
Numerical Analysis Hilary Term 2022

Lecture 14: Runge–Kutta methods

Runge–Kutta methods: Runge–Kutta (RK) methods form a broad class of algorithms

for the numerical solution of IVPs. The class includes both explicit and implicit schemes.

When applications call for an integrator with some kind of stability or conservation prop-

erty, there usually exists a suitable RK method. In particular, RK methods can be made

arbitrarily high-order without the loss of stability.

Here we state some results without proof; they are nonexaminable. For a detailed

discussion, we refer to the books

• Süli and Mayer, “Introduction to Numerical Analysis”

• Hairer, Norsett, and Wanner, “Solving Ordinary Differential Equations”

• Butcher, “Numerical Methods for Ordinary Differential Equations”

Definition 1. The family of s-stage Runge–Kutta methods is defined by

Ψ(x,y, h, f) = y + h
s∑
i=1

biki , (1)

where the stages kis (recall that y ∈ Rd, and so do the kis) are the solutions of the coupled

system of (generally nonlinear) equations

ki := f(x+ cih,y + h
s∑
j=1

aijkj) , i = 1, . . . , s . (2)

The coefficients {ci}si=1 are always given by

ci :=
s∑
j=1

aij i = 1, . . . , s .

Definition 2. The coefficients of a Runge–Kutta method are commonly summarized in a

Butcher tableau1

c A[
b>

.

Example 3. The explicit Euler method, the implicit Euler method, and the implicit mid-

point rule are Runge–Kutta methods. Their Butcher tables are

0 0

1
,

1 1

1
, and

1/2 1/2

1
, respectively.

1The use of this tableau was introduced by J. C. Butcher in 1963 with the article Coefficients for the study of

Runge–Kutta integration processes.
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It is convenient at this point to restrict our attention to autonomous IVPs. (Recall that

a nonautonomous system can always be made autonomous by increasing its dimension.)

The process of making an IVP autonomous commutes with Runge–Kutta discretisation if

and only if
s∑
i=1

bi = 1, ck =
s∑
j=1

akj k = 1, . . . , s ,

which we assume henceforth. (In other words, if these conditions hold, the RK discreti-

sation of the autonomised system is the autonomisation of the RK discretisation of the

original problem.)

By computing appropriate Taylor expansions, it is possible to derive algebraic condi-

tions the Runge–Kutta coefficients must satisfy for the method to have a targeted consis-

tency order. For example:

Lemma 4. A Runge–Kutta method is consistent if and only if
∑s

i=1 bi = 1. If the condi-

tion
s∑
i=1

bici =
1

2

is also satisfied, the Runge–Kutta method has consistency order 2, and if the conditions

s∑
i=1

bic
2
i =

1

3
and

s∑
i=1

bi

s∑
j=1

aijcj =
1

6

are also satisfied, the Runge–Kutta method has consistency order 3.

The following table indicates the number of conditions as described above that a Runge–

Kutta method must satisfy to have order p:

p 1 2 3 4 5 6 7 8 9 10 20

#conditions 1 2 4 8 17 37 85 200 486 1205 20247374
.

The number of stages of a Runge–Kutta method provides an interesting upper bound

on its consistency order.

Lemma 5. The (consistency) order p of an s-stage Runge–Kutta method is bounded by

p ≤ 2s. If the Runge–Kutta method is explicit, then p ≤ s.

To evolve a numerical solution from xn to xn+1 with a Runge–Kutta method, one

needs to compute the stages ki. If the Runge–Kutta method is explicit, these stages can

be computed sequentially (and at a low-cost) starting from k1 (a Runge–Kutta method is

explicit if aij = 0 whenever j ≥ i, i.e. the matrix A is strictly lower-triangular). An example

of this is the explicit Euler method. If A is lower-triangular (i.e. possibly aii 6= 0), then

the scheme is said to be diagonally-implicit ; one can compute the stages ki sequentially,

solving a sequence of nonlinear problems. The implicit Euler and implicit midpoint rules

are examples of diagonally-implicit RK methods. Finally, if A enjoys neither of these

structures, the RK method is said to be fully implicit; one must solve a large coupled

nonlinear system for all stages simultaneously.
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It is possible to construct Runge–Kutta methods that achieve maximal order. So-called

Butcher barriers quantify the minimal amount of stages that an explicit Runge–Kutta

method of order p requires. The following table shows some of these minimal amount of

stages:

p 1 2 3 4 5 6 7 8 ≥ 9

minimal value of s 1 2 3 4 6 7 9 11 ≥ p+ 3
.

