed by Francis Guthrie in 1852:

Is it possible to colour the countries using
only four different colours, so that any two countries

sharing a border receive different colours?

This was proved by Appel and Haken in 1976, using a controversial
computer-assisted proof.
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Connectedness

The government wants to build a new high
speed rail network that links all of the major
cities in the country.

It wants to decide which existing rail lines to
upgrade.

The government’s main priority is not to
minimise journey times, but rather to
minimise the cost subject to making a
connected network.

Let us make some definitions and formulate this problem
mathematically.
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Definitions

A graph G = (V (G ),E (G )) consists of two
sets:

V (G ) (the vertex set) and
E (G ) (the edge set),

where each element of E (G ) consists of a
pair of elements of V (G ).

We will always assume without further
comment that

|V (G )| is finite. V (G ) =
{1, 2, 3, 4, 5}

E (G ) =
{{1, 2}, {2, 3},
{3, 4}, {4, 5}, {3, 5}}
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Definitions

We use the term ‘graph’ where some would say ‘simple graph’,
using ‘graph’ for a more general structure which allows several
‘parallel’ edges between a given pair of vertices and ‘loop’ edges
that join a vertex to itself.

non-simple

We write uv = {u, v} = vu for the (unordered) pair representing
an edge between u and v .
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Walks, paths and cycles

Let G be a graph. A walk in G is a sequence W of vertices
v1, . . . , vt such that vivi+1 ∈ E (G ) for all 1 ≤ i < t.

If we want to specify the start and end then
we call W an xy -walk with x = v1 and
y = vt .

If the vertices in W are distinct we call it a
path, or if we want to specify the ends an
xy -path.

If x = y we call W a closed walk.

If x = y but the vertices are otherwise
distinct and W has at least 3 vertices then
we call W a cycle.

We also regard paths and cycles as
subgraphs of G .
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Connectedness and components

We say that G is connected if for any x , y in V (G ) there is an
xy -walk in G .

We say that two vertices x and y of a graph G lie in the same
component if they are joined by an xy -walk.

Clearly this forms an equivalence relation and the partition of
V (G ) into equivalence classes expresses G as a union of disjoint
connected graphs called its components.
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The high-speed network question

Let G be a connected graph.

Suppose that for each edge e ∈ E (G ) we are given a ‘cost’
c(e) > 0.

For any S ⊆ E (G ) we call

c(S) =
∑
e∈S

c(e)

the cost of S .

Our task:

Find S ⊆ E (G ) with minimum possible c(S)
such that (V (G ), S) is a connected graph.
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An inefficient algorithm

A silly way of solving this task would be to list all S ⊆ E (G ),
check each one to see whether (V (G ), S) is a connected graph,
compute c(S) for each, and take the best one.

This is silly because there are 2|E(G)| subsets of E (G ), so we could
never check them all in practice unless G is very small.

We are interested in ‘efficient algorithms’. We will not define this
concept precisely in this course, but it will be exemplified by the
algorithms that we present.
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Minimally connected graphs

What can we say about the possible S ⊆ E (G ) that solves our
task?

One obvious property is that (V (G ),S) is ‘minimally connected’,
i.e. (V (G ),S) is connected but (V (G ),S \ {e}) is not connected
for any e ∈ S (otherwise we contradict minimality of c(S)).

This motivates the next section.
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Acyclic graphs

If a graph G has no cycle we call it acyclic.

Lemma 1. Any tree is acyclic.

Proof. Let G be a tree, i.e. G is minimally
connected.
Suppose for a contradiction that G contains
a cycle C . Let e ∈ E (C ).
We will obtain our contradiction by showing
that G − e := (V (G ),E (G ) \ {e}) is
connected.
Let P be the path obtained by deleting e
from C .
Consider any x , y in V (G ). As G is
connected, there is an xy -walk W in G .
Replacing any use of e in W by P gives an
xy -walk in G − e. Thus G − e is connected,
contradiction. �
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A characterisation of trees

There are many equivalent characterisations of trees, any of which
could be taken as the definition. Here is one:

Lemma 2. G is a tree if and only if G is connected and acyclic.

