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Chapter 1

Enzyme kinetics

Many of the processes which occur in the human body are enabled by chemical
reactions, and many of these involve large complex molecules called proteins. Proteins
consist of chains of polypeptides, which are themselves formed of chains of amino acids.
A particular type of protein is the enzyme, which takes part in reactions by acting
as a catalyst. A catalyst is a molecule that helps to convert other molecules (called
substrates) into products, but is not itself used up in the reaction. An example is the
conversion of ATP to ADP during glycolysis, to which we return later in the chapter.
Enzymes are extremely efficient catalysts, often giving increases in the rate of reaction
by a factor of 107 or more. Just as importantly, they are highly specific, catalysing
only one reaction of one specific substrate or family of substrates. Enzymes are also
regulated, responding to a complicated network of positive and negative feedback
mechanisms, thus allowing the rate of reaction to be precisely controlled.

An enzyme works by lowering the activation energy of the reaction. This it may
do by a number of different mechanisms. For example, it may aid in overcoming the
electrostatic repulsion of like-charged molecules, or it may help in breaking existing
bonds within the substrate.

1.1 Law of mass action

The way in which chemical reactions and the consequent evolving concentrations
of their reactants are quantified is by the law of mass action. Suppose that two
chemicals, A and B say, react together on collision to produce the product C. The
law of mass action states that the rate at which the reaction takes place is proportional
to the number of sufficiently energetic collisions between the molecules A and B per
unit time, which in turn is taken to be proportional to the concentrations of A and
B. Thus we write

A + B
k
→ C (1.1)

and, taking A, B, C to be the concentrations of A, B and C respectively,

dC

dt
= kAB. (1.2)
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Figure 1.1: Schematic representation of the Michaelis-Menten reaction scheme.

The constant of proportionality k is known as the rate constant for the reaction, and
depends on the geometrical shapes and sizes of the reactant molecules or ions, and
on the temperature of the mixture.

While the law of mass action is extremely useful, there are many reactions to which
it cannot be applied, usually because the reaction proceeds by a complex mechanism
involving many elementary steps of the form (1.1). Often for biochemical reactions
things are further complicated by the fact that many of the intermediate steps are
unknown.

1.2 Michaelis-Menten kinetics

A simple model for the action of an enzyme on a single substrate was formulated
by Michaelis and Menten in 1913. They proposed that the reaction proceeds in two
steps, as shown in figure 1.1. Firstly, the enzyme E may bind with the substrate S
to form a complex C. Secondly, the complex C may break down into the product P,
releasing the enzyme at the same time. The basic Michaelis-Menten reaction scheme
is

S + E
k1
⇋
k−1

C
k2→ E + P. (1.3)

Applying the law of mass action to each of the steps separately, with S = concentra-
tion of S, etc., gives

dS

dt
= k−1C − k1SE,

dE

dt
= (k−1 + k2)C − k1SE,

dC

dt
= k1SE − (k2 + k−1)C,

dP

dt
= k2C. (1.4)

In writing down equations such as (1.4) (and indeed (1.2)) we are assuming that
the medium in which the reaction is taking place is well-stirred, so that the concen-
trations of reactants are uniform in space. If this were not the case then we would
need to allow the concentrations to be functions of position as well as time (so that we
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would have partial differential equations rather than ordinary differential equations)
and we would need to take into account the diffusion and convection of reactants.

The overall reaction may be denoted as

S
r
→ P, (1.5)

where r denotes the overall reaction rate. Although (1.5) has the appearance of a
first order reaction, the reaction rate r = k2C is not constant (we shall see that it is
effectively a function of S); this is a consequence of the fact that the overall reaction
consists of a number of intermediate steps. Often biochemical reactions are modelled
by the Hill equation

r =
r0S

n

Kn + Sn
, (1.6)

an example being in the modelling of blood cell production in chapter 8. A particular
example of this can be derived in models of enzyme kinetics, and in particular for
those of cooperative enzymes, where the case n > 1 may be derived.

