Numerical Analysis Hilary Term 2022
Lecture 2: Gaussian Elimination and LU factorisation

In lecture 1 we treated Lagrange interpolation. A traditional, more straightforward
approach (worse for computation!) would be to express the interpolating polynomial as
pn(z) = 3" ciz' and find the coefficients ¢; by a linear system of equations:

2 n
1 zy x5 -+ x Co fo
1z 22 - 2t cy fi
1 2 . pn f
Ty T xn Cn n

(The matrix here is known as the Vandermonde matrix, and nonsingular iff {z;} are
distinct.) This is a linear algebra problem, which is the subject we will discuss in the next
lectures. We start with solving linear systems.

Setup: Given a square n by n matrix A and vector with n components b, find = such
that
Axr =b.

Equivalently find 2 = (21, 29, ..., 2,)T for which

a11T1 + apxs + - -+ + a1, = by
a21T1 + A20T2 + -+ + Gop Ty = by

(1)

Ap1T1 + GpaX2 + -+ - + AppXy = bn-

Lower-triangular matrices: the matrix A is lower triangular if a;; = 0 for all
1 <i < j<mn. The system (1) is easy to solve if A is lower triangular.
by
a1 =b = 11=— U
gll
—ag T
2171 + Q2272 —by = gg= > 271
22
4
i—1
bi — Z CLij(L’j
=1
;101 + Aol + « -+ 4Ty =b = -fUi:Ja— 2
ii
\

This works if, and only if, a; # 0 for each i. The procedure is known as forward
substitution.

Computational work estimate: one floating-point operation (flop) is one scalar mul-
tiply /division/addition/subtraction as in y = a * x where a, x and y are computer repre-
sentations of real scalars.!

LThis is an abstraction: e.g., some hardware can do y = a * z + b in one FMA flop (“Fused Multiply and Add”)
but then needs several FMA flops for a single division. For a trip down this sort of rabbit hole, look up the “Fast
inverse square root” as used in the source code of the video game “Quake IIT Arena”.

Lecture 2 pg 1 of 7

Hence the work in forward substitution is 1 flop to compute z; plus 3 flops to compute
Zo plus ...plus 2 — 1 flops to compute x; plus ...plus 2n — 1 flops to compute x,,, or in
total

d(2i—1) =2 (Z z) —n=2(in(n+1)) —n = n®+ lower order terms
i=1 i=1

flops. We sometimes write this as n? + O(n) flops or more crudely O(n?) flops.

Upper-triangular matrices: the matrix A is upper triangular if a;; = 0 for all
1 < j < i <mn. Once again, the system (1) is easy to solve if A is upper triangular.

n
bi— > ayw;
. B j=itl
AiTi + T+ Qip—1Tp—1 + Q1pTp = b; = T = a f
(1
bnfl — Ap—1nTn
Ap—1n—1Tp—1 T Ap_1nTyn = bnfl = Tp-1= ﬂ
b Ap—1n—1
n
AnnTn = by, = X, =—. T
Qpn

Again, this works if, and only if, a;; # 0 for each i. The procedure is known as backward
or back substitution. This also takes approximately n? flops.

For computation, we need a reliable, systematic technique for reducing Ax = b to Ux = ¢
with the same solution x but with U (upper) triangular = Gauss elimination.

3]l

Multiply first equation by 1/3 and subtract from the second =

3 —1 Ty . 12

0]| 7]
Gauss(ian) Elimination (GE): this is most easily described in terms of overwriting
the matrix A = {a;;} and vector b. At each stage, it is a systematic way of introducing

zeros into the lower triangular part of A by subtracting multiples of previous equations
(i.e., rows); such (elementary row) operations do not change the solution.

Example

Lecture 2 pg 2 of 7

for columns j =1,2,...,n—1
forrowst=74+1,7+2,...,n

Q55

TOW i 4= TOW { — —= *TOW j
o i
bz‘ — i — o« bj
ajj
end
end
Example.
3 -1 2 T 12 3 -1 2 | 12
1 2 3 xg | = | 11 | : representas |1 2 3 | 11
2 -2 -1 T3 2 2 =2 -1 | 2
3 -1 2| 127
— row2<«row2—{frowl |0 L I | 7
row 34— row3—z2rowl |0 —3 —I | —6 |
3 -1 2| 127
row 3 row3+zrow2 |0 0 —1 | —2
Back substitution:
T3 = 2
7—1(2
Ty = 73() =1
3
122 (-1)(1) —22)
ry = =3
3
Cost of Gaussian Elimination: note, row i <— row ¢ — iy row j is
3

for columns k=j+1,7+2,...,n
Q45
Qi <= Qi — —Qjk
73
end

This is approximately 2(n — j) flops as the multiplier a;;/a;; is calculated with just one
flop; a;; is called the pivot. Overall therefore, the cost of GE is approximately

n—1 n—1 —1D(on -1 2

S 2(n — j)? :2212:2"(” =D _ 205 o

=1 =1 6 3

]_ =

flops. The calculations involving b are

n—1 n—1 -1
Som-j) =25 1-2M0 0 o)
j=1 =1

Lecture 2 pg 3 of 7

flops, just as for the triangular substitution.

LU factorization:
The basic operation of Gaussian Elimination, row ¢ <— row ¢+ Axrow j, can be achieved
by pre-multiplication by a special lower-triangular matrix

0 0 O
M(@,5,A) =1+ |0 X 0|«
0 0 O
T
J
where [is the identity matrix.
Example: n =4,
1 0 00 a a
ME2X =0] 0| and M(32.) ﬁ _ Abic |
0 001 d d

ie., M(3,2,\)A performs: row 3 of A < row 3 of A+ Ax row 2 of A and similarly
M (i, j, \) A performs: row i of A <— row i of A+ A* row j of A.

