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1. INTRODUCTION: STATIONARY VALUES OF INTEGRALS

This course on the Calculus of Variations is a doorway to modern applied mathe-
matics and theoretical physics, but also has various applications to pure mathemat-
ics. For examination purposes you can treat it as a comparatively self-contained
and straightforward topic, but that is not its only purpose. The central point
of the course is to show how abstract and non-obvious ideas can play a part in
solving concrete problems. This development which will be taken much further in
the Part B Classical Mechanics course.

As mathematics, this has a history in which the great figures of Euler, Lagrange,
and Hamilton played a notable part in the 18th and 19th centuries. Although
stimulated by physics, they created quite new ideas in mathematics which turned
out to be vital in the 20th century formulation of quantum mechanics and relativ-
ity.

First, let us recall a basic principle from calculus about how we can look for maxima
or minima of functions of one variable:
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Principle (Maxima are stationary points). Let f(z) be a ‘nice’ function. Then
the mazima and minima of f occur when f'(x) = 0.

(‘Nice’ can mean continuously differentiable in the principle above, but we will
deliberately not try to classify precisely what sort of pathological exceptions might
occur in this course, typically assuming that we are only interested in sufficiently
smooth functions for us to not have to worry about justifying differentiation.)

The Calculus of Variations is a set of techniques where instead of looking for the
maxima/minima of a function of one variable, you look at a functional (function
of a function), and you want to choose the function which minimises some value.
Such problems appear all the time in physics.

Example 1 (Shortest path between two points). Given points (x1,y1) and (x9,ys),
what is the shortest length path between them?

By rotating the plane (which doesn’t affect distances) we may assume that y; = ys.

Let us imagine that the path is given by a suitably nice (continuously differentiable)
function y(x). Then the length of the path is given by

Iy] = /12 V1 + vy (x)2de,

and the only constraints that we have on y(x) is that y(z1) = y(xe) = y1. Since
y' ()% > 0, we see that the integral is minimised when

y'(z) =0,
so the straight line path minimises the distance.

(It is intuitively obvious that any path can be approximated by a smooth path
arbitrarily well, and so it suffices to just consider smooth paths; again, this is not
the point of this course, and so we will often assume that we can restrict ourselves
to sufficiently well-behaved functions without rigorous justification.)

Notice that we have deduced a local rule about what happens at one point from
a global criterion — variation over all possible paths. This is the basic idea of
variational calculus that we shall generalise considerably and apply to a wide
range of problems.

One of the simplest ideas in physics is that light travels in straight lines. This
observation gains much greater power when put in the following way: light travels
in a straight line because a straight line is the shortest distance between two points.
This may sound a trivial reformulation but it remains one of the basic ideas in
Einstein’s general theory of relativity and is strongly bound up with the modern
understanding of light in terms of quantum electrodynamics. So it should be taken
seriously!
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Example 2 (Biatholon problem). A person is travelling from point A to point
B. They first need to cross a field (running at speed cy) and then cross a river
(swimming at speed c3). What path should they follow to get from A to B fastest?

run
speed ¢4 B
P :lpz/
Py swim
A speed ¢

FiGURE 1. The biathlon problem
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Clearly the biathlete should run in as straight line from A to P on the edge of the
river, and then swim in a straight line from P to B, since straight lines minimise
distance. (If c; > ¢y then consider the last point P at which the athlete is on the
field; the fastest way to get from A to P is running in a straight line in the field.
After this point they must just swim from P to B, and the fastest route is to swim
in a straight line.)

Let A = (za,ya), B = (xp,yp) and P = (xp,yp). We therefore want to choose
yp to minimise the total time. At the optimum value of yp we have

d <¢<m — P+ ga—yeP | V(os—or)+ (gs = w) 0

dyp C1 (&)

so that
(ya —yp) _ (yp — yB)

av(@a—ap)?+(ya—yp)? c/(zp—2p)®+ (ys — yp)? .
So the optimum position of P is such that the angles 11,1 satisfy:

(1) siny; sin?ﬁg.
C1 C2

You may recognise as Snell’s Law governing the refraction of light in its pas-
sage from one medium to another, provided that the observed refractive index of
the medium is identified with the inverse of speed. Fermat observed that Snell’s
Law follows from such a least-time principle, although it was not until the 20th
century that such a principle could be understood in terms of quantum physics
and relativity.

We can now solve a slightly more general problem. Suppose that someone is
running on a muddy field > 0 where speed is proportional to ¢(z), where ¢(z) is
some smooth function depending only on the x coordinate. Equivalently, we have
an optical medium with a continuously varying refractive index proportional to
(c(x))~t. What then is the shortest-time path from one point to another?

We can consider this in the following way. Divide up the muddy field into strips
of thickness dx, so that in the strip from x to x 4 dx, the speed is a constant given

by ¢(z).

Then repeatedly applying Snell’s law from equation , it must be true that

sin((x))
c(x)

Now take the limit as dz — 0, and this law will remain true.

(2)

is a constant of the path.
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1.1. A bit of elementary calculus: The angle 1) = ¢(x) that the path makes

to the z-axis is such that tany = j—z = y/(x). We also have arc-length s defined
by ds? = da? + dy?. Putting these together, we have
Y dy 1 dx

siny =

cos =

/1+y/2:£’ /1+y/2:£'

It is also useful to derive from these that
dw y//

KR = —
&5 (1 +y2pn
where k is the curvature of the path, defined in a way that is invariant under
rotation of the the axes.

Example 3 (Shortest path on a ‘muddy field’). As an example of special interest,
take the case where c(x) is linear in x, in fact suppose c¢(x) = x. Then we have
sin(x)

3 — = tant
(3) . constant,

So we can translate the statement of Snell’s law into a statement that y = y(x) is
a solution of

(4) Y

ity

If A =0 this gives the lines y = constant, and for A # 0, we obtain
(5) 4 (y —yo)? = A7

i.e. the circles with centres on the line x = 0. This completely solves the problem
of finding the runner’s shortest-time path between any two points on the field. We
shall return later to this remarkable geometrical fact.

Clearly we could now consider the even more general problem that arises when
¢ = ¢(x,y). But this is left to the worksheet to explore. Instead, we will take a
different point of view. We reformulate the problem we have been studying in the
following much more general terms.

We will think of the time taken to cover the path as a functional of the path
taken. That is, it is a function on the space of possible paths, which are themselves
functions.

Specifically, in the problem we have been considering, we can define a functional
I[y] for functions y = y(z) by:

©) = [ Y



6 JAMES MAYNARD

and then we ask for the least value of I[y| as y(z) varies over all possible paths.
The function y(z) which achieves this least value is called a extremal.

In this case it is obvious that we are looking at minimum values of an integral,
but in general this is too restrictive. We use the term stationary value. This
will mean that (in a sense to be defined) the first derivative of I[y] vanishes. It
will allow for a range of possibilities (a minimum, or maximum, or something
equivalent to saddles, or more complicated situations in which higher derivatives
also vanish).

We now regard this as a special case of a far more general problem in which we
look for stationary values of

(7) 1ly) = / Flz,y(2),y/(2)) do

for a fixed function F(xy, z9, x3). For simplicity we write this as /[y] = fab F(z,y,y)dx.

The remarkable discovery (due principally to Euler and Lagrange) is that there is a
single method which deals with all such questions. It can be extensively generalised
further (to many dimensions, many derivatives, and constraints).

Even more remarkably, problems which don’t look at all like least-time problems
can usefully be reformulated in this way. Dynamical systems have trajectories
which can be considered as being solutions to such an stationary-value problems,
not of shortest distance or shortest time but of least action, as will be explained.
One reason that this is a very useful description of physical problems is that the
concept of the stationary value is independent of the coordinates used to describe
it.