The set of four equations in (1.4) is nonlinear and apparently intractable, but it
may be simplified by noting firstly that the equation for P uncouples from the others,
i. e., it can be found by direct integration once the other three equations for E, C and
S have been solved. Secondly, if we add equations (1.4)2 and (1.4)3, then we see that

E + C = E0 (1.7)

is constant. This expresses the conservation of enzyme, and is a consequence of the
observation that the enzyme is neither produced nor consumed, the total of bound
and unbound enzyme being a constant quantity. This, together with the uncoupling
of P , allows the system to be reduced to just two equations for C and S:

dS

dt
= k−1C − k1S(E0 − C),

dC

dt
= k1S(E0 − C)− (k2 + k−1)C. (1.8)

Typical initial conditions for the system (1.4) would consist of given concentrations
of substrate and enzyme, and no product or complex, that is, P = C = 0, S = S0,
E = E0. For (1.8), we therefore have

S = S0, C = 0 at t = 0. (1.9)

The first step in a systematic mathematical analysis is to nondimensionalise the
system. We set

S = S0s, C = E0c, t =
t′

k1E0
, (1.10)

to give

ds

dt′
= −s+ c(s+K ′ − λ), (1.11)

ε
dc

dt′
= s− (s+K ′)c, (1.12)
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with initial conditions
s(0) = 1, c(0) = 0, (1.13)

where

K ′ =
k−1 + k2
k1S0

, λ =
k2
k1S0

, ε =
E0

S0
.

The remarkable effectiveness of enzymes as catalysts is reflected in the extremely
small concentrations needed in comparison to the substrate. Thus the parameter ε
is small, typically in the range 10−2 to 10−7. This means that the reaction (1.12)
equilibriates very rapidly by comparison with (1.11), and remains near equilibrium

even as s changes. Thus, to a first approximation we may take ε
dc

dt′
= 0, so that

c =
s

s+K ′
, (1.14)

ds

dt′
= −λc = − λs

s+K ′
. (1.15)

The approximation above is known as the quasi-steady state approximation. Note
that we are not claiming that dc/dt′ = 0; c will vary through equation (1.14) as s
varies.

The quasi-steady state approximation was first used by Briggs and Haldane in
1925, and is the basis for most present-day descriptions of enzyme reactions1. Equa-
tion (1.15) describes the rate of transformation of the substrate, and is known as
a Michaelis-Menten law. It has the general property of enzyme-catalysed reactions
that for small concentrations of substrates the reaction rate is linear in the substrate
concentration, as in the law of mass action, but for large substrate concentrations the
reaction rate approaches a constant value (as the enzyme is working at full capac-
ity). Dimensionally, under the quasi-steady state approximation, the rate of reaction

r =
dP

dt
= −dS

dt
= −S0E0k1

ds

dt′
, and thus

r =
k2E0S

K + S
, (1.16)

where the Michaelis constant is

K =
k−1 + k2

k1
. (1.17)

Although the individual reaction rate constants are difficult to measure, the ratio K
can be measured relatively easily due to the observation that the initial reaction rate
r0 at t = 0 is given by

1

r0
=

1

k2E0

+
K

k2E0

1

S0

,

1In fact Briggs and Haldane arrived at the approximation by the erroneous argument that the
rates of formation and breakdown of complex were essentially equal at all times, so that dC/dt
should be zero.
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Figure 1.2: A typical Michaelis-Menten reaction rate.

1
r0

1
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Figure 1.3: A Lineweaver-Burk plot.

so that 1/r0 is a linear function of 1/S0. Plots of 1/r0 against 1/S0 are known as
Lineweaver-Burk plots; from them K and k2E0 can be found. Data such as that indi-
cated in figure 1.3 is obtained by repeating the experiment for a number of different
initial substrate concentrations, and then plotting the initial (apparent) reaction rate
as a function of initial substrate concentration.

Note that with c given by (1.14),

c(0) =
s(0)

s(0) +K ′
=

1

1 +K ′
6= 0, (1.18)

so that the initial condition is not satisfied. There is an initial rapid transient (a
boundary layer in time) when t′ = O(ε), during which the quasi-steady state approx-
imation does not hold. To examine this transient we rescale the time variable by
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writing t′ = ετ to give

ds

dτ
= ε (−s + c(s+K ′ − λ)) , (1.19)

dc

dτ
= s− (s+K ′)c. (1.20)

Thus to leading order ds/dτ = 0, so that s is constant. Since s(0) = 1 we therefore
have s ≡ 1, giving

dc

dτ
= 1− (1 +K ′)c, (1.21)

so that

c =
1

1 +K ′

(

1− e−(1+K ′)τ
)

. (1.22)

This short-time behaviour satisfies the initial condition c(0) = 0, and gives c ∼
1/(1 + K ′) as we move out of the boundary layer (as τ ∼ ∞) in agreement with
(1.18).

1.3 Inhibitors

An enzyme inhibitor is a substance which inhibits the catalytic action of the enzyme.
Inhibition is a common feature of enzyme catalysed reactions, and is a means by
which the activity of enzymes may be controlled.

