B1.2 Set Theory MT22

Problem Set 3

1. Prove that there is no descending sequence $X_{0} \ni X_{1} \ni \ldots$ of sets, that is, there is no function f with domain ω such that $f\left(n^{+}\right) \in f(n)$ for all $n \in \omega$. Hint: Apply the Axiom of Foundation to a suitably chosen set.
2. Use the Axiom of Foundation to show that, if A is a non-empty set, then $A \neq A \times A$. Hint: Apply the Axiom of Foundation to a suitably chosen set.
3. Prove that a subset of a finite set is finite. Hint: First show, by induction, that, for $n \in \omega$, every subset of n is equinumerous with some natural number. (A set is defined to be finite if it is equinumerous with an element of ω.)
4. Prove that the following properties of a set X are equivalent:
(1) $\omega \preceq X$ (i.e. there is an injective function $f: \omega \rightarrow X$)
(2) there exists a function $g: X \rightarrow X$ which is injective but not surjective.

Hint: For $(2) \Rightarrow(1)$ use the Recursion Theorem, and induction to verify that the function you define is indeed injective.
5. Suppose κ, λ, μ are cardinals. Prove (no need to check obvious bijections)
(i) $(\kappa+\lambda)+\mu=\kappa+(\lambda+\mu)$
(ii) $(\kappa \cdot \lambda) \cdot \mu=\kappa \cdot(\lambda . \mu)$
(iii) $\kappa \cdot(\lambda+\mu)=\kappa \cdot \lambda+\kappa \cdot \mu$
(iv) $\kappa^{\lambda+\mu}=\kappa^{\lambda} . \kappa^{\mu}$
(v) $\kappa^{\lambda \cdot \mu}=\left(\kappa^{\lambda}\right)^{\mu}$
(vi) $(\kappa \cdot \lambda)^{\mu}=\kappa^{\mu} \cdot \lambda^{\mu}$
6. (a) Let A, X, Y be sets such that $X \preceq A$. Prove that $X^{Y} \preceq A^{Y}$. Deduce that, for cardinals κ, λ, μ, if $\kappa \leq \lambda$ then $\kappa^{\mu} \leq \lambda^{\mu}$.
(b) Now let A, B, X, Y be sets with $X \preceq A$ and $Y \preceq B$. Prove that, apart from exceptional case(s), $X^{Y} \preceq A^{B}$. [You need to show that the map you give from X^{Y} to A^{B} is really injective.] What are the exceptional cases?
7. Calculate the cardinalities of the following sets, simplifying your answers as far as possible: your answer in each case should be a cardinal from the list $\aleph_{0}, 2^{\aleph_{0}}, 2^{2^{\aleph_{0}}}, \ldots$.
(i) the set of all finite sequences of natural numbers [Note that the axioms given so far do not prove that a countable union of countable sets is countable. Use unique factorization of non-zero natural numbers into powers of primes.]
(ii) the set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$
(iii) The set of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ Hint: a continuous function is determined by its values on \mathbb{Q}.
(iv) The set of equivalence relations on ω. Hint: To get a lower bound think about partitions of ω.
8. Let $f: X \rightarrow Y$ be surjective. Prove that $\mathcal{P}(Y) \preceq \mathcal{P}(X)$. [You should not assume there exists an injective map $g: Y \rightarrow X$ as the axioms we have so far do not suffice to prove this.]
9. (a) Let κ be any cardinal number and $n \in \omega$. Prove that (for cardinal addition)
(i) $\kappa+0=\kappa$ and $\kappa .0=0$
(ii) $\kappa . n^{+}=\kappa \cdot n+\kappa$
(b) We now have two definitions of addition and multiplication for elements of ω. Prove that they agree.

