Numerical Analysis Hilary Term 2022
Lecture 6: Matrix Eigenvalues

We now turn to eigenvalue problems Axr = Az, where A € R"*" or A € C"*", \ € C,
and z(# 0) € C™. Recall that there are n eigenvalues in C (nonreal A possible even if A is
real). There are usually, but not always, n linearly independent eigenvectors (e.g. Jordan
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Background: An important result from analysis (not proved or examinable!), which will
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) } has only one eigenvector [1,0]7).

be useful.

Theorem. (Ostrowski) The eigenvalues of a matrix are continuously dependent on the
entries. That is, suppose that {\;;i = 1,...,n} and {u;,i = 1,...,n} are the eigenvalues
of A € R and A+ B € R™" " respectively. Given any € > 0, there is a 0 > 0 such that
|\i — pi| < e whenever max; ; |b;;| < d, where B = {b;; }1<i j<n-

Noteworthy properties related to eigenvalues:

e A has n eigenvalues (counting multiplicities), equal to the roots of the characteristic
polynomial p4(\) = det(A] — A).

o If Ax; = \jx; fori = 1,...,nand z; are linearly independent so that [z, z, . .., x,] =:
X is nonsingular, then A has the eigenvalue decomposition A = XAX~!. This
usually, but not always, exist. The most general form is the Jordan canonical form
(which we don’t treat much in this course).

e Any square matrix has a Schur decomposition A = QT'Q* where () is unitary
QQ* = Q*Q = I,, and T triangular. The superscript * denotes the (complex)
conjugate transpose, (Q*)i; = Qji.

e For a normal matrix s.t. A*A = AA*, the Schur decomposition shows T is diagonal
(proof: examine diagonal elements of A*A and AA*), i.e., A can be diagonalized by a
unitary similarity transformation: A = QAQ*, where A = diag(\y, ..., A,). Most of
the structured matrices we treat are normal, including symmetric (A € R), orthogonal
(|A| = 1), and skew-symmetric (A € iR).

Aim: estimate the eigenvalues of a matrix.

Theorem. Gerschgorin’s theorem: Suppose that A = {a;;}1<ij<n € R"*", and A is an
eigenvalue of A. Then, A lies in the union of the Gerschgorin discs
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Proof. If A is an eigenvalue of A € R " then there exists an eigenvector x € R" with
Ax = Az, x #0, ie.,
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Suppose that |xg| > |z, £ =1,...,n, ie.,

“r, is the largest entry”. (1)

Then the kth row of Ax = Az gives Z ag;Tj = Axy, or
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Dividing by xy, (which, we know, is # 0) and taking absolute values,

n

X, > x; =
|ar, — Al = Zaka‘x—z <Y law| x—; < law|
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by (1). =
Example.
9 1 2
A=1] -3 1 1
1 2 -1
5
0 = X X n
_5 1 1 1 1 1 1 1 1 1
-4 -2 0 2 4 6 8 10 12

With Matlab calculate >> eig(A) = 8.6573, -2.0639, 2.4066

Theorem. Gerschgorin’s 2nd theorem: If any union of ¢ (say) discs is disjoint from
the other discs, then it contains ¢ eigenvalues.

Proof. Consider B(f) = A + (1 — 0)D, where D = diag(A), the diagonal matrix whose
diagonal entries are those from A. As 6 varies from 0 to 1, B(f) has entries that vary
continuously from B(0) = D to B(1) = A. Hence the eigenvalues \(#) vary continuously
by Ostrowski’s theorem. The Gerschgorin discs of B(0) = D are points (the diagonal
entries), which are clearly the eigenvalues of D. As 6 increases the Gerschgorin discs of
B(#) increase in radius about these same points as centres. Thus if A = B(1) has a
disjoint set of ¢ Gerschgorin discs by continuity of the eigenvalues it must contain exactly
¢ eigenvalues (as they can’t jump!). O
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