Theoretical physics today is rooted in the idea of stationary values of functionals
of fields. The current Standard Model of particles and forces is defined by writing
down a least action principle, as also are string and superstring theories. So part
of the motivation for this course comes from the deepest properties of the physical
world, properties which only come to light through the transforming power of
creative mathematics.
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2. THE EULER-LAGRANGE EQUATION

We now consider the general problem of finding the y(x) which gives a stationary
value to the functional

b
(®) Iy = / Fle.y,y) de.

From a completely rigorous point of view, we would have to specify the exact
(huge) class of functions y(z) over which the functional is taken (differentiable,
differentiable with continuous derivative, differentiable to every order?), and we
would also need some concept of what it means to vary a function to a ‘nearby’
function, by putting a metric or at least a topology on the class of functions.

In this course we will take a more elementary point of view and assume that all the
functions we use have sufficient differentiability for the problem in hand. We will
typically state results for smooth (infinitely differentiable) functions, since most
situations in the real world are smooth (or can be approximated arbitrarily well
by smooth functions). There is a Part C course which develops the more rigorous
analysis. The one point that we will make rigorous, to help justify this rather
cavalier approach, is the idea of a ‘bump function’.

Lemma 2.1 (Bump function). There ezists a function B(x) with the following
properties:

(1) B(x) is infinitely differentiable,

(2) B(z) =0 unless z € [0, 1],

(3) 0 < B(z) < 1ifz e (0,1).

Proof (sketch, non-examinable). Let B(x) be the function

0, x <0,
B(z)=qexp(—z '(1—2)"), 0<z<1,
0, x> 1.

Then for all n, B™(z) — 0asz | 0 or z 1 1 (since the exponential decay dominates
teh polynomial growth), so f is infinitely differentiable at 0 and 1, so infinitely
differentiable everywhere. Clearly 0 < B(z) <1 and B(z) > 0iff x € (0,1). O

By considering B((x — a)/(b — a)) we can define ‘bump functions’ on any interval
[a,b], and by scaling we can assume it takes the value 1 (its maximum) at the
midpoint, which is sometimes convenient.
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So a function can always be varied within any interval (by adding on a bump
function) without affecting its differentiability, and it doesn’t matter what degree
of differentiability we are talking about.

Lemma 2.2 (Test function lemma). Let y(z) be a continuous function on |a, b
such that

b
[ sty =0

for every smooth function n(x) with n(a) = n(b) = 0. Then y(z) =0 for x € [a,b].

Proof. For a proof by contradiction, suppose that y(zg) # 0 for some xy € (a,b).
W.L.O.G assume that y(zg) > 0. Then we must have y(z) > 0 everywhere on
some interval [c,d| containing zy with a < ¢ < d < b. (Since y(z) is continuous.)
Now take a bump function b(z) on [c,d]. By assumption

b
| vz o
but since b(z) = 0 unless x € [c, d] this means that

[ v =o

which is impossible since y(x)b(x) is positive and continuous in this interval. This
gives a contradiction, and so we must have that y(z) = 0 on [a, b]. O

A small variation of this is the following.

Lemma 2.3 (Test function lemma II). Let y(z) be a continuous function on |a, b
and c1,co constants such that

b
qM@+@M®+/g@M@Mx:0

for every smooth function n(x). Then ¢y = ¢ =0 and y(x) =0 for z € [a, b].

Proof. First assume that ¢; # 0, so WLOG assume ¢; > 0. Let n(x) be a bump
function on the interval [a — €, a + €], so that n(a) = 1, n(x) = 0 for x > a + € and
n(x) € [0,1]. We see that for e small enough

0= cim(a) + ¢,(b) +/ y(x)n(x)de > ¢ — /a 6 ly(x)|dz > 0.

This gives a contradiction. Hence we must have ¢; = 0. An identical argument
shows ¢y = 0. Then by Lemma [2.2| we have y(x) = 0. This gives the result. O



CALCULUS OF VARIATIONS 9

Now we embark on the analysis of the stationary values of the functional I(y).
We might be tempted to try to vary I[y] by some infinitesimal function 6(x),
but there are uncountably many possible functions and this can lead to many
difficulties. To avoid needing to worry about these many possibilities, we instead
to focus on a single one-dimensional family of variations. We fix a function n(z),
and consider

(9) y(z) + an(z),

where « is a real parameter. This allows us to consider

b
(10) Iy + an) :/ F(x,y+on,y +on')dz.

Specifically, we have the following lemma.

Lemma 2.4 (Minimisers give stationary values). Let y(x) be a minimiser for I[y],
and n(z) a smooth function. Then we have that

d
—I = 0.
da ly + an) a=0

Proof. This is just the standard calculus criterion for minima in disguise. If y(x)
is a minimiser of I then I[y 4+ an] > I[y] for all « in the neighbourhood of zero,
so f(a) = I[y + an| attains a minimum at o« = 0. Thus f’(0) = 0, which is the
statement of the lemma. 0J

Lemma 2.5 (Constrained minimisers give stationary values). Let y(x) be a min-
imiser for I]y| subject to the constraint y(a) = ¢; and y(b) = co, and n(x) a smooth
function with n(a) = n(b) = 0. Then we have that

d
—1 = 0.
do [y + O”]] a=0 0

Proof. This is the same as the previous proof, noting that if n(a) = n(b) = 0 then
y + an still satisfies the constraints y(a) = ¢; and y(b) = cs. O

Theorem 2.6 (Euler-Lagrange equation for natural boundary condition). Let I[y]
be the functional

b
Iy = / Fle,y,y) de

for some smooth function F. Then the minimisers y(z) of I satisfy

(11) o = =0
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and

0 0
12 —Flo—a = —Fl.= = 0.
( ) ay, ’x—a 8:(// ‘x_b 0

Proof. Let y = y(x) be a minimiser of I[y], and n = n(x) a smooth function. By
Lemma 2.4 we have that
= 0.

a=0

d
s
o ly + o]

By applying the chain rule, we can write
d ’ 0 0
54w+amaﬂ=i£<M@5§ﬂ%yw)+n(%9,(,%@wa

(Here by F(m, y,y') we mean F3(x,y,y’), where the function Fj is defined by
F3(33ay> ) = %F(mj%z)')

The next key step is an integration by parts, to eliminate the 7'(x). First note
that:

d/ 0 N0 d 9
—(na—y,F(x,y,y)>—na—y, (fvyy)+nd oy F(z,y,y),
SO

b ) b d 9 ,
| @ tie = [ Feoan)], - [ a5 h P

a

(Here the & 1, represents a total derivative, acting on every appearance of x whether
explicit or implicit (in y and y').)

i[[+ ]‘ _ a_Fb+/b() or A oF\
do WA T nay’ u anx Oy dx oy .

Now, for y to be an extremal, the LHS of this equation must vanish for every
choice of 1. Hence the RHS must vanish for all n(x). But then Lemma [2.3|implies
that

Hence

d OF B or
de oy Oy
and 5 9
Fx:ai_sz —07
oyt ay' o=t
as required. O

Theorem 2.7 (Euler-Lagrange equation for fixed endpoint boundary condition).
Let I[y] be the functional
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for some smooth function F. Then the minimisers y(z) of I with y(a) = ¢; and
y(b) = ¢y satisfy

(13) — =0

Proof. This is essentially the same as the previous proof, but by Lemma [2.5 we
only consider functions 7 satisfying n(a) = n(b) = 0. For all such functions we find

that
A N AT T AP
a=0 ”ay' u anx Oy dx oy v

b OF d OF
= [ e (a—y - d—@) ar.