There are many different types of enzyme inhibitors. Two common types of en-
zyme inhibitor which may be easily modelled are competitive inhibitors and allosteric
inhibitors. To understand the way that an inhibitor works, and the distinction be-
tween competitive and allosteric inhibition, it is useful to recall that enzymes are
usually large proteins (usually much larger than the substrate molecule), and that
their catalytic properties are believed to arise from active sites embedded in the
enzyme to which the substrate can bind. The active sites arise as a result of the
three-dimensional structure of the enzyme molecule, and are highly specific, with
the substrate matching the site in a “lock-and-key” fashion. However, if another
molecule has a similar structure to the substrate molecule, it may also bind to the
active site, preventing the binding of the substrate, and decreasing the effectivity of
the enzyme. Because the inhibitor molecule binds to the active site in competition
with the substrate, such inhibition is called competitive inhibition.

However, enzymes usually have many other binding sites, distinct from the active
site. These other binding sites are known as allosteric or regulatory binding sites.
When a molecule binds to one of these other sites it may alter the three-dimensional
shape of the enzyme, thus affecting the binding of the substrate at the active site. The
molecules that bind at the allosteric sites are called effectors or modifiers. They may
increase the effectiveness of the active site, in which case they are called allosteric ac-
tivators, or they may decrease the effectiveness, in which case they are called allosteric
inhibitors.
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1.3.1 Competitive inhibition

The simplest model example of a competitive inhibitor is one in which the substrate
cannot bind when the inhibitor is bound to the enzyme, so that the reaction stops.
Labelling the inhibitor as I, and denoting the enzyme complex with the substrate CS

and the enzyme complex with the inhibitor CI, the reaction scheme is

S + E
k1
⇋
k−1

CS

k2→ E + P, E + I
k3
⇋
k−3

CI. (1.23)

Using the law of mass action gives

dS

dt
= k−1CS − k1SE,

dI

dt
= k−3CI − k3IE,

dE

dt
= (k−1 + k2)CS − k1SE + k−3CI − k3IE,

dCS
dt

= k1SE − (k2 + k−1)CS,

dCI
dt

= k3IE − k−3CI ,

dP

dt
= k2CS. (1.24)

As before the equation for P decouples and
d(E + CS + CI)

dt
= 0, so that enzyme is

conserved and
E + CS + CI = E0. (1.25)

Under the quasi-steady state approximation

CS =
KiE0S

KmI +KiS +KmKi
,

CI =
KmE0I

KmI +KiS +KmKi
, (1.26)

where

Km =
k2 + k−1

k1
, Ki =

k−3

k3
, (1.27)

and the rate of reaction is

r =
k2E0SKi

KmI +KiS +KmKi
. (1.28)

The effect of the inhibitor is to increase the effective equilibrium constant of the
enzyme by a factor of 1 + I/Ki from Km to Km(1 + I/Ki).
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1.3.2 Allosteric inhibition

If the inhibitor binds at a different site from the active site (i. e., at an allosteric site),
then it is possible for the enzyme to be bound to both the inhibitor and the substrate
at the same time, and there are four possible states for the enzyme, which we denote
by E (unbound), CS (bound to the substrate only), CI (bound to the inhibitor only)
and CIS (bound to the substrate and the inhibitor). The reaction scheme is then

S + E
k1
⇋
k−1

CS

k2→ E + P,

E + I
k3
⇋
k−3

CI,

CS + I
k3
⇋
k−3

CIS

k−1

⇋
k1

CI + S. (1.29)

The possible states of the enzyme and the rates of transition between these states are

E
k1S
⇋
k−1

CS

k2→ E + P

k3I ↓↑ k−3 k3I ↓↑ k−3

CI

k1S
⇋
k−1

CIS .

(1.30)

The analysis of the model now proceeds in much the same way as before. Under the
quasi-steady state approximation the rate of reaction is

r =

(
rmaxK3

I +K3

)(
S(k−1 + k3I + k1S + k−3)

k1(S +K1)2 + (S +K1)(k3I + k−3 + k2) + k2k−3/k1

)

, (1.31)

where K3 = k−3/k3 and K1 = k−1/k1.

1.4 Cooperative systems

Often the reaction rates of enzyme-catalysed reactions are more sigmoidal in nature
than is predicted by the simple Michaelis-Menten law. This can result from cooper-
ative effects.

Many enzymes have more than one active site, so that many substrate molecules
can bind to the enzyme at the same time. Moreover, if a substrate molecule is bound
at one active site, this can affect the binding of substrate molecules at other active
sites (as in allosteric activation/inhibition).