This implies that a Runge–Kutta method that has maximal order must be implicit.

Construction of explicit RK methods: To construct explicit Runge–Kutta methods,

we start by recalling that the analytic solution of

y′ = f(x,y) , y(x0) = y0 , (3)

is given by the (implicit) formula

y(x+ h) = y(x) +

∫ x+h

x

f(τ,y(τ)) dτ = y(x) + h

∫ 1

0

f(x+ hτ,y(x+ hτ)) dτ .

Approximating the latter integral with a quadrature rule on [0, 1] with s nodes c1, . . . , cs
and weights b1, . . . , bs returns

y(x+ h) ≈ y(x) + h
s∑
i=1

bif(x+ cih,y(x+ cih)) . (4)

Note that this approximation requires the values y(x+ cih). To make the method explicit,

we approximate the values y(x0 + cih) with explicit Runge–Kutta methods we already

know. This way, we can construct s-stage explicit Runge–Kutta methods by induction.

Example 6. If we choose the 1-point Gauss quadrature rule, that is,

y(x+ h) ≈ y(x) + hf(x+ h/2,y(x+ h/2)) (5)

and approximate y(x+ h/2) with the explicit Euler method, the resulting scheme reads

Ψ(x,y, h, f) = y + hf

(
x+ h/2,y +

h

2
f(x,y)

)
. (6)

Example 7. If we use the trapezium rule, that is,

y(x+ h) ≈ y(x) +
h

2
f(x,y(x)) +

h

2
f(x+ h,y(x+ h)) ,

and approximate y(x+ h) with the explicit Euler method, the resulting scheme reads

Ψ(x,y, h, f) = y +
h

2
f(x,y) +

h

2
f (x+ h,y + hf(x,y)) . (7)
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Both of these are 2nd-order Runge–Kutta methods. Their Butcher tables read

0 0 0

1/2 1/2 0

0 1

and

0 0 0

1 1 0

1/2 1/2

,

respectively.

A similar approach leads to the most famous explicit Runge–Kutta method RK4, a

4-stage 4th-order explicit Runge–Kutta method whose Butcher table reads

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1/6 2/6 2/6 1/6

.

We have seen that s-stage explicit Runge–Kutta methods have at most order s. Next,

we construct s-stage implicit Runge–Kutta methods whose order is at least s.

Definition 8. Let c1, . . . , cs ∈ [0, 1] be (pairwise distinct) collocation points. The corre-

sponding collocation method is the one-step method defined by

Ψ(x,y, h, f) = ỹ(h) ,

where ỹ is the unique polynomial of degree s that satisfies

ỹ(0) = y and ỹ′(cih) = f(x+ cih, ỹ(cih)) , for i = 1, . . . , s . (8)

Lemma 9. Let Q be the highest-order quadrature rule on [0, 1] that can be constructed

using the nodes c1, . . . , cs, and let pQ be its order (pQ = 1 + the maximal degree of polyno-

mials it integrates exactly). If f is sufficiently smooth and h > 0 is sufficiently small, the

collocation method associated to c1, . . . , cs has order pQ.

Corollary 10. If f is sufficiently smooth and h > 0 is sufficiently small, the order of the

collocation method associated to c1, . . . , cs is at least s and at most 2s (Gauss quadrature).

It is not obvious, but collocation methods are indeed Runge–Kutta methods.

Lemma 11. Collocation methods are Runge–Kutta methods. Their coefficients are

aij =

∫ ci

0

Lj(τ) dτ , bi =

∫ 1

0

Li(τ) dτ , (9)

where {Li}si=1 are the Lagrange polynomials associated to c1, . . . , cs.

Stability of Runge–Kutta methods We have seen that numerical methods for IVPs

may encounter stability issues. For simplicity, we only consider autonomous ODEs.
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Definition 12. A fixed point of y′ = f(y) is a point y∗ such that f(y∗) = 0. A fixed point

y∗ is asymptotically stable (or attractive) if there exists a ball Bδ(y
∗) (of radius δ > 0

and centered at y∗) such that, whenever y0 ∈ Bδ(y
∗), the solution to y′ = f(y), y(0) = y0

satisfies limx→∞ y(x) = y∗.