(The term [7)3—5]2 vanishes since 7(a) = n(b) = 0. Now, by Lemma [2.2| we see that
we must have

d
0= —1
o [y + an]

as required. O

Note: Remember that finding extremals and stationary values does not mean the
same thing as locating maxima or minima. It will need some further piece of infor-
mation to determine whether an extremal is a (local) maximum, or (local) mini-
mum, or neither of these. However, maxima and minima must be extremals.
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3. CLASSICAL EXAMPLES AND BASIC THEOREMS

We first recall the two examples we saw before, now from the point of view of the
Euler-Lagrange equations.

Example 4 (Shortest distance on the Euclidean plane). Minimizing the distance
of a path y = y(zx) between (x1,y1) and (x2,ys) is equivalent to minimizing I[y] =
fab F(x,y,y)dx subject to y(z1) = 1, y(x2) = yo, where F is given by

(14) F(r,y,y) = V1+y2

Since %—5 = 0, the Euler-Lagrange equation becomes

d oF d Yy _0
dz oy dz /1 + ¢ B
y/

Hence T 18 constant, hence y' is constant, and so we have a straight line.
+y

(15)

Example 5 (Shortest paths on the ‘muddy field’). Next, we can verify the circular
paths found for the ‘muddy field” problem in lecture 1. We now take

Nz

(16) Fleyy)="—
The Euler-Lagrange equation is
d oF d ! oF
(17) = Y ey

dedy  dez\/1+y2 Oy
and this immediately allows one integral to be done, leaving

/

Y
=
/14 y?
which is just the same equation as we derived by generalizing Snell’s Law. To
remind you, the solutions are (arcs of) circles with centre on the y-axis. (Again,

there are both fized point and natural boundary conditions to consider, and you can
check that these all give solutions which make sense.)

(18)

3.1. An ‘ignorable coordinate’. You should take particular note of the way that
these problems simplified from a second-order ODE to a first-order ODE because
this particular F'(x,y,%’) had no explicit dependence on vy, i.e. %—5 = 0. This turns
out to be of enormous importance, especially in applications to mathematical
physics. The dependent variable y is said to be ignorable in this situation. We can

state a general theorem:
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Theorem 3.1 (Special case of Euler-Lagrange equation). Let F(xy,z2,x3) be a
smooth function such that

a—sz<.’L'1, x2,$3) = 0

Let y = y(x) be a minimiser for the functional

I[y] ::/ F(x,y,y)dx.

Then = F(x,y,y’) is a constant.

0
oy’

3.2. The same problem from a different standpoint. If we consider the
problem of finding stationary values of the functional I[y] which comes from tak-

ing
/1 12
(19) F(xayay/) = %7

the geometrical interpretation tells us immediately that the extremals must be
(arcs of) circles with centre on the z-axis. However, this is not immediately obvious
if we write down the Euler-Lagrange equations:

d ! V1+y?
dz \ y\/1+ y? Y
giving a complicated-looking second-order ODE. The key thing is to note a more

general result which obtains when the F' has no explicit dependence on the x. This
is Beltrami’s identity, and is also of great importance.

9

Theorem 3.2 (Beltrami’s identity). Let F'(z1,x2,23) be a smooth function such

that 5
6—1’1F<I’1, 5132,.7)3) = 0
Let y = y(x) be a minimiser of Iy] = fabF(x, y,y")dx. Then we have
d OF
21 Ly _F) =0
(21) (V5 -F) =0
and so
OF
(22) H= y'a—y, — F = constant.

Proof. Since OF (x1,x,x3)/0z1 = 0, we have

d 0 0
_F /:0 /_F ! //_F l‘
o F@yy) +yay (z,9,9) +y oy (z,9,9")
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But by the Euler-Lagrange equation, this is

d o 0 d 9,
/__F / //_F / —- I_F /
Vazayl @y )y Feyy) =4 (y oy (fv,y7y))7

which proves the result claimed. 0

Alternative proof. Although the preceding proof is easy, it does not give any idea
of why this first integral should exist. The following argument shows the reason:
it is really just a special case of an ignorable coordinate. We simply exchange the
roles of z and y and think of the curve to be found as a function z(y) instead of
as a function y(z). (This is a clearly a very natural idea in the particular problem
we are studying!) Writing 2’ for dz/dy, so that ¢/ = (2/)7!, the integral

b
(23) [ e,y =) =
becomes
d
(24) / F(z,y, (") Ha'dy, z(c)=a, x(d)=b
Now z is the ignorable coordinate, so the Fuler-Lagrange equation becomes
0

B (F(z,y,(z')"")2’) = constant.

Taking care over the partial derivatives here, i.e. remembering how expressions like
0/0y" F(x,y,y") are properly defined, this yields
—(2) 2 Fy(z,y, ()2’ + F(z,y, (2))"") = constant.
(Here F3(z1,x9,x3) = OF (21, 29, x3)/0x3.) Thus
—y'F3(x,y,9y") + F(x,y,y") = constant.
which is equivalent to the Beltrami identity. 0

Applied to the ‘muddy field” problem, we deduce that

—1
(25) H = ———is constant,

yy/1+y"?
and it is straightforward to perform the remaining integral and recover the circular
paths.

In this case, however, there are no solutions satisfying the natural boundary con-
ditions. This agrees with the fact that there is no minimum or maximum value
for the integral between x = a and = = b. It can take any real positive value, and
the infimum 0 cannot be attained.
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We shall come back to such shortest-path problems, or more generally the problems
of geodesics, in Lecture 5. It will turn out that the ‘muddy field’ is actually a way
of representing the core mathematical concept of the hyperbolic plane.

Example 6 (Brachistochrone). Find the curve which allows a smoothly falling
particle released from rest at one point to reach a given lower point, not immediately
below it, in the shortest time.

(We assume that gravity is a constant force g.) This is the most famous example of

a stationary integral problem, originally solved by Newton, J. Bernoulli and others

in the 17th century. (Seehttp: //mathworld. wolfram. com/BrachistochroneProblem.
html|). The answer is not at all intuitive.

This needs some first-year mechanics to obtain the relevant F(x,y,y’). In this
problem we use x for horizontal distance and y for distance moved downwards.
(This is purely for the sake of being able to start at the origin and yet avoid

expressions like \/—y.)

Ezplicitly, suppose the particle is released from (x,y) = (0,0) at t = 0, and then
follows a curve y = y(x) which reaches (z,y) = (a,h), so that h is the height
lost, and a the horizontal distance traversed. Using the initial conditions, and
conservation of energy, we know that at each point in the motion along the curve

y=y(x),
1
E = ém(x'2 + %) —mgy =0

So
o 29y
x =
1+y?

where y' = dy/dz, and so

1 1 12
dt = ——V—'—ydx ’
V29 VY

and hence the total time T is given, as a functional of the curve y(z), by

(26) Tly) = \/12—9/0 v 1\;;‘]2 da |

We want the curve y(x) which minimises T[y], subject to the fized-end boundary
conditions of passing through (0,0) and (a,h). (Note that this can also be inter-
preted as solving the quickest path problem for the ‘muddy field’ where speed is
proportional to \/y.)

We could easily write down the FEuler-Lagrange equations, but it’s more efficient
to take a short cut and use the Beltrami identity since F(x,y,y’) depends only on


http://mathworld.wolfram.com/BrachistochroneProblem.html
http://mathworld.wolfram.com/BrachistochroneProblem.html
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y,y'. This tells us that

(27) VIV +y?% =2

for some constant 2c. To solve, make the substitution y = 2csin®(¢/2), and it
becomes

dx
P = 2csin’(¢/2) = ¢(1 — cos ),

and hence (using the initial condition)

(28) = (¢ —sing), y = (1 - cos §),
which is a cycloid. (See http: //mathworld. wolfram. com/Cyclosid. html| for
pictures).