Consider the simplest cooperative system of an enzyme with two active sites, as
shown in figure 1.4. Assuming the two active sites to be identical, and denoting the
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Figure 1.4: Schematic representation of an enzyme with two active sites.

enzyme complex with one substrate molecule (at either site) by C1 and with two
substrate molecules by C2, the reaction scheme is

S + E
k1
⇋
k−1

C1
k2→ E + P,

S + C1

k3
⇋
k−3

C2
k4→ C1 + P. (1.32)

As usual P will uncouple and enzyme will be conserved, so that E + C1 + C2 = E0.
Thus we only need to write down the remaining equations for S, C1 and C2. These
are

dS

dt
= k−1C1 − k1SE + k−3C2 − k3SC1,

dC1

dt
= k1SE − (k2 + k−1)C1 − k3SC1 + (k4 + k−3)C2,

dC2

dt
= k3SC1 − (k4 + k−3)C2. (1.33)

Nondimensionalising by setting

S = sS0, C1 = c1E0, C2 = c2E0, t = t′/k1E0, (1.34)

gives

ds

dt′
=

k−1

k1S0
c1 − s(1− c1 − c2) +

k−3

k1S0
c2 −

k3
k1
sc1,

ε
dc1
dt′

= s(1− c1 − c2)−
k2 + k−1

k1S0
c1 −

k3
k1
sc1 +

k4 + k−3

k1S0
c2,

ε
dc2
dt′

=
k3
k1
sc1 −

k4 + k−3

k1S0
c2. (1.35)
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As before, we suppose ε≪ 1, whence we deduce the quasi-steady state approximation

0 ≈ s(1− c1 − c2)−
k2 + k−1

k1S0
c1 −

k3
k1
sc1 +

k4 + k−3

k1S0
c2,

0 ≈ k3
k1
sc1 −

k4 + k−3

k1S0
c2, (1.36)

i. e.,

c1 =
K ′

2s

s2 +K ′
2s+K ′

1K
′
2

,

c2 =
s2

s2 +K ′
2s+K ′

1K
′
2

, (1.37)

where

K ′
1 =

k−1 + k2
k1S0

, K ′
2 =

k4 + k−3

k3S0

. (1.38)

Dimensionally, under the quasi-steady state assumption, the rate of reaction is found
after some algebra to be

r =
(k2K2 + k4S)E0S

K1K2 +K2S + S2
, (1.39)

where

K1 =
k−1 + k2

k1
, K2 =

k4 + k−3

k3
. (1.40)

If the rates of binding (and reaction) at each site are identical and independent
then

k1 = 2k3, k−3 = 2k−1, k4 = 2k2. (1.41)

The reaction rate is then given by

r =
2k2E0S

K + S
, (1.42)

where

K =
2(k−1 + k2)

k1
. (1.43)

Thus, as expected, the reaction rate is exactly twice that for an enzyme with a single
active site.

If cooperativity is large then the rate of binding of the first substrate molecule is
small, but the rate of binding of the second once the first is attached is large. This
corresponds to the limit k1 ∼ 0, k3 ∼ ∞, with k1k3 finite, so that K1 ∼ ∞, K2 ∼ 0,
with K1K2 finite. In this limit the reaction rate

r ≈ k4E0S
2

K1K2 + S2
, (1.44)

which is a Hill equation with exponent 2.
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Figure 1.5: A schematic diagram of the reaction scheme for a simple Monod-Wyman-
Changeux model.

If the enzyme has binding sites for n substrate molecules, then in the same limit
of large cooperativity ki ∼ 0 for i < n, kn ∼ ∞, with

∏n
i=1 ki finite (so that Ki ∼ ∞

for i < n, Kn ∼ 0 with
∏n

i=1Ki finite) the reaction rate is approximately

r =
rmaxS

n

∏n
i=1Ki + Sn

, (1.45)

which is a Hill equation with exponent n. Such a Hill equation is often used to
model the reaction rate when details of the intermediate steps are not known, but
where cooperative behaviour is suspected, with the parameters rmax and n fitted from
experiment.

While the model (1.33) can predict the overall reaction rate given the individual
rate constants, it gives no explanation of why cooperative behaviour should occur,
i. e., why the rate constant k3 should be larger than 1

2
k1. One of the first models that

was proposed to explain cooperativity was the allosteric theory of Monod-Wyman-
Changeux, which is illustrated in figure 1.5. It assumes that the protein has two
conformational states (denoted in the figure by a circle and a square), and that these
two states differ in their ability to bind to the substrate molecules. In the simplest
model (shown in the diagram), only when the protein is in one of the conformational
states (the square) can the substrate bind to the active sites. However, the protein
can only switch between conformations when no substrate molecules are bound, so
that once one substrate molecule is bound the protein is “locked” in that confirmation
until the substrate molecule unbinds.

