Part A Probability

Michaelmas Term 2022

Matthias Winkel

winkel@stats.ox.ac.uk

or
winkel@maths.ox.ac.uk

Themes of the course

- Convergence of random variables
- Probabilistic limit laws:
- Laws of large numbers
- Central limit theorem
- Joint distributions
- Random processes:
- Markov chains
- Poisson processes

Review

Probability spaces and random variables

A probability space is a collection $(\Omega, \mathcal{F}, \mathbb{P})$ where:

- Ω is a set, called the sample space.
- \mathcal{F} is a collection of subsets of Ω. An element of \mathcal{F} is called an event.
- \mathbb{P} is a function from \mathcal{F} to $[0,1]$, called the probability measure. It assigns a probability to each event in \mathcal{F}.

If we think of the probability space as modelling some "experiment", then Ω represents the "set of outcomes" of the experiment.

Events

The set of events \mathcal{F} should satisfy the following natural conditions:
(1) $\Omega \in \mathcal{F}$
(2) If \mathcal{F} contains some set A then \mathcal{F} also contains its complement A^{c} (i.e. $\Omega \backslash A$).
(3) If $\left(A_{i}, i \in \mathcal{I}\right)$ is a finite or countably infinite collection of events in \mathcal{F}, then their union $\bigcup_{i \in \mathcal{I}} A_{i}$ is also in \mathcal{F}.

By combining (2) and (3), we can also get finite or countable intersections as well as unions.

Probability axioms

The probability measure \mathbb{P} should satsify the following conditions:
(1) $\mathbb{P}(\Omega)=1$
(2) If $\left(A_{i}, i \in \mathcal{I}\right)$ is a finite or countably infinite collection of disjoint events, then

$$
\mathbb{P}\left(\bigcup_{i \in \mathcal{I}} A_{i}\right)=\sum_{i \in \mathcal{I}} \mathbb{P}\left(A_{i}\right) .
$$

The second condition is known as countable additivity.

Random variables

A random variable is a function from Ω, for example to \mathbb{R}.
A random variable represents an observable in our experiment; something we can measure.

Formally, for a function $X: \Omega \mapsto \mathbb{R}$ to be a random variable, we require that the events

$$
\{\omega \in \Omega: X(\omega) \leq x\}
$$

are contained in \mathcal{F}, for every x. (Then by taking complements and unions, we will in fact have that the event $\{\omega \in \Omega: X(\omega) \in B\}$ is in \mathcal{F} for a very large class of sets B).

We normally write just $\{X \in B\}$ for $\{\omega \in \Omega: X(\omega) \in B\}$. We write $\mathbb{P}(X \in B)$ for the probability of the event $\{X \in B\}$.

- Within one experiment, there will be many observables! That is, on the same probability space we can consider many different random variables.
- We generally do not work with the sample space Ω directly. Instead we work directly with the events and random variables (the "observables") in the experiment.

Examples of systems (or "experiments") that we might model using a probability space.

- Throw two dice, one red, one blue. Random variables: the score on the red die; the score on the blue die; the sum of the two; the maximum of the two; the indicator function of the event that the blue score exceeds the red score....
- A Geiger counter detecting particles emitted by a radioactive source. Random variables: the time of the k th particle detected, for $k=1,2, \ldots$; the number of particles detected in the time interval $[0, t]$ for $t \in \mathbb{R}_{+}, \ldots$
- A model for the evolution of a financial market. Random variables: the prices of various stocks at various times; interest rates at various times; exchange rates at various times....
- The growth of a colony of bacteria. Random variables: the number of bacteria present at a given time; the diameter of the colonised region at a given time....
- A call-centre. The time of arrival of the k th call; the length of service required by the k th caller; the wait-time of the k th caller in the queue before receiving service....

Distribution

The distribution of a random variable X is summarised by its (cumulative) distribution function:

$$
F_{X}(x)=\mathbb{P}(X \leq x)
$$

Once we know F we can obtain $\mathbb{P}(X \in B)$ for a large class of sets B by taking complements and unions.
F obeys the following properties:
(1) F is non-decreasing
(2) F is right-continuous
(3) $F(x) \rightarrow 0$ as $x \rightarrow-\infty$
(4) $F(x) \rightarrow 1$ as $x \rightarrow \infty$.

Note that two different random variables (two different "observables" within the same experiment) can have the same distribution. If X and Y have the same distribution we write $X \stackrel{d}{=} Y$.