Proof. (⇒) If G is a tree then G is connected
by definition and acyclic by Lemma 1.

(⇐) Conversely, let G be connected and
acyclic. Suppose for a contradiction that
G − e is connected for some e = xy ∈ E (G ).
Let W be a shortest xy -walk in G − e. Then
W must be a path, i.e. have no repeated
vertices, otherwise we would find a shorter
walk by deleting a segment of W between
two visits to the same vertex. Combining W
with xy gives a cycle, contradiction. �
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Paths in trees

The fact that a shortest walk between two points is a path is often
useful. More generally, considering an extremal (shortest, longest,
minimal, maximal, . . . ) object is often a useful proof technique.
Another example:

Lemma 3. Any two vertices in a tree are joined by a unique path.

Proof. Suppose for a contradiction that this fails for some tree G .
Choose x , y in V (G ) so that there are distinct xy -paths P1, P2,
and P1 is as short as possible over all such choices of x and y .
Then P1 and P2 only intersect in x and y . So their union is a
cycle, contradicting Lemma 2. �
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Adjacency and degree

Let G be a graph.

If uv ∈ E (G ) we say that u and v are neighbours. We also say
that u and v are adjacent.

The degree d(v) of v is the number of neighbours of v in G .
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Leaves

A leaf is a vertex of degree one, i.e. with a
unique neighbour.

Lemma 4. Any tree with at least two vertices
has at least two leaves.

Proof. Consider any tree G . Let P be a
longest path in G . The two ends of P must
be leaves. Indeed, an end cannot have a
neighbour in V (G ) \V (P), or we could make
P longer, and cannot have any neighbour in
V (P) other than the next in the sequence of
P, or we would have a cycle. �
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Removing a leaf from a tree

Given v ∈ V (G ), let G − v be the graph with
V (G − v) = V (G ) \ {v} and
E (G − v) = {xy ∈ E (G ) : v /∈ {x , y}}.

Lemma 5. If G is a tree and v is a leaf of G
then G − v is a tree.

Proof. By Lemma 2 it suffices to show that
G − v is connected and acyclic. Acyclicity is
immediate from Lemma 2. Connectivity
follows by noting for any x , y in V (G ) \ {v}
that the unique xy -path in G is contained in
G − v . �
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The number of edges in a tree

Lemma 6. Any tree on n vertices has n − 1 edges.

Proof. By induction on the number of vertices. A tree with 1
vertex has 0 edges. Let G be a tree on n > 1 vertices. By Lemma
4, G has a leaf v . By Lemma 5, G − v is a tree. By the induction
hypothesis, G − v has n − 2 edges. Replacing v gives n − 1 edges
in G . �
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Spanning trees

Any connected graph G contains a minimally connected subgraph
(i.e. a tree) with the same vertex set, which we call a spanning tree
of G .
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Another characterisation of trees

Lemma 7. A graph G is a tree on n vertices if and only if G is
connected and has n − 1 edges.

Proof. If G is a tree then G is connected by definition and has
n − 1 edges by Lemma 6.

Conversely, suppose that G is connected and has n − 1 edges. Let
H be a spanning tree of G . Then H has n − 1 edges by Lemma 6,
so H = G , so G is a tree. �
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Minimum cost spanning trees

Recall our high-speed rail network problem:

Let G be a connected graph.

Suppose that for each edge e ∈ E (G ) we are given a ‘cost’
c(e) > 0.

For any S ⊆ E (G ) we call

c(S) =
∑
e∈S

c(e)

the cost of S .

Recall that a spanning tree for G is a tree T = (V (G ),S) where
S ⊆ E (G ).

A spanning tree T for G has minimum cost if any other spanning
tree T ′ satisfies c(T ′) ≥ c(T ).
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Kruskal’s algorithm

How can we find a minimum cost spanning
tree efficiently?

Kruskal’s Algorithm.

At step i ≥ 0, we will keep track of a subset
Ai ⊆ E (G ). This will have the property that
(V (G ),Ai ) is acyclic.