It is straightforward to write down rate equations for the reaction scheme illus-
trated in figure 1.5. The rate of reaction is again a sigmoidal function of substrate
concentration S. This is illustrated in detail in section 1.5 below.

1.5 Glycolysis

We have seen that the Michaelis-Menten law for the rate of enzyme-catalysed reac-
tions differs from the simple law of mass action, and that cooperative and inhibitory
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effects may lead to even more complicated reaction rates as functions of substrate
concentration. However, with some reactions things may be more complicated still,
with positive feedback loops leading to oscillations in the concentrations.

An example of a biochemical pathway in which oscillations can occur is glycolysis.
This is part of the sequence of reactions converting foodstuffs to energy – e. g., the
oxidation of glucose:

C6H12O6 + 6O2 → 6CO2 + 6H2O+ energy. (1.46)

In some circumstances, oscillations can occur in the concentrations. One part of the
pathway consists of the transformation of the substrate ATP (adenosine triphosphate)
to ADP (adenosine diphosphate) via the action of the allosteric enzyme PFK (phos-
phofructokinase). The rate of this reaction is, however, modified by the ADP itself
in an autocatalytic fashion.

We initially consider as an example the precise situation shown in figure 1.5, in
which we suppose that the allosteric enzyme PFK is a dimer consisting of two sub-
units (protomers) which can exist (together) in either of two conformations, T and R.
We suppose that ATP can only bind to PFK in the R form, and that each protomer
of R can bind one molecule of ATP. We denote the concentration of ATP by s and
that of ADP by p, and initally ignore binding of ADP to PFK. There are four states
of the enzyme, which we denote as T0, R0, R1 and R2, with the subscript denoting
the number of molecules of ATP bound to the enzyme. The reaction scheme between
these different states is thus

T0

kf
⇋
kb

R0

2k+s
⇋
k−

R1

k+s
⇋
2k−

R2, (1.47)

where the factors of two arise through the number of bound or unbound sites available.
It is straightforward to write down the rate equations for these variables, and

these are

Ṫ0 = −kfT0 + kbR0,

Ṙ0 = kfT0 − kbR0 − 2k+sR0 + k−R1,

Ṙ1 = 2k+sR0 − k−R1 − k+sR1 + 2k−R2,

Ṙ2 = k+sR1 − 2k−R2,

ṡ = −2k+sR0 + k−R1 − k+sR1 + 2k−R2. (1.48)

In keeping with the quasi-steady state assumption, we assume the first four of these
equations are in equilibrium, and then after some algebra, we find that

T0 =
LK2R2

s2
, R0 =

K2R2

s2
, R1 =

2KR2

s
, (1.49)

where

L =
kb
kf
, K =

k−
k+
. (1.50)
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The fraction of bound sites on all forms of the enzyme is Y =
R1 + 2R2

2(T0 +R0 +R1 +R2)
,

and using (1.49) we find that this is

Y =
S(1 + S)

L+ (1 + S)2
, (1.51)

where
S =

s

K
. (1.52)

Now suppose that the product ADP (denoted P) with concentration p is produced
at a rate k per bound site. Then we have the additional reactions

R1

k
→ R0 + P,

R2

2k
→ R1 + P, (1.53)

and these modify the model in (1.48) simply by replacing k− by k+ k−. Thus in this
case the fraction of bound sites is still given by (1.51), but where now

S =
s

Km
, (1.54)

and

Km =
k− + k

k+
. (1.55)

The rate of reaction r in the overall reaction S → P is

r = kR1 + 2kR2 = 2kR2

(

1 +
1

S

)

. (1.56)

We can relate this to Y by noting that the enzyme is conserved; T0+R0+R1+R2 = e0
is constant, so that, using (1.49), we find

r = 2ke0Y. (1.57)

Because Y is a sigmoidal function of S, so also is r, as we mentioned earlier.
Now let us add in the effect of feedback, that is we allow the product P to bind

as a second substrate to the enzyme, and specifically we will suppose that binding
of S prevents further binding of P. No production of P is yet invoked. The reaction
scheme is shown in figure 1.6, and it is a simple if tedious matter to write down the
corresponding rate equations. Assuming the corresponding ten enzyme equations are
in equilibrium, we find, after some algebra2, that the fraction of bound sites is now
given by

Y =
S(1 + S)(1 + P )2

L+ (1 + S)2(1 + P )2
, (1.58)