The ratio of a to h fixes the arc of the cycloid that solves the problem. If a/h = 7/2,
the cycloid is followed to its lowest point, at ¢ = w, with ¢ = a/7; if a/h < 7/2
then it is a smaller segment of the cycloid, with ¢ chosen to fit, and so on.

It is worth filling in some more details. One finds that  is constant, namely \/g%
So the time taken to reach the point with parameter ¢ is just \/c/_gd). Suppose
the horizontal distance a is given, and we ask for the path which reaches it fastest,
over all possible h. The time is given by \/c/_g ¢, where c is given implicitly by the
relation a = ¢(¢ — sin ¢). So finding the fastest way of reaching a is equivalent to
minimising ﬁ One may check that this is given by ¢ = 7. This verifies what
we obtain much more easily from taking the natural boundary condition y" = 0
at © = a. This selects the cycloid which arrives at x = a at its lowest point, i.e.
where ¢ = 7.

Example 7 (Soap Film). Consider a surface obtained by revolving the curve y =
y(x) around the x-axis, between the values x = x1 and x = xo. What curve gives
the minimum area?

In this question the problem is to find a minimum area, but as it is the area of a
surface of revolution, this reduces to finding a curve. This can be visualised as a
soap film suspended between two circular wires at x1,xo, given that the film will
establish an equilibrium at a position of minimum area.

In this case the functional Aly] to be minimised is readily given as
(29) Aly] = 27r/ yv1+y?de.

1
Again the Beltrami identity applies to gives us a first integral:

Y

Vit


http://mathworld.wolfram.com/Cycloid.html
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of which the solutions are

(30) Y= ccosh(x — T

c )
Filling in the details and then fitting the initial conditions is a rather fiddly business
and is left as an exercise.

The cosh curve will turn up again in connection with another problem — finding
the shape taken by a hanging chain. It is called the catenary because of this
connection, and the surface we have discovered is the catenoid. It plays a major
part in the geometry of surfaces.

Example 8 (A typical second order ODE problem). Suppose

1 1
(31) Flr,yy) = 5y* = v +y (@), y(0)=0=y(1).
Then 2—5 =1, %—5 = —y+ f, and the the Fuler-Lagrange equation is
(32) y' +y— flz)=0.

In this case we don’t have any helping hand from an ignorable coordinate or Bel-
trami’s identity. However, we recognise the second-order ODE as the type of equa-
tion studied intensively in the Differential Equations courses, with the boundary
conditions which can be solved by a Green’s function.

In this course we shall not pursue the solutions of such equations any further;
actually, we are more interested in a different question. Can we translate the
differential equations we have met before into a problem of finding extremals?
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4. EXTENSION TO MANY VARIABLES AND HAMILTON’S PRINCIPLE

In this section we explore the application of variational principles to Mechan-
ics.

First we need a modest generalization to allow more than one dependent variable.
For this it is convenient to change our notation, since in mechanics applications
it is actually time that is the one independent variable, and the many dependent
variables represent the spatial coordinates of the mechanical system. So we think
first about ¢(t) and F'(t,q,q) instead of y(z) and F(z,y,y’), where ¢ is a typical
spatial coordinate and t is time. There is a reason for using ¢ rather than z as
the dependent variable; we do not want to be restricted to Cartesian coordinates
as use of the letter x might wrongly suggest. The variable ¢ might be angle or

radial distance, for instance. We then make a generalization to q1(t), g2(%), . . . g (%)
and functions F'(¢,q1,...qn, q1,--.,¢s). Thus we consider stationary values of the
functional

b
(33) I[qla-"7Qn] = / F(t>qlaqn?q177Qn)dt

Theorem 4.1. Let F' be a smooth function, and

b
I[q17"'JQTL] :_/F(t7QI7"‘7qn7q'17"'7q.n)dt‘

Then the minimisers ¢ = q1(t),...,q, = qn(t) of I satisfy

d OF OF
4 — - = =1,...
(34) 196 9q 0, fori=1,....n
and the boundary conditions
L
(35) {g—(jja,forizl,...,n.

The minimisers of I subject to the constraints ¢;(a) = c1; and q;(b) = co, satisfy

but not necessarily .

Proof sketch. The method of finding these is the same as in the simplest case; we
choose an index ¢ a test function 7;, and temporarily fix ¢; for j # ¢ but vary ¢; with
¢i(t) = qi(t)+an;(t). Since we have temporarily fixed g; for j # 4, the functional 1
is precisely the form of the cases already considered. The Euler-Lagrange equation
gives

d OF OF

dtdg;  dqi

oF1°
[”Z‘a—q;L -

with boundary condition
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Doing this for each index ¢ then gives the result. ([

We have the important special cases (1) of an ‘ignorable coordinate’ that arises
when some variable ¢; does not appear in "

or
0g;

1S a constant.

(36) = 0 implies

9q;
and (2) the generalisation of the Beltrami identity that arises when F' is indepen-
dent of ¢ :

oF . —~
(37) Frie 0 implies H := 2%

oF
9q;

— F'is a constant.

4.1. Hamilton’s Principle. The following statement sums up why Mechanics
can be reformulated in terms of extremal problems and solved by the calculus of
variations.

Definition 1. A constraint in a mechanical system is called workless if there is
no friction (the constraint does no work);

A constraint is called holonomic if it is of the form ¢(g;,t) = 0, where the q; are
some set of coordinates. Specifically, the constraints do not involve the velocities
Gi-

A force is called conservative if it is the gradient of a potential V.

Principle (Hamilton’s Principle). If a mechanical system is subject only to holo-
nomic, workless constraints and all forces are conservative, then the motion ac-
cording to Newton’s laws is an extremal of the integral

(38) 1l = / L{gs, s, £)d

where the coordinates q; are arbitrary but unconstrained, and L =T —V = Kinetic
Energy — Potential Energy of the system as expressed in those coordinates. L is
called the Lagrangian.

This is Hamilton’s Principle, also referred to as the principle of least action, where
the integral I[g| is called the action.

In this course, we shall take it as given, not proved, that it correctly encodes
physical laws. (In the Part B Classical Mechanics course it will be shown that it
is equivalent to Newton’s laws.)
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Note that I[g] has the dimensions of energy X time. Action is a technical term
for a physical quantity with these dimensions. It turns out to be the most fun-
damental physical quantity (and in particular Planck’s constant is a quantum of
action.)

Example 9 (Motion in free space without any forces). The simplest example is
just given by taking L =T = %m(:'v2 + 9%+ 2%). The Euler-Lagrange equations are
Just

(39) T=9y=2=0,

i.e. Newton’s laws of motion for a free particle.

Example 10 (Motion in free space subject to a conservative force with potential).
The next simplest example arises from L =T —V = im(i*+9*+ %) —my(x, y, 2)
for motion in free space subject only to a conservative force with potential ¥ (typ-
ically, Newtonian gravity.) The Euler-Lagrange equations then become

. . %

T eV T ay’z_ 0z’

The value of the reformulation as a stationary integral often emerges more clearly
if we make a change of coordinates. For orbit problems, with ¢» = —k/r, the use of
Cartesian x,y, z is correct but not very helpful. Since the Lagrangian formalism
does not mind which coordinates we use, it is more convenient to use spherical
polars instead.

Example 11 (Orbit problems with potential ¢» o< —1/7). In polar coordinates
(r,¢,0) for motion in free space with potential 1» = —k/r we have

1 . . k
L=T-V = §m(7'“2 + 720 + r?sin® 0¢?) + sl

The 0-equation 1s:

d .. .
&(TQQ) —r%sinf cosf¢* =0,
which is solved by 6 = /2, i.e. by paths always in the equatorial plane. Restricting

our attention to such paths, the remaining equations become

ok
i‘—rq§2+r—220,

d 2 M

—(r =0,

= (%)

which we can recognise as the equations obtained by a longer argument in the
Prelims treatment. The ¢-equation obuviously integrates to

rd=h.
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It is very important to note that the simplicity of this step arises directly from the
fact that ¢ never appears in L; it is an ignorable coordinate. So in the Lagrangian
formulation, the conservation of angular momentum is an immediate consequence.