Start with A0 = ∅.
At step i ≥ 0, is there an edge e ∈ E (G ) \ Ai

such that (V (G ),Ai ∪ {e}) is acyclic? If no,
then output A = Ai and stop. If yes, then set
Ai+1 = Ai ∪ {e} for one such e such that
c(e) is minimal, and proceed to step i + 1.
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Kruskal’s algorithm

Theorem 9. (V (G ),A) is a minimum cost spanning tree of G .

Proof. (V (G ),A) is a spanning tree of G .

By construction, it is is acyclic.

Suppose, for a contradiction, that (V (G ),A)
is not connected. Let u, v lie in different
components of (V (G ),A).
As G is connected, there is a uv -walk. This
must contain an edge e of G whose
endpoints are in different components of
(V (G ),A). So A ∪ {e} is acyclic. So, the
algorithm should not have terminated when
it did. Instead, it should have added e to Ai .
This contradiction shows that (V (G ),A) is a
spanning tree of G .
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Kruskal’s algorithm

(V (G ),A) has minimum cost.

Let M be the set of B ⊂ E (G ) such that (V (G ),B) is a MCST.

We will prove by induction on i that

(∗) there is a B ∈M with Ai ⊆ B.

Note that (∗) will suffice to prove the theorem, as when we apply
it to Ai = A we will have A ⊆ B for some B ∈M and so |A| = |B|
by Lemma 6, and so A = B ∈M.
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Kruskal’s algorithm

(∗) there is a B ∈M with Ai ⊆ B.

Base case i = 0 of (*). We have A0 = ∅, so
any B ∈M satisfies (*).

Induction step. Suppose for some i ≥ 0 we
have Ai ⊆ B ∈M. We can suppose Ai 6= A,
otherwise the proof is complete.
Consider Ai+1 = Ai ∪ {e} given by the
algorithm. We need to find B ′ ∈M with
Ai+1 ⊆ B ′. We can assume e /∈ B, otherwise
we could take B ′ = B.
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Kruskal’s algorithm

Let e = xy and let P be the unique xy -path
in the spanning tree (V (G ),B).

Then C = P ∪ {e} is a cycle. As Ai+1 is
acyclic, we can choose f ∈ C \ Ai+1.
Let B ′ = (B \ {f }) ∪ {e}.

To finish the proof we need to show that

1. Ai+1 ⊆ B ′,

2. (V (G ),B ′) is a spanning tree, and

3. c(B ′) ≤ c(B).
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Kruskal’s algorithm

Ai+1 ⊆ B ′ :

Note that Ai+1 = Ai ∪ {e} ⊆ B ′, as Ai ⊆ B
and f /∈ Ai+1.

(V (G ),B ′) is a spanning tree:

Note that B ′ is connected, for the following
reason. Any two vertices in V (G ) are joined
by a path in B. Replace each occurence of f
in this path by C \ {f }. Also B ′ has
|V (G )| − 1 edges. So it is a spanning tree by
Lemma 7.
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Kruskal’s algorithm

c(B ′) ≤ c(B):

Note that Ai ∪ {f } ⊆ B, so Ai ∪ {f } is
acyclic.

Now e was chosen so that c(e) is minimal
among all edges e such that Ai ∪ {e} is
acyclic. Hence, c(e) ≤ c(f ).

So c(B ′) = c(B)− c(f ) + c(e) ≤ c(B).

This finishes the proof of the inductive step
of (∗), and so of the theorem. �
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The number of steps of Kruskal’s algorithm

How fast is this algorithm?

To make this question mathematically precise would take us far
afield (we would need to define a model of computation). In this
course, we will take the intuitive approach of estimating the
number of ‘steps’ taken by an algorithm, where a ‘step’ should be
a ‘simple’ operation.
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The number of steps of Kruskal’s algorithm

In each iteration we add an edge, so there will be |V (G )| − 1
iterations.

If at each stage of the algorithm, we naively find the next edge by
checking every edge then there will be |E (G )| steps in each
iteration, giving about |V (G )||E (G )| steps in total.

We say that the running time is O(|V (G )||E (G )|), where the ‘big
O’ notation means that there is a constant C so that for any graph
G the running time is at most C |V (G )||E (G )|.