2It is simplest to first write the nine overall reaction rates r00 = kfT − kbR00, etc., and then

the rate equations are Ṫ = −r00, etc.; equilibrium shows that all rij = 0, which yields a sequence
of expressions for Rij ∝ R00. Conservation of enzyme yields R00, and the number of S-bound sites
follows easily.
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Figure 1.6: Reaction scheme for the Monod-Wyman-Changeux dimer with product
feedback. Binding of S (ATP) is assumed to inhibit further binding of P (ADP).

where
S =

s

Ks
, P =

p

Kp
, (1.59)

and in terms of the reaction rates indicated in figure 1.6,

L =
kb
kf
, Kp =

k∗−
k∗+
, Ks =

k−
k+
. (1.60)

If we now add production of P to the scheme via reactions involving enzymes with
bound S such as

R10

k
→ R00 + P, (1.61)

this adds terms to the equations of the form

ṗ = kR10 + . . . , Ṙ10 = −kR10 + . . . , Ṙ00 = kR10 + . . . . (1.62)

These latter terms combine with the dissociation reactions such as

R10

k−→ R00, (1.63)

and it is clear that the effect of production of p is simply to change k− to k− + k in

the enzyme model of figure 1.6. Hence the overall reaction rate in the reaction S
r
→ P

is just
r = 2ke0Y (1.64)
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Figure 1.7: A part of the glycolytic path of reactions involving glucose. ATP is
converted to ADP; however, this can bind to the allosteric enzyme PFK, which can
then affect the rate of reaction.

as before, the bound site fraction is still given by (1.58), but S is now defined by

S =
s

Km
, (1.65)

where

Km =
k− + k

k+
. (1.66)

We can now write a model for the ATP–ADP reaction scheme indicated in figure
1.7. If, as indicated, S is produced at a rate v, while P is removed by first order decay
with rate coefficient kp, then a suitable model is

ṡ = v − r,

ṗ = −kpp+ r, (1.67)

where r is the reaction rate in (1.64). It is convenient to write these equations in
dimensionless form by scaling

s ∼ Km, p ∼ Kp, t ∼ 1

kp
. (1.68)

From this we derive the dimensionless model

Ṡ = µ− φ(S, P ),

Ṗ = −P +Kφ(S, P ), (1.69)

where

φ =
βS(1 + S)(1 + P )2

L+ (1 + S)2(1 + P )2
, β =

2ke0
kpKm

, µ =
v

kpKm

, K =
Km

Kp

, L =
kb
kf
.

(1.70)
As we shall see, this model supports self-sustained oscillatory solutions.
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1.5.1 Glycolytic oscillations

It is straightforward in principle to analyse the solution in the (S, P ) phase plane, but
this is complicated by the complexity of the rate function φ; and this function is even
more complicated for more complex models of the enzyme. Simplification ensues by
using realistic values for the dimensionless parameters µ, L, β and K. Typical values
of these (for example, for ATP–ADP conversion in yeast) satisfy L ≫ β ≫ 1, with
µ ∼ K ∼ 1, and we shall assume these orders of magnitude. Typical quoted values
are in the range L ∼ 106, β ∼ 103, for example.

It is simple to see from (1.69) that S and P remain positive since Ṡ > 0 on S = 0
and Ṗ > 0 on P = 0, S > 0. Further, there is a unique fixed point in the positive
quadrant, since we must have P = Kµ, and φ is certainly an increasing function of S
if L≫ β. Next, we study the shape of the nullclines (where the derivatives of S and
P are zero), assuming L≫ β ≫ 1 and K ∼ µ ∼ O(1). The S nullcline is given by

βS(1 + S)(1 + P )2

L+ (1 + S)2(1 + P )2
= µ. (1.71)

Suppose that S, P ≫ 1. Then this is approximated by

βS2P 2

L+ S2P 2
= µ, (1.72)

i. e., the S nullcline at large P is given by the hyperbola

SP ≈
[
µL

β − µ

]1/2

. (1.73)

Note that this is consistent with the assumption that S, P ≫ 1, since the right hand
side is of O(L/β)1/2 ≫ 1. The approximations break down, but not dramatically,
if S → 0 or P → 0. As P → 0, the asymptote at P = 0 is in fact at P = −1,

and as P → 0, S cuts the S axis at S ≈
(

µL

β − µ

)1/2

≫ 1. As S becomes small at

large P (≫ L1/2), we see that S → µ/β ≪ 1. Thus the S nullcline is monotonically
decreasing as P increases, and reasonably approximated everywhere by (1.73).