The energy conservation statement can be equally easily derived; it is the equivalent
of the Beltrami identity. By the remarks above, the fact that L has no explicit
dependence on t means that

“ . 0L
40 H = i— — L
(40) zi:q 2,
remains constant along the path.

It is immediate to see from the original form of L (before the specialisation to
equatorial paths) that in this case H is just T4V, i.e. total energy. For equatorial
paths we reduce to

Loy 209 K
(41) @)~ =B,
and hence now we have reduced the whole problem to a single integration, with its
well known conic solutions.

The two simplifying theorems we have used, that of ignorable coordinates and
Beltrami’s identity, point to a deep feature of physical theory. There is a direct
connection between the concepts of symmetry (i.e. invariance under a group of
transformations) and conservation laws.

Independence of angle ¢ means that the action is invariant under ¢ — ¢ + «, and
this fact is equivalent to the conservation of angular momentum. In a problem
where x is ignorable, i.e. the action is invariant under x — x+«, the corresponding
momentum in the z-direction is conserved. And when ¢ can be replaced by t + «,
we have a conserved energy.

Notice that angle x angular momentum, length X momentum, and time X en-
ergy, all have the dimensions of action. This conjugacy becomes fundamental in
quantum mechanics, and is the basis of the famous Heisenberg Uncertainty Prin-
ciple.

The Euler-Lagrange equations must remain the same in form under change of
coordinates, because the concept of being stationary doesn’t depend on which
coordinates are used to describe the question. On a technical level this means that
we can go ahead with writing down 7" and V' in any way we like, without any
chain-rule transformation of variables.

We shall just look at a few examples to illustrate this simplicity.
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5. MORE EXAMPLES IN PHYSICS AND GEOMETRY

So far we have not made use of the new freedom to impose holonomic con-
straints.

A typical problem studied in Prelims is where a particle moves smoothly on a
surface of revolution, say the paraboloid az = x? + y?. Let’s derive the equations
of motion from Hamilton’s Principle.

Example 12 (Movement on paraboloid). At any time the position of the particle
may be given as (y/azcosf,/azsinb,z). That is, we have used the holonomic
constraint provided by the smooth surface to eliminate one of the three spatial
dimensions and reduce the space to that of two dimensions. Here we have used z, 0
as the two q; needed, but in principle we could have used whatever we liked. It’s a
good idea, however, to use the angle 8 as one of the two coordinates because then it
turns out to be ignorable in L and so gives rise to an easy first integral. Explicitly,

1 a. .o o~
L=T-V= 2((1+4z)z + azb?) — gz
and the fact that 0 is ignorable implies 6= h/z for some constant h. The fact that
L has no explicit dependence on t, and that it is quadratic in the velocities, gives
the fact that T + V s conserved. Thus all the facts in the Prelims treatment are
immediately derived without any dotting and wedging of vectors to eliminate the
reaction force.

Prelims questions do sometimes ask for the reaction force (e.g. to determine when
a particle will lose contact with a surface) and if this is needed then a further
step is required to deduce it from the acceleration of the particle. But in many
contexts we are not actually concerned with this force at all and nothing is lost by
eliminating it from the analysis altogether.

Example 13 (Rotating particle on a straight wire; C.3 Mod 2010). A parti-
cle moves smoothly on a straight wire which is at angle B to the wvertical and
rotates at angular velocity w. The Mods method involves considering the nor-
mal reaction force and eliminating it. Using Hamilton’s Principle we can ig-
nore the normal reaction and go straight to L = T — V. The particle is at
(2 tan B coswt, z tan Bsinwt, z). So the K.E. is just 1/2{(zw tan 8)* + (Zsec 3)?}
and the P.E. is gz. There 1s just one Fuler-Lagrange equation, giving the equation
of motion immediately as

5 —w?sin® Bz = —gcos® B
as asked for in the question. This Mods question also asked whether E =T +V

is conserved, which it is not. (Obviously — because work has to be done to keep
the rod rotating at the constant angular velocity w.) The Lagrangian method does



CALCULUS OF VARIATIONS 23

better, by producing an H which is conserved, but is not equal to total energy,
namely

H=:0L/0:—L = %{(z sec 8)? — (zwtan 8)*} + gz .

Notice that this non-conservation of T'+ V' follows directly from the fact that T is
not a quadratic in the velocities.

Now we are free to consider more general problems which it would not be easy to
solve by the methods used in first-year questions.

Example 14 (Movement on a general surface without forces). Suppose we have a
particle moving on a quite general surface embedded in three dimensions. (In what
follows, we shall assume this constraint of contact with the surface without worrying
about how it could be physically realised without the particle ever losing contact.
For a mental picture, you might consider a spacecraft whose exterior surface is in
the form of a double layer; the particle moves between these two layers so that the
normal reaction can point either inwards or outwards.)

Hamilton’s Principle leads us immediately to a Lagrangian for this motion: it is
simply the kinetic energy T for motion constrained to lie on the surface. Explicitly,
suppose the surface is parametrised by (u,v), so that its points are specified by
x(u,v) = (z(u,v),y(u,v), z(u,v)). Then writing L in terms of the coordinates
(u,v), we have:

L=T= 5(.7:2 + 92+ %) = E(E(u, V)02 + 2F (u, v)id + G (u, v)0?)
where

E(u,v) = xy.Xy, F(u,v) = X4.X,y, G(u,v) = X,.X,

We can now write down the Fuler-Lagrange equations, thus in principle determin-
ing the entire motion. In general these second-order differential equations for u
and v will not be easy to solve, but a simplifying feature is that the path taken by
the particle is a geodesic on the surface — a stationary value of arc-length.

To show this, note first that a Lagrangian L of a purely ‘kinetic energy’ form, (i.e.
quadratic in the velocities ¢;, and with no explicit dependence on t) has a special
property: by the Beltrami identity the value of L is itself a constant of the motion.

The kinetic energy is also positive-definite. Now if f is some strictly increasing
function on the positive reals, consider the stationary value problem generated by
f(L). The Euler-Lagrange equations will be

aorL) _orw)
dt  0¢; oy

d (., oL\ . 0L
5 (105 ) -rog=o
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dL oL d oL OL
1" L i /L . _ —
A )dtaQi+f( )(dta% 5’%) !

Zut as Cé—f =0, and f'(L) # 0, this reduces to the same equations as generated by

Taking f(L) to be /L, this tells us that

/ VE(u,v)02 + 2F (u, v)ud + G(u,v)o2 dt

generates the same Fuler-Lagrange equations. But this is simply the arc-length for
a trajectory on the surface, defining a geodesic where it is stationary.

If we wish we can eliminate the time variable t and write the integral as

/ VE(u,v) + 2F (u,v)v, + G(u,v)v2 du

where now v = v(u) is being considered as defining the curve on the surface. This
is of the same form as we studied earlier.

So in the absence of forces, a particle simply takes the shortest path (at least in the
sense of a local minimum) it can, consistent with geometrical constraints. In this
case, least action actually coincides with shortest distance. This is a generalization
of Newton’s second law.

5.1. More geodesics.

Example 15 (Circular cylinder). Take the surface to be the circular cylinder of
radius 1 and axis along the z-axis. It is then given by

x(u,v) = (cosu,sinu,v) .