Here ‘running time’ could be measured in any units, say
milliseconds on your favourite computer, as changing the units or
using a different computer will just replace C by a different
constant.
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The number of steps of Kruskal’s algorithm

A smarter implementation is to start by making a list of all edges
ordered by cost, cheapest first. Then at each step we go through
the list from the start, discarding edges that make a cycle until we
find the first edge which can be added.

This gives a running time that is ‘roughly comparable’ with the
number of edges, which is essentially best possible.
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Euler tours



The bridges of Königsberg

The town of Königsberg is divided into 4 districts by the river
Pregel.

In the 18th century, the river was spanned by 7 bridges.

Is it possible to take a walk that crosses every bridge exactly once?

Let W be a walk in a graph G . We call W an Euler trail if every
edge of G appears exactly once in W .
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Euler tours

The problem was solved by Leonard Euler in 1766.

Let W be an Euler trail. We call W an Euler tour if it is closed,
i.e. it starts and ends at the same vertex.

Here we will only solve the problem of finding an Euler tour; the
solution of the Euler trail problem can be deduced (see exercise
sheet 1).
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Fleury’s Algorithm.

Start at any vertex of G .

We will follow a
walk, erasing each edge after it is used
(erased edges cannot be used again). At
each stage, ensure that the following holds:

1. when the edge is removed, the resulting
graph is connected once isolated vertices
are removed, and

2. we do not run along an edge to a leaf,
unless this is the only edge of the graph.

We will show that when G is Eulerian, this
produces an Euler tour.
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Vertices of odd degree

We require a useful lemma.

Lemma 10. In any graph, there are an even number of vertices
with odd degree.

Proof. Since every edge has two endpoints,∑
v∈V (G)

d(v) = 2|E (G |.

Therefore, in the sum, there must be an even number of
occurrences of d(v) for which d(v) is odd. �
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Fleury’s algorithm produces an Euler tour

Note first that at each stage of the algorithm,
either there are two vertices of odd degree
(the initial vertex u and the current one) or
there are no vertices of odd degree.

Suppose for a contradiction Fleury’s
Algorithm fails. Say it stops at some vertex v
and can go no further. Let H be the
component of the current graph containing
v .

The degree of v in H must be positive, as
otherwise in the previous step, we ran along
an edge to a leaf violating (2).

If the degree of v in H is one, then we can
continue the walk.



Fleury’s algorithm produces an Euler tour

Note first that at each stage of the algorithm,
either there are two vertices of odd degree
(the initial vertex u and the current one) or
there are no vertices of odd degree.

Suppose for a contradiction Fleury’s
Algorithm fails. Say it stops at some vertex v
and can go no further. Let H be the
component of the current graph containing
v .

The degree of v in H must be positive, as
otherwise in the previous step, we ran along
an edge to a leaf violating (2).

If the degree of v in H is one, then we can
continue the walk.



Fleury’s algorithm produces an Euler tour

Note first that at each stage of the algorithm,
either there are two vertices of odd degree
(the initial vertex u and the current one) or
there are no vertices of odd degree.

Suppose for a contradiction Fleury’s
Algorithm fails. Say it stops at some vertex v
and can go no further. Let H be the
component of the current graph containing
v .

The degree of v in H must be positive, as
otherwise in the previous step, we ran along
an edge to a leaf violating (2).

If the degree of v in H is one, then we can
continue the walk.

v



Fleury’s algorithm produces an Euler tour

Note first that at each stage of the algorithm,
either there are two vertices of odd degree
(the initial vertex u and the current one) or
there are no vertices of odd degree.

Suppose for a contradiction Fleury’s
Algorithm fails. Say it stops at some vertex v
and can go no further. Let H be the
component of the current graph containing
v .

The degree of v in H must be positive, as
otherwise in the previous step, we ran along
an edge to a leaf violating (2).

If the degree of v in H is one, then we can
continue the walk.

v



Fleury’s algorithm produces an Euler tour

Note first that at each stage of the algorithm,
either there are two vertices of odd degree
(the initial vertex u and the current one) or
there are no vertices of odd degree.