The P nullcline where Ṗ = 0 is given by

P =
βKS(1 + S)(1 + P )2

L+ (1 + S)2(1 + P )2
. (1.74)

Now we see in the S nullcline from (1.73) that SP ≪
√
L, and with this assumption,

the P nullcline takes the approximate form

S + S2 ≈ L

βK

P

(1 + P )2
. (1.75)
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Since the left hand side is an increasing function of S, this gives S as a unimodal
(one-humped) function of P , increasing from zero at P = 0 to a maximum, and then
decreasing towards zero as P → ∞. While P ∼ O(1), S is large, thus

S ≈
[
L

βK

P

(1 + P )2

]1/2

, (1.76)

and SP ≪
√
L as assumed. As P becomes large, the approximation becomes

S ≈
[

L

βKP

]1/2

, (1.77)

and the assumption that SP ≪
√
L remains valid until P >∼ β.

For P >∼ β ≫ 1 and while S is still large, we anticipate that then SP >∼
√
L, and

the nullcline is approximated by P ≈ βKS2P 2

L+ S2P 2
, i. e.,

1

βKS
=

SP

L+ S2P 2
. (1.78)

The right hand side is a unimodal function of SP , so that S decreases from ∞ to
a minimum and then increases again as SP increases. This then implies the same
behaviour for S as P increases (think graphically!). Further, as P → 0, then S → ∞
and SP → 0 in this approximation, so that

1

βKS
≈ SP

L
which is identical to (1.75),

which is itself the large P limit of the unimodal approximation when P ≪ O(β). Thus
these two approximations match to each other and provide a uniform approximation
for the P nullcline, which has a pseudo-cubic shape as shown in figure 1.8. A uniform
approximation which is also approximated by both (1.76) and (1.78) is

S ≈
[

LP

βK(1 + P )2 − P 3

]1/2

. (1.79)

Note from (1.79) that S → ∞ as P → βK, approximately. In fact this can be seen
from (1.74) since the maximum of the right hand side is βK when S → ∞.

We denote the local maximum of the P nullcline as U and the local minimum as
V (see figure 1.8). The stability of the fixed point then depends on whether the fixed
point of the system lies to the left of U , to the right of V , or between U and V . It
is easy to use the approximations described above to estimate the locations of these

points. The results are that U is approximately at P = 1, S =

(
L

4βK

)1/2

, while V

is approximately at S =
2L1/2

βK
, P =

βK

2
.

If we linearise the equations (1.69) about the fixed point (S0, P0) by writing S =
S0 + σ, P = P0 + π, then we find

(
σ̇
π̇

)

=

(
−φS −φP
KφS KφP − 1

)(
σ
π

)

. (1.80)
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Figure 1.8: S and P nullclines (linear and log plots) when µ = 2, K = 1, β = 104

and L = 0.75× 107.

The determinant of the matrix in this equation is φS which is positive, and therefore
instability occurs (as a Hopf bifurcation) if and only if the trace of the matrix is
positive, i. e., KφP > φS+1. Since the slope of the P nullcline S ′

P is easily computed
to be

S ′
P =

1−KφP
KφS

, (1.81)

we can deduce that instability occurs if and only if −S ′
P >

1

K
. In particular the P

nullcline must have negative slope for instability, i. e., the fixed point must lie between
U and V .

We use (1.73) and (1.76) to calculate the values of S, P and S ′
P at the fixed point.

P is given implicitly by
P 3

(1 + P )2
= µK, (1.82)

and

S ≈
(
µL

β

)1/2
1

P
, (1.83)

whence

−2SS ′
P =

L

βK

[
P − 1

(1 + P )3

]

. (1.84)

Instability thus occurs if

P (P − 1)

(1 + P )3
> 2

√

µβ

L
, (1.85)

and thus approximately if P >∼ 1. Bearing in mind (1.82), this implies that instability
occurs for

µK >∼
1
4
. (1.86)

19



 0

 5

 10

 15

 20

 0  2  4  6

S

P
Figure 1.9: Limit cycle solution of (1.69) with µ = 2, K = 1, L = 0.75 × 107, and
β = 104.

1.5.2 Limit cycles

Figure 1.9 shows the limit cycle oscillation which ensues when we use the values
µ = 2, K = 1, L = 0.75 × 107, and β = 104. The presence of the large parameters
L and β suggest the possibility of asymptotic methods for the solution of (1.69),
although figure 1.9 itself shows no sign of any limiting behaviour (such as a relaxation
oscillation).