We then calculate x,, = (—sinu, cosu, 0),x, = (0,0,1), so that E =G =1, F = 0.
The kinetic energy Lagrangian is just

1
L(u,v,,0) = §(u2 + %)

and the geodesics are given by

it=0v=0
and so are straight lines in the (u,v) coordinates. The same conclusion comes
equally easily from finding the geodesic as stationary arc-length, where the method
above gives vy, = 0, i.e. v = au + b, as the equation of the geodesics. (Note that
paths on the cylinder illustrate very clearly that a local minimum of path-length is
not at all the same thing as the absolute minimum.)

Why is this so simple? The point is that although the cylinder has been given
as a curved surface in R3, it is in fact intrinsically flat, as is intuitively obvious:
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the surface can be unwrapped without any stretching and laid out on a Fuclidean
plane. The proper word for this is that it is isometric to the plane. Under such an
1sometry, the geodesics are unchanged, since they are defined intrinsically.

A similar example (a circular cone) is left to the worksheet.

It is worth noting that the concept of geodesic on a surface is much more general
than this. There is no need to restrict to surfaces as defined by an embedding in
an ambient three-dimensional space. The metric can be given abstractly (in fact
we did this with our ‘speed’ functions in the opening lecture). Also, there is no
need to restrict attention to geodesics on surfaces; we could equally well study
geodesics in spaces of any number of dimensions.

In physics, this is a most important idea in the development of Einstein’s general
theory of relativity. In this theory, gravity becomes a part of the four-dimensional
space-time geometry, not a force, and the orbits of free fall under gravity (including
light rays) must be geodesics in the resulting space; the four-dimensional space is
not thought of as embedded in anything bigger.

In pure mathematics, the study of geodesics is a vital part of Geometry and some-
thing you could follow in the B course next year.
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6. GENERALIZATION TO SEVERAL INDEPENDENT VARIABLES AND TO HIGHER
DERIVATIVES

6.1. Several independent variables. Suppose that instead of considering the
stationary values of functionals of a curve y(x), we go up one dimension and
consider the variation of surfaces z(z,y). Thus we define the functional

// T, Y, 2, 2y 2y)dady,

where R is some region in the (z,y)-plane, and z,, z, are the partial derivatives of
z(x,y) with respect to z and .

For example, F(z,y, 2, 2z, 2,) = /1 + 22 + 22 would give the area of the surface,
and so allow the investigation of minimal surfaces in generality (not restricted to
surfaces of revolution).

The method, as always, is to vary the dependent variable along a one-dimensional
path:

2(z,y) = z(x,y) + an(z,y),

oF oF oF
//( m +nya )dmdy-

We can integrate by parts. In the case of fixed boundary conditions, i.e. n =0 on

OR, we obtain:
B / / OF 0 0F 0 0F ded
B R "0z " ox Oz, Oyoz, v

and conclude that the Euler-Lagrange equation, which must hold at all points in
R, is

which means that

88F 0 oF OF

dx 0z, 8y 0z, 0z

Further generalization, to n rather than 2 independent variables, is immediate.
The result is the following theorem.

Theorem 6.1. Let F' be a smooth function, and I the functional
Iu] = / F(zy,...,xp,u,uy, ... uy)dey ... de,
R

over a region R C R™ for smooth functions u = u(zy,xs ... x,) where we write u;
for Ou/0x;. Then the minimisers of Iu], subject to fixed boundary conditions on
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OR, satisfy the Euler-Lagrange equation

“. 9 9F OF
Z _

Note: In the above theorem we assume that not only w, but also the region R is
sufficiently ‘nice’ for the statement to hold.

Example 16 (Reformulation of wave equation). A simple and beautiful example
of this is the case where

1 S

wn which case the Euler-Lagrange equation is just

n

" 9 OF OF 0 )
=2 Gwou w2tV

i.e. the Laplace equation or its n-dimensional generalization. This indicates that
Laplacian or wave-equation problems can readily be reformulated in a variational
form — an idea which is fundamental to modern quantum field theory.

6.2. Higher derivatives. Suppose now we wish to find stationary values for
b
I[y]z/ F(z,y,y,y")dz.
Varying y(x) as before, we find

I —/b a—F+ ’a—F+ nOF dx
a=0 J, ”ay n@y’ ”ay" '

da
Integrating by parts twice, we find
dI { <8F d OF ,8FT
= "

ay/ dz ay//) +1 ay// "
N /b OF d8F+d2 oF 4
= — =+t T
“ g Oy dxdy  dx?dy”

Thus we now have, as necessary condition for a stationary solution, the satisfaction
of the Euler-Lagrange equation

OF doF d2 9F

oy dzoy a2 oy

dala=0
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This is a fourth-order differential equation, requiring four constants of integration.
These must come from a suitable selection of end-point conditions (now on both
y and y), and natural boundary conditions

OF d OF  OF

Gy/ dz 8y” o ay//

Example 17 (A diving board). We shall study a problem which gives a picture
of how the calculus of variations can solve practical problems of optimisation such
as arise in engineering and ecOnOMIcS.

We consider the functional

Ely] :/0 (%K(y”)2+pgy) dz,

which can be considered as the total energy of an elastic beam of horizontal length
L, clamped at x = 0 so that it hasy = 0,y = 0 there, but free at x = L and bending
under its weight. (We assume that y is suitably small, so that this functional is
a reasonable approzimation to the physical situation.) The beam will settle in an
equilitbrium where the total energy is minimised, and so the calculus of variations
gives a method to find the shape of the beam.

The Euler-Lagrange equation is
Ky//// + pg — 0

and the four boundary conditions are supplied by y(0) = y'(0) = 0 at one end, and

then the natural boundary conditions y"(L) = y" (L) = 0 at the other. This clearly

specifies a quartic polynomial, and satisfaction of the boundary conditions gives
(x) = —%(ﬁ —4L2° +6L%2%).

. . . . . . A
Note that in this situation, the free end of the board will droop to height y = — 2%

Imagine a swimmer in the pool putting a hand to the free end and fizing it at height

Yy = —% + h. Clearly, if h = 0 no force is required at all. But for h # 0 a force
will be required. We can evaluate this force by extending the analysis.

First, solve the stationary problem again but now for the fized-end condition y(L) =

—pg—f: + h. To shorten the expressions, write w = £ in what follows. We find,

stratghtforwardly, that now
h
y(l’) = _;0_4(1'4 — 4L.Z'3 + 6L2.ZC2) + m(_Lx3 + 3L2£Ij'2) '

Clearly the energy functional E[y| can now be considered as a function of h. It will
take the least value when h = 0. If the free end is raised, the energy will increase,



CALCULUS OF VARIATIONS 29

and this can only come from the work done, which is given by [ F(h)dh, where
F(h) is the force needed to keep y(L) = —3% + h. Thus F(h) = S E(h).

3hK
L3 -

This is easily calculated and s
Returning to the situation where the end x = L s free, we can apply the same ideas
to find the forces being applied at x = 0 in order to maintain the constraints. In
this case it is even easier to see that the upward force to maintain y(0) = 0 is just
the total weight pgL of the board; slightly less obvious is that a torque of moment
%ng2 is applied by the clamp to maintain the condition y'(0) = 0. In this case we

use torque times angle = work done.

You will already be familiar with this idea of a force being associated with a
constraint, since it is just the idea of a normal reaction that you had in Prelims
mechanics.