So GE for e.g., n =3 is

M(3,2,—ls) - M(3,1,—l3) - M(@2,1,-ly) - A=U=0(1).

a a a
l3o = 232 I3 = -1 lyy = -2 (upper triangular)

22 an ail
The [;; are called the multipliers.
Be careful: ecach multiplier /;; uses the data a;; and a;; that results from the transforma-
tions already applied, not data from the original matrix. So l3; uses azo and ago that result
from the previous transformations M (2,1, —ly;) and M (3,1, —l31).
Lemma. If i # j, (M(i,5,\)) "' = M (i, j, —\).
Proof. Exercise.
Outcome: forn =3, A= M(2,1,l2) - M(3,1,l31) - M(3,2,l32) - U, where

1 0 0
M(2,1,01) - M(3,1,15) - M(3,2,155) = | Iy 1 0| =L=([_).
l31 l32 1

(lower triangular)

This is true for general n:

Theorem. For any dimension n, GE can be expressed as A = LU, where U = (D
is upper triangular resulting from GE, and L = (L) is unit lower triangular (lower

Lecture 2 pg 4 of 7

triangular with ones on the diagonal) with /;; = multiplier used to create the zero in the
(4, 7)th position.

Most implementations of GE therefore, rather than doing GE as above,

factorize A= LU (~
and then solve Ax =10

1n® adds + ~ Ln® mults)

by solving Ly =0 (forward substitution)
and then Uz =y (back substitution)

Note: this is much more efficient if we have many different right-hand sides b but the same

A.
Pivoting: GE or LU can fail if the pivot a;; = 0. For example, if

01
A —
GE fails at the first step. However, we are free to reorder the equations (i.e., the rows)

into any order we like. For example, the equations

O-z1+1-29=1 and 1l-214+40-29=2
1'[L‘1+0'£L‘2:2 OIL‘l—I—lZL‘Q:]_

Vo) e o]

have had their rows reordered: GE fails for the first but succeeds for the second = better
to interchange the rows and then apply GE.

are the same, but their matrices

Partial pivoting: when creating the zeros in the jth column, find
|ak;| = max(lag;], |ajl, - - lan]),

then swap (interchange) rows j and k.
For example,

ay; - Aij-1 Q1 - 0 0 Alp ay; - Aij-1 @y - - 0 Alp
0 0
0 Aj—15-1 Qj—1j Aj—1n 0 aj—15-1 QAj—15 *~ * * Aj_1n
0 0 ajj Ajp, 0 0 Qkj Ak,

_>
0 . 0 0 .
0 0 A QAfn 0 0 Qjj s Qjn
0 0 . 0 0
. 0 0 U pn | .0 0 (nj [

Lecture 2 pg 5 of 7

Property: GE with partial pivoting cannot fail if A is nonsingular.

Proof. If A is the first matrix above at the jth stage,

Hence det[A] = 0 if aj; =

ajj - - Gjn
det[A] =11 Aj-15-1" det (07 ¢)
anj . . - Apn

:akj:...

= apnj = 0. Thus if the

pivot ay; is zero, A is

singular. So if A is nonsingular, all of the pivots are nonzero. (Note: actually a,, can be

zero and an LU factorization still exist.)

The effect of pivoting is just a permutation (reordering) of the rows, and hence can be

represented by a permutation matrix P.

Permutation matrix:

order. So

PA=LU

P has the same rows as the identity matrix, but in the pivoted

represents the factorization—equivalent to GE with partial pivoting. E.g.,

010
001|A
1 00

has the 2nd row of A first, the 3rd row of A second and the 1st row of A last.
Matlab example:

>>
A

>>
>>
LL

uu

A = rand(5,5)

0.69483 0.38156
0.3171 0.76552
0.95022 0.7952
0.034446 0.18687
0.43874 0.48976

exactx = ones(5,1); b
[LL, UU] = 1u(A) % not
0.73123 -0.39971
0.33371 1
1 0
0.036251 0.316
0.46173 0.24512
0.95022 0.7952
0 0.50015
0 0
0 0
0 0

O O O O

0.

.44559 0.6797
.64631 0.6551
.70936 0.16261
.75469 0.119
27603 0.49836

= Axexactx;

.95974
.34039
.58527
.22381
. 75127

O O O O O

e "psychologically lower triangular" LL

0.15111 1
0 0
0 0
1 0
-0.25337 0.31574
0.70936 0.16261
0.40959 0.60083
0.59954 -0.076759
0 0.81255
0 0

=, O O O O

.58527
.14508
.15675
.56608
.30645

O O O O ©

Lecture 2 pg 6 of 7

>> [L, U, P] = 1u(A)

= O O O O

0

0

1
0.15111
-0.25337

0.70936
0.40959
0.59954
0
0

% now to solve Ax =

L =
1 0
0.33371 1
0.036251 0.316
0.73123 -0.39971
0.46173 0.24512
U=
0.95022 0.7952
0 0.50015
0 0
0 0
0 0
P =
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
0 0 0 0
>> max(max (P’*L - LL))) %
ans =
0
>> y = L \ (Pxb);
>> x = U \ y
x =
1
1
1
1
1
>> norm(x - exactx, 2) %
ans =
3.5786e-15

b...

= O O O

0.31574

0.16261
0.60083
-0.076759
0.81255

0

we see LL is P’xL

=, O O O O

.58527
.14508
.15675
.56608
.30645

O O O O ©

within roundoff error of exact soln

Lecture 2 pg 7 of 7

