B1.2 Set Theory MT22

Problem Set 4

1. (a) Let X be a well-ordered set, and $x \in X$. Show that either x is the greatest element in X or x has an immediate successor (that is an element $x^{*} \in X$ with $x<x^{*}$ such that there is no $y \in X$ with $\left.x<y<x^{*}\right)$.
(b) Let $X \subset \mathbb{R}$ such that the inherited order $<$ from \mathbb{R} is a well-order on X. Prove that X must be countable. [Hint: consider the intervals $\left(x, x^{*}\right)$.]
2. Let $<_{A},<_{B}$ be strict total orders on sets A, B respectively. We define the sum $\left(A,<_{A}\right)+\left(B,<_{B}\right)$ and the product $\left(A,<_{A}\right) \times\left(B,<_{B}\right)$ of the orders as follows.

For the sum, we assume A, B are disjoint (which can always be arranged by replacing them by $A^{\prime}=\{0\} \times A, B^{\prime}=\{1\} \times B$ with the obvious orders on them). Then $\left(A,<_{A}\right)+\left(B,<_{B}\right)$ is the set $A \cup B$ with the order $<_{+}$in which elements of A or B are ordered by $<_{A},<_{B}$ respectively and all elements of A precede all elements of B.

The product $\left(A,<_{A}\right) \times\left(B,<_{B}\right)$ is $A \times B$ with the reverse lexicographic order, that is $(a, b)<_{x}\left(a^{\prime}, b^{\prime}\right)$ iff $b<b^{\prime}$, or $b=b^{\prime}$ and $a<a^{\prime}$.
(i) Draw illustrative pictures (coloured pens may be helpful) of the orders

$$
\omega+4, \quad 4+\omega, \quad \omega+\omega, \quad \omega \cdot \omega
$$

(ii) Prove that $<_{+},<_{x}$ are well-orders if ${<_{A}}_{A},<_{B}$ are well-orders. [You may omit the (tedious) verification that they are strict orders and that they are total.]
3. Let α, β, γ be ordinals. Show that
(i) if $\beta<\gamma$ then $\alpha+\beta<\alpha+\gamma$ (Hint: induction on γ, or use Theorem 14.7).
(ii) if $\alpha+\beta=\alpha+\gamma$ then $\beta=\gamma$, i.e. left cancellation holds.
(iii) right cancellation " $\alpha+\gamma=\beta+\gamma$ implies $\alpha=\beta$ " fails, by giving a counterexample.
(iv) if γ is a limit ordinal then $\alpha+\gamma$ is a limit ordinal.
4. For any two ordinals α, β, exactly one of $\alpha \in \beta, \alpha=\beta, \beta \in \alpha$ hold. Determine which of these holds when
(i) $\alpha=(\omega+1) \cdot 2, \quad \beta=2 \cdot(\omega+1)$
(ii) $\alpha=(\omega+1) \cdot \omega, \quad \beta=\omega \cdot(\omega+1)$
5. Ordinal exponentiation $\beta \mapsto \alpha^{\beta}$ for any ordinal $\alpha>0$ was defined in lectures. Prove that if α, β are countable, with $\alpha>0$, then α^{β} is countable. [Observe the difference with cardinal exponentiation on this point]. Assume AC. It can be done without with more work.
6. Let P be a non-empty partially strictly ordered set and assume no element of P is maximal (i.e. for every $x \in P$ there exists $y \in P$ with $x<y$). Use AC to show there exists a function $f: \omega \rightarrow P$ with $f(n)<f\left(n^{+}\right)$for all $n \in \omega$.
7. Let R be a commutative ring with identity $1 \neq 0$.
(i) Prove that the union of a chain of proper ideals is a proper ideal.
(ii) Use Zorn's Lemma to prove that R has a maximal ideal.
8. Let \mathcal{A} be a non-empty set of non-empty sets and $X=\bigcup \mathcal{A}$. Assume Zorn's Lemma and prove the existence of a function $F: \mathcal{A} \rightarrow X$ with $F(A) \in A$ for each $A \in \mathcal{A}$. [Hint: apply ZL to the partially ordered set P of partial maps from \mathcal{A} to X, regarded as a subset of $\mathcal{P}(\mathcal{A} \times X)$, ordered by inclusion.]

Deduce that Zorn's Lemma implies the Axiom of Choice.