But suppose the functional is something that measures not energy but cost. Then
the elements of the problem, including the constraints, take on an economic inter-
pretation. You could imagine this diving-board curve as representing the effect of
a company buying a hospital and changing a policy of stable employment to one
of running down the work force. (The independent variable z is now time, and y
measures the size of the work force.) How can it pursue this policy at least cost?
Suppose that its cost functional is given by the same elements as appeared in the
diving-board functional: the wages, proportional to y, and the cost in administra-
tive disruption, strikes, etc. from making swingeing cuts, modelled as proportional
to (y”)?. The solution with natural boundary conditions will represent the ideal
situation (from the point of view of the company, of course, not that of the pa-
tients!) at the end of a period. If a government regulator imposes a constraint,
of dictating what the workforce level must be at that point, that constraint is
naturally associated with a price: it is what it will be worth the company paying
to persuade the regulator to reduce the imposed quota by one unit. In the Opti-
misation course, using linear programming, you met the idea that prices are dual
variables associated with constraints, and this is a another example of it.
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7. EXTREMALS SUBJECT TO AN INTEGRAL CONSTRAINT

The problem addressed in this section is that of how to find a stationary value of
an integral

Ty = / Fle,y.y) de

subject to an integral constraint
b
Jly] = / G(x,y,y)de =C.

Now recall the method of Lagrange multipliers from Prelims. If we seek a sta-
tionary value of I[y], constrained by J[y] = C, we can look for stationary values
of

Iyl + A(J]y] = C)
over all choices of A and y(x). This means that y(x) is a stationary value of I[y] —
AJ[y] for some constant A\, and so y must satisfy the Euler-Lagrange equation

d 0 0
— [ —(F =)&) ——(F=)XG)=0
3 (5o =20)) — S = a6) =0,
for some constant A\. Of course y must also satisfy the corresponding fixed end

point or natural boundary conditions, where the natural boundary conditions are
now
0

a—y,(F—)\G):O at t=aand z =b

Let us record this as a useful theorem.
Theorem 7.1. Let F,G be two smooth functions, and
b b
Iy) = / F(z,yy)de,  Jly| = / G(z,y,y) dw.

then any smooth stationary value of I[y] subjet to the constraint Jly] = C satisfies

d [0 0

— | =—(F=)XG) ) — —(F—-)XG)=0

3 (57 =20)) ~ S = a6) =0,

for some constant \.
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A freely hanging chain — the catenary:

We can use this method to find the shape taken by an (idealised) hanging chain
of constant density, supported only by two ends. Assume that the chain falls on a
curve described by y = y(z), with fixed endpoints y = b at © = +a. It is subject
to the constraint that its total length is fixed:

J[y]:/ V1+y?de =1L,

and then its equilibrium is determined by minimising its gravitational potential
energy, which is

I[y]zgp/ y/1+y?de.

—a

Applying the Lagrange multiplier method, and absorbing pg into the A,

F—-)G=(y—\MV1+y2,

which has no explicit z-dependence, so Beltrami’s identity gives a first integral:

(y=A) =cv1+y?

Substituting y = A 4 ¢ cosh u readily gives the solution:

)

Fitting these constants ¢, \, o to the given data a, b, L is left as an exercise.

y=A+ ccosh(x — %

Dido’s Problem:

Another classical problem of this nature is the simplest example of an isoperimetric
problem. On the Euclidean plane, given a fixed length as a perimeter, what is the
largest area that can be enclosed by it? (The answer is given by taking a circle.)
We will consider a slightly different version of this problem, in which the area
is on one side of a given straight line, w.l.o.g the z-axis. Then the answer is
given by taking the boundary to be a circular arc. You will find this described as
‘Dido’s problem’; since it can somewhat fancifully be considered as arising in the
Aeneid. Dido (better known for inspiring Purcell’s famous Lament) supposedly
fixed the boundaries of Carthage by this criterion. That is, the line y = 0 is the
Mediterranean coastline.

(See http://mathworld.wolfram.com/DidosProblem.html).

For this problem, we could take F' = y and G = /1 + y’?, where the boundary
curve is taken to be y = y(z), but it is actually better to take the boundary curve
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to be given by (z(t),y(t)), where t is an arbitrary parameter. Then we consider

the extremals of
/ (yx — A/ 32 + y?)dt .

The Euler-Lagrange equations are

@) Ay AN

dt /a2 +42 1 dt/iTr 2 v
SO

N\ i
(43) (z—a), —=—=—==-(y—b),

NGET Neaai

and thus, eliminating A,
(x—a)i+(y—0by=0, (z—a)’+({y—>0)’=c,
so the curves must be circles.

For the original Dido problem we are interested in the case of a fized boundary
condition y(t) = 0 at each end, and a natural boundary condition for z(t) at each
end (that is, we are taking the extremals over all possible x, given y = 0.) The
natural boundary condition for x is y — Ai:/+/2? + y> = 0, and since y = 0, this
means © = 0. (This means that dy/dx is infinite here, which is why the y(x)
formulation is not appropriate.) This means that the centre of the circle must
be on y = 0, and the stationary area, given the constraint, will be bounded by a
semi-circle, as expected.

These are the same semi-circles as we have met in the problem of the quickest
paths on the muddy field (more formally, geodesics on the hyperbolic plane). This
can be seen more directly if we proceed slightly differently. The second equation
in (42)) can be written

d ( AT =0 AT ) fant

pm \/m Y , SO y is constant.

When the boundary conditions y = 0,2 = 0 are imposed, this constant must be

0, and so
yvV1+y? =\,

This is the same equation as arises for the quickest-path problem, at , and so
has the same semi-circle solutions.

This feature extends to the more general colonial land-grab problem where a vary-
ing value h(y) is attached to the land and the objective is to secure the greatest
total value, given the length of the border to be defended. In this case, the problem



CALCULUS OF VARIATIONS 33

is given by taking F' = H(y) and G = /1 + ¢, where H(y fo u)du. For
the case of natural boundary conditions, the resulting equatlon is

H(y)v1+y? =X,

which you can check is the same equation as arises from the problem of finding
the quickest path on the muddy field when the speed of movement is H(y).

Thus if h(y) = 1/,/y, so H(y) = 2,/y, and the solution is given by a cycloid,
just as with the Brachistochrone (see equation (27))). The details are left to the
worksheet.

Constraints and prices again

We now have another example of where a constraint can be thought of as defining
a price. How much more I can we get if we change the constraint J = C to
J = C+0C? Write I(C) for the stationary value of I, given the constraint J = C'.
Then we find that
dI(C)
44 N= —/
( ) dC Y

giving a nice interpretation of the \.

For a proof of this, recall that the solution I — A\J is stationary, i.e. is unchanged,
to first order, when the extremal y is changed to any y + dy consistent with the
boundary conditions. Suppose we choose the particular éy which makes y+ dy the
extremal for the problem where the constraint J = C' 4 6C' is imposed. Then we
have

I(C)=AC =1(C+6C)— \NC +6C)

to first order. Subtracting and taking §C' — 0, we recover the relation.

Thus, in Dido’s problem the value of A in the solution indicates the value (in extra
area gained) of increasing the length of the rope which defines the perimeter.
(So we have solved an extra problem: how much money Dido should pay for old

rope.)

Specifically, in this problem, we have for perimeter of length L, a stationary area

I(L) = 5—:_, and so % = %, which is just the radius of the circle. It is easy to

check that this is indeed the value of \.
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8. APPLICATION TO STURM-LIOUVILLE EQUATIONS

8.1. Some motivation from quantum mechanics. In quantum mechanics, the
state of a physical system depends not on the motion of point particles but of wave
functions. These are actually complex-valued, but for the purpose of this discussion
we can give a simplified picture with real functions. The simplest situation is for
a single particle confined to a one-dimensional finite interval [0, 1]. Whilst a point
particle could simply remain at rest in this interval, and have zero kinetic energy,
the wave-function v (z) has an kinetic energy associated with (half) the integrated
square of its derivative: fol{w’ (x)}*dx. So far this might look something like the
kinetic energy of a fluid, but there is a subtlety which makes a wave-function
completely different from a classical fluid. The energy is actually determined by
the ratio

1

Jo {¥'(2)}da

1

Jo {(2)}2da
so that multiplying ¢ (x) by a constant makes no difference. The energy is a
functional of the shape of the 1, not of its scale. In particular, » = 0 makes no
sense in this ratio, so there is no obvious analogue of a particle at rest. Instead, the
question of the least value taken by this ratio emerges, and it is far from intuitively
clear. In fact, for functions such that (0) = 0 = ¢(1), the answer is 72, as we

shall show, and the existence of such a non-zero ground-state energy is a typical
feature of quantum systems in much more general settings.