Suppose for a contradiction Fleury’s
Algorithm fails. Say it stops at some vertex v
and can go no further. Let H be the
component of the current graph containing
v .

The degree of v in H must be positive, as
otherwise in the previous step, we ran along
an edge to a leaf violating (2).

If the degree of v in H is one, then we can
continue the walk.

v



Fleury’s algorithm produces an Euler tour

So there are at least two edges of H
containing v .

Since the algorithm cannot continue, the
graph H − e is disconnected for each edge e
containing v .
Hence, the edges e incident to v all have
endpoints in distinct components of H − v .
So, we can choose one edge vw , such that
the component C of G − vw which contains
w does not contain the first vertex u of the
walk.
But then w is the only vertex of odd degree
in C , which is impossible by Lemma 10. �
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Hamiltonian cycles

One can ask the following about a connected graph G :

Does there exists a closed walk
that visits every vertex exactly once?

In fact, such a walk is a cycle (provided G has more than two
vertices) and is known as a Hamiltonian cycle.

When a graph G contains such a cycle, it is Hamiltonian.
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Hamiltonian cycles

Unlike the case of Eulerian tours, it turns out that there is, almost
certainly, no efficient algorithm to determine whether a general
graph G is Hamiltonian.

By ‘efficient’, we mean that the algorithm gives the answer after
polynomially many ‘steps’, as a function of |V (G )| and |E (G )|.

But what do we mean by ‘almost certainly’?

Currently, mathematicians do not have a proof that there is no
efficient algorithm to determine whether a general graph G is
Hamiltonian.

However, we do no know that there is no efficient algorithm if we
assume the famous conjecture P 6= NP.

But to discuss this conjecture would take us too far afield.
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A sufficient condition

We will therefore content ourselves with a sufficient condition for a
graph to be Hamiltonian.

Theorem 11. Let G be a connected graph with n vertices. Suppose
that for every pair of non-adjacent vertices x and y ,

d(x) + d(y) ≥ n.

Then G is Hamiltonian.

Corollary 12. If G is connected with n vertices and for every vertex
v , d(v) ≥ n/2, then G is Hamiltonian.
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The length of paths and cycles

We first note if G is Hamiltonian and has n vertices, then the
length of the longest cycle is n and the length of the longest path
is n − 1.

(The length of a path is its number of edges.)

Lemma 13. If G is connected and non-Hamiltonian, then the
length of the longest path is least the length of the longest cycle.

Proof. Let C be a longest cycle, with length
`. Since G is non-Hamiltonian, there is some
vertex not in C . Since G is connected, there
is therefore some edge uv with one endpoint
u in C and one endpoint v not in C .
Removing an edge of C incident to u and
adding uv gives a path of length `. �
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vertex not in C . Since G is connected, there
is therefore some edge uv with one endpoint
u in C and one endpoint v not in C .

Removing an edge of C incident to u and
adding uv gives a path of length `. �
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Proof of Theorem.
Theorem 11. Let G be a connected graph with n vertices. Suppose
that for every pair of non-adjacent vertices x and y ,

d(x) + d(y) ≥ n.

Then G is Hamiltonian.

Proof. Suppose that G is not Hamiltonian.
Let P = x1 · · · xk be a longest path. It has length k − 1.

So by Lemma 13, G does not have a cycle of length k . So x1 and
xk are not adjacent. Hence, by our assumption, d(x1) + d(xk) ≥ n.
There is no integer i such that x1 is adjacent to xi+1 and xk is
adjacent xi . Otherwise, x1 · · · xixkxk−1 · · · xi+1x1 would be a cycle
of length k . So the sets

A = {i : x1xi+1 ∈ E (G )}, B = {i : xixk ∈ E (G )}
are disjoint subsets of {1, · · · , k − 1}.
Every neighbour of x1 lies in P, and similarly every neighbour of xk
lies in P, as P is a longest path. So, A has size d(x1), and B has
size d(xk). Since A and B are disjoint, d(x1) + d(xk) ≤ k − 1 < n,
which is a contradiction. Hence, G must be Hamiltonian. �
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