Discrete random variables

A random variable X is discrete if there is a finite or countably infinite set B such that $\mathbb{P}(X \in B)=1$.
We can represent its distribution by the probability mass function

$$
p_{X}(x)=\mathbb{P}(X=x), \text { for } x \in \mathbb{R}
$$

We have

- $\sum_{x} p_{X}(x)=1$
- $\mathbb{P}(X \in A)=\sum_{x \in A} p_{X}(x)$ for any set $A \subseteq \mathbb{R}$.

Continuous random variables

A random variable X is continuous if its distribution function F can be written as an integral; i.e. there is a function f such that

$$
\mathbb{P}(X \leq x)=F(x)=\int_{-\infty}^{x} f(u) d u
$$

f is the (probability) density function of X.
f is not unique; for example we can change the value at any single point without affecting the integral. At points where F is differentiable, it's natural to take $f(x)=F^{\prime}(x)$.

For general (well-behaved) sets B,

$$
\mathbb{P}(X \in B)=\int_{x \in B} f(x) d x
$$

Expectation

If X is discrete, its expectation (or mean) is given by

$$
\mathbb{E}(X)=\sum_{x} x p_{X}(x)
$$

For X continuous, instead

$$
\mathbb{E}(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

We could unify these definitions (and extend to random variables which are neither discrete nor continuous). For example, consider approximations of a general random variable by discrete random variables (analogous to the construction of an integral of a general function by defining the integral of a step function using sums, and then extending to general functions using approximation by step functions).

Properties of expectation

(1) $\mathbb{E} I_{A}=\mathbb{P}(A)$ for any event A.
(2) If $\mathbb{P}(X \geq 0)=1$ then $\mathbb{E} X \geq 0$.
(3) (Linearity $\mathbf{1}): \mathbb{E}(a X)=a \mathbb{E} X$ for any constant a.
(4) (Linearity 2): $\mathbb{E}(X+Y)=\mathbb{E} X+\mathbb{E} Y$.

Expectation of a function of a random variable:

$$
\begin{aligned}
& \mathbb{E} g(X)=\sum_{x} g(x) p_{X}(x) \text { (discrete case) } \\
& \mathbb{E} g(X)=\int_{-\infty}^{\infty} g(x) f(x) d x \text { (continuous case) }
\end{aligned}
$$

Variance and covariance

The variance of a random variable X is defined by

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right] \\
& =\mathbb{E}\left(X^{2}\right)-(\mathbb{E} X)^{2} .
\end{aligned}
$$

The covariance of two random variables X and Y is defined by

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbb{E}[(X-\mathbb{E} X)(Y-\mathbb{E} Y)] \\
& =\mathbb{E}(X Y)-(\mathbb{E} X)(\mathbb{E} Y)
\end{aligned}
$$

Properties:

$$
\begin{aligned}
\operatorname{Var}(a X+b) & =a^{2} \operatorname{Var} X \\
\operatorname{Cov}(a X+b, c Y+d) & =a c \operatorname{Cov}(X, Y) \\
\operatorname{Var}(X+Y) & =\operatorname{Var} X+\operatorname{Var} Y+2 \operatorname{Cov}(X, Y) \\
\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{n}\right) & =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{1 \leq i<j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right) .
\end{aligned}
$$

Independence

Events A and B are independent if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

More generally, a collection of events $\left\{A_{i}, i \in \mathcal{I}\right\}$ are independent if

$$
\mathbb{P}\left(\bigcap_{i \in J} A_{i}\right)=\prod_{i \in J} \mathbb{P}\left(A_{i}\right)
$$

for all finite subsets J of \mathcal{I}.

Random variables X_{1}, \ldots, X_{n} are independent if for all $B_{1}, \ldots, B_{n} \subset \mathbb{R}$, the events $\left\{X_{1} \in B_{1}\right\}, \ldots,\left\{X_{n} \in B_{n}\right\}$ are independent.

In fact, it's sufficient that for all x_{1}, \ldots, x_{n},

$$
\mathbb{P}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=\mathbb{P}\left(X_{1} \leq x_{1}\right) \ldots \mathbb{P}\left(X_{n} \leq x_{n}\right)
$$

If X and Y are independent, then $\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$, i.e. $\operatorname{Cov}(X, Y)=0$. The converse is not true!

Examples of probability distributions

- Continuous:

Uniform, exponential, normal, gamma...

- Discrete:

Discrete uniform, Bernoulli, binomial, geometric, Poisson...