We need a formalism that will handle this problem, but also the more general
problems that arise when the energy functional is not so simple, and the geometry
of the space not just a simple interval. Clearly, the theory of stationary integrals,
subject to an integral constraint, provides just this formalism. The ratio prob-
lem as described above can be restated as the problem of finding a minimum for
fol{zp’(x)}2dx subject to the constraint that fol{w(x)}de =1.

Thus the ratio of interest can be identified with the value taken by the Lagrange
multiplier A in the solution. If we look at this in the light of the preceding discus-
sion, we see that the relationship of I[y| to J[y| is very simple in this case: it is
simply linear, I = A\J, with A interpretable as a constant price. But what is new
in this situation is that for the first time we are taking seriously the fact that there
are many local extrema, in fact a countable infinity of them, and we are studying
how they inter-relate.

The inter-relation of the extrema is naturally expressed by seeing that A also takes
on a further meaning as the eigenvalue of an differential operator.

8.2. The Sturm-Liouville equation. The differential operators we are con-
cerned with are just the same as you have met in last term’s course, but written
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in a slightly different way. The standard Sturm-Liouwville form is
(45) (p(2)y") + q(x)y = =Mr(z)y for a <z <D,

with boundary conditions which will be specified below. Here p, q,r are taken to
have continuous derivatives, and we shall assume r > 0,p > 0.

It is immediate that this is the Euler-Lagrange equation for the variational problem
of finding stationary values of

subject to
b
Jly] = / ry*dz = constant.

We can now note the boundary conditions that are consistent with this interpre-
tation: we have the usual choice between fixed and natural boundary conditions
at each end, so that either

(46) y(a) =0 or p(a)y'(a) =0,

and similarly at b.

8.3. Examples. 1. If p = 1,¢q = 0,r = 1, we regain the motivating example
that began this section. But now we can solve it: the allowed values of \ are
just the sequence )\, = n?r?, and the corresponding ¥, (z) are (proportional to)

sin(nmz).

2. If p(x) =1—2%q= 0,7 =1, we have Legendre’s equation on [—1,1]. With
natural boundary conditions, the solutions are the Legendre polynomials P, (z),
as met in the Differential Equations course.

3. If p(x) = z,q(x) = —k*/z,r(x) = z, we obtain the equation
]{32
(wy) = —y =~y

which is equivalent to
2
y' + 1y’ - k—Qy = —\y

x x
also recognisable from the Differential Equations course as Bessel’s equation of
order k. This has solutions vanishing at x = 0 of form Ji(Az). A fuller treatment
would bring in the solutions to Bessel’s equation which diverge at = 0, but in the
simplest situation, when boundary conditions y = 0 at x = 0,z = a, are imposed,
there will be a discrete spectrum of A, such that Ji(\,z) satisfies them.
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8.4. Eigenfunction expansions. The idea of Sturm-Liouville theory is to gen-
eralise the Fourier analysis that is naturally associated with case (1). From Mods,
you know how to expand a general function in terms of sines and cosines, making
use of their completeness and orthogonality properties. It turns out that these
properties are not unique to the trigonometrical functions. They can be regarded
as following from their emergence as solutions to a Sturm-Liouville ODE, and
any other Sturm-Liouville equation will give rise to another set of functions with
these completeness and orthogonality properties. That is, there is in general, for
any Sturm-Liouville equation, a sequence of eigenfunctions y,(z) with complete-
ness and orthogonality properties, such that a general function can usefully be
expanded as Y ¢pYn.

The proper statement and proof of this lies beyond this course (remember that
even for Fourier theory the question of completeness is subtle, with great attention
being needed for points of discontinuity.) However, we can show how the vital
orthogonality properties emerge directly from this formulation.

Suppose, for a (p, q,r) Sturm-Liouville system, we have two solutions y,,, ¢, with
the corresponding \,, # A,.

We will first verify that \,, the eigenvalue associated with the eigenfunction y,, is
equal to the quotient I[y,]/J]y,] and so to the Lagrange multiplier in the integral
formulation. We have

(P(@)yn)" + a(@)yn = —Aar(2)yn
so multiplying by v, and integrating,

/ (p(2),) yn + q(x)ys dz = =, / r(x)y? de

S0 b , .
/a %(py;yn) dz — /a (p(x)ys — q(z)y?) dw = -\, / r(x)y? de
(47) [Py nll = Ilyn] = —And[yn) -

But the boundary term vanishes because a we either have y,,(a) = 0 or we have
p(a)y,,(a) =0, and similarly at b. Hence I[y,] = A\, J[yn] as required.

Now we shall show that 1,,, v, are orthogonal, in the sense that

b
(48) / TYnYmdzr = 0.
We have that
(p(2)yn) + a(@)yn = =N ()Y
P(@)Ym) + a(@)ym = = A7 (2)Ym
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Multiplying the first by y,,, the second by v, subtracting, and integrating from a
to b,

b b
/ Wm(PYn) = Yn(PYp) )z = = (A = Am) / 7 (@)YmYnda
But the LHS can be exactly integrated to

P(Ymly — Ynti)%

and thus vanishes by the boundary conditions, for at a we either have y,,(a) =0 =
yn(a) or we have p(a)y,,(a) = 0 = p(a)y,(a), and similarly at b. Thus the RHS
vanishes, but since A\, — A\, # 0 by assumption, the orthogonality follows.

This argument is the same as that used in the Algebra course where the general
definition of an inner product is discussed. We have in effect defined an inner
product structure on a space of functions by using the r(x). As in Algebra, we can
define an orthonormal set of basis functions y,,, with respect to this inner product,
by choosing the scale such that

(49) Tl = / () {ya(2) 2 = 1.

8.5. Rayleigh-Ritz approximation. Throughout the course we have empha-
sised that the variational formalism is a two-way street. Our theory allows the
solution, via differential equations, of notable problems involving extremals. On
the other hand, it can be used profitably to reformulate problems to do with differ-
ential equations in terms of stationary integrals. In the context of Sturm-Liouville
equations, the spectrum eigenvalues can be usefully investigated by calculating the
integrals I[y] and J[y|. In particular, trying out any y whatever gives an upper
bound for the lowest eigenvalue \;.

Thus, returning to the original example of
Jy ¥/ (0)Yda
Jo (@) y2da

we can try the simplest possible y satisfying the boundary conditions, y = z(1—x),

and calculate .
2¢ — 1)2d
Q= ff( rode
Jo 2(1 — x)%dx

so that A\; < 10. This is a good approximation to \; = 7.

This process can be refined. Clearly, this approximation could be improved by
optimising the trial y over a set of parameters. Hence we arrive at a good approx-
imation g, to y;. Then, the next eigenvalue could be estimated by optimising over
another class of trial functions, all orthogonal to ;. This gives an estimate of A,
and 19, and so on.
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There is a reason why the approximation of eigenvalues is good; if the trial function
g is correct to O(e), the eigenvalue A; will be good to O(e?). For if

Ji=t+ ) Caln
2
where each ¢, is of O(e). then
Ii] =M+ Y Aalea® T =1+ > Jeal?
2 2

whence Q[g,] differs from A; by O(€?).
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