Theorem 13. A fixed point y∗ of an autonomous ODE is asymptotically stable if

σ (Df(y∗)) ⊂ C− := {z ∈ C : Rez < 0} ,

where σ (Df(y∗)) denotes the set of eigenvalues of the matrix Df(y∗).

This theorem implies that, to study the asymptotic stability of y∗, we can restrict our

considerations to the linearised ODE y′ = Df(y∗)(y − y∗), that is, we can restrict our

attention to linear ODEs. To further simplify the analysis, we restrict our attention to a

single eigenvalue, yielding the Dahlquist test equation

y′ = zy , y(0) = 1 , and Rez < 0 . (10)

Clearly, the solution of the Dahlquist test equation is y(x) = exp(zx), which satisfies

limx→∞ y(x) = 0. Therefore, y∗ = 0 is an attractive fixed point.

The solution of the Dahlquist test equation obtained with a Runge–Kutta method has

a special structure:

Definition 14. Let Ψ be a Runge–Kutta method. The function

S : C→ C , z 7→ S(z) := Ψ(0, 1, 1, f : y 7→ zy) ,

is called the stability function of Ψ. To shorten the notation, we henceforth write Ψ(0, 1, 1, z)

instead of Ψ(0, 1, 1, f : y 7→ zy).

Lemma 15. If Ψ is a Runge–Kutta method, then Ψ(0, `, h, z) = Ψ(0, 1, 1, zh)`.

Theorem 16. Let {yk}k∈N be the Runge–Kutta solution to the Dahlquist test equation

obtained with a time step h > 0. Then, yk = S(zh)k.

Proof. By direct computation, we can see that

y1 = Ψ(0, 1, h, z) = Ψ(0, 1, 1, zh) = S(zh)

and that

y2 = Ψ(0, y1, h, z) = Ψ(0, 1, 1, zh)y1 = S(zh)y1 = S(zh)2 .

Therefore, we conclude that yk = S(hλ)k. 2

It is desirable that the discrete solution {yk}k∈N satisfies limk→∞ yk = 0, mimicking the

behavior of the exact solution to the Dahlquist test equation. When this happens, we say

that {yk}k∈N is asymptotically stable.
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Definition 17. The region in the complex plane

SΨ := {z ∈ C : |S(z)| < 1}

is called the stability region of the Runge–Kutta method. Clearly, {yk}k∈N is asymptotically

stable if zh ∈ SΨ.

It is not so difficult to see that the stability function of an explicit Runge–Kutta method

is a polynomial, which implies that SΨ is bounded. Therefore, the numerical approximation

computed with an explicit Runge–Kutta method cannot be asymptotically stable if the

time step h is too large. This is what we saw in our previous numerical experiments.

However, the stability function of an implicit Runge–Kutta method is a rational function,

and hence may not suffer from this limitation.

Definition 18. A Runge–Kutta method is said to be A-stable2 if C− ⊂ SΨ.

The Gauss collocation methods form a family of arbitrarily high-order A-stable methods

whose stability region is exactly C−.

A-stability guarantees that {yk}k∈N will eventually converge to zero. However, the

decay can be very slow compared to that of the exact solution.

Example 19. Let {yk} be the approximate solution to the Dalhquist test equation obtained

with the implicit midpoint rule and a fixed step size h. By direct computation, we can see

that stability function of the implicit midpoint rule is

S(z) =
1 + z/2

1− z/2
.

The exact solution converges exponentially to zero with rate Rez. In particular, the smaller

(more negative) the Rez, the quicker the convergence. On the other hand, {yk} is a geomet-

ric sequence with ratio S(zh). This also converges to zero, but the more negative the Rez,

the closer |S(zh)| to 1, and the slower the decay of {yk}. This implies that, if Rez � 0,

the qualitative behavior of {yk} can be very different from the one of the exact solution.

Therefore, if the initial value problem has a strongly attractive fixed point, it is advisable

to further ensure that limRez→−∞ |S(z)| = 0.

Definition 20. An A-stable method that further satisfies limRez→−∞ |S(z)| = 0 is said to

be L-stable (or stiffly accurate).

One can verify that the implicit Euler method is L-stable, but it is not the only one. An

example of a family of L-stable RK methods is the Gauss–Radau family. This is a family of

collocation methods where the final quadrature point is fixed to cs = 1 and the remaining

points c1, . . . , cs−1 are chosen to obtain an associated quadrature rule of maximal order

2s− 1.

2 This concept was introduced by G. Dahlquist in 1963 with the article A special stability problem for linear

multistep methods.
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