The periodic orbit shown lies close to both nullclines, and this suggests a rescaling
in the form

S =
ψ

δ
, (1.87)

where

δ =

√

β

L
≪ 1. (1.88)

With this definition,

φ =
ψ(ψ + δ)(1 + P )2

1 + ε(ψ + δ)2(1 + P )2
, (1.89)

where

ε =
1

β
≪ 1. (1.90)

In addition, we rescale t ∼ 1

δ
, to find

ψ̇ = µ− φ,

δṖ = −P +Kφ, (1.91)
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and the overdot now denotes differentiation with respect to this rescaled time.
This is now in the classic form of a relaxation oscillation. Since δ ≪ 1, we expect

P to relax rapidly to the P -nullcline, and since this curve has the classic pseudo-cubic
shape (similar to the ‘slow manifold’ of the Van der Pol oscillator), we might expect
a similar kind of switching behaviour. In reality, we can see from figure 1.9, for which
the value of δ ≈ 0.04, that this behaviour is not attained. The orbit stays relatively
close to the P -nullcline, but does not drift past the turning points.

However, if we reduce the value of β to 102, for which δ ≈ 0.004, then the motion
becomes more clearly relaxational, as shown in figures 1.10 and 1.11. The trajectory
hugs the left part of the P -nullcline, but is unable to reach the right part, which lies
in P ∼ β ≫ 1. (Further reduction of β does not help, since then the P -nullcline loses
its non-monotonicity.) As seen in figure 1.11, the solution for S becomes relaxational,
while that for P develops a series of isolated pulses.

It is easy to see that the slow branch of the oscillation where P is small is described
by the quasi-steady approximation for (1.89) and (1.91), where we put δ = 0. It is
less obvious how to describe the rapid pulses of figure 1.11. Apparently, ψ remains

O(1), but P is large. If P ∼ β =
1

ε
as we might expect, then φ ≈ 1

ε
is constant, and

P would approach βK. Evidently, this is prevented in figure 1.10 by the fact that
the trajectory crosses the P -nullcline.

We need to keep P and φ the same size in the pulse, and this requires that formally
ψ is small. It is not then difficult to show that a distinguished rescaling which keeps
the P–φ balance in the P equation, while also allowing ψ to decrease on the same
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Figure 1.10: Limit cycle solution of (1.69) with µ = 2, K = 1, L = 0.75 × 107, and
β = 102.
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Figure 1.11: Time series for S and P in the solution of (1.69) with µ = 2, K = 1,
L = 0.75× 107, and β = 102, as in figure 1.10.

time scale, can be found by defining

ψ = δ1/3Ψ, P =
Π

δ2/3
, t = δT, φ =

Φ

δ2/3
, (1.92)

whence we obtain

Ψ′ = δ2/3µ− Φ,

Π′ = −Π +KΦ, (1.93)

and Φ is given by

Φ =
Ψ(Ψ + δ2/3)(Π + δ2/3)2

1 + γ(Ψ + δ2/3)2(Π + δ2/3)2
, (1.94)

where

γ =
ε

δ2/3
=
L1/3

β4/3
; (1.95)

for L = 0.75 × 107 and β = 102, γ = 0.42. This rescaling is appropriate if ε <∼ δ2/3,

i. e., L <∼ β4. Neglecting terms of O(δ2/3), we find that at leading order (1.93) reduces
to

Ψ′ ≈ − Ψ2Π2

1 + γΨ2Π2
,

Π′ ≈ −Π +
KΨ2Π2

1 + γΨ2Π2
. (1.96)

Numerical simulations of (1.96) show that it gives a very good approximation to
the pulse, providing the initial condition is chosen appropriately (for example, with
S = 154, P = 4). Formally, the initial conditions must come from matching the pulse
to the slow phase of the oscillation.
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Chapter 2

Trans-membrane ion transport

Living organisms consist of cells, and complex organisms such as the human body
consist of organs formed by cells (the brain, the heart, the kidneys, the skin, and
so on) which reside in a medium of extracellular fluid. Different cells have different
functions (nerve cells, muscle cells, stem cells, etc.) which are enabled by a constant
supply of a nutrient (oxygen) which provides energy through reaction with organic
carbon in the form of sugars, for example, with the waste product being carbon
dioxide; this process is called respiration.

Cells are essentially bags of water which contain various constituent parts. There
is a nucleus, surrounded by cytoplasm, which contains various structures called or-
ganelles, such as the mitochondria, the endoplasmic reticulum, the Golgi apparatus,
and so on. The water itself is a dilute aqueous solution of dissolved salts, mainly
sodium chloride (common salt – NaCl) and potassium chloride (KCl), which dissoci-
ate into sodium (Na+), potassium (K+) and chloride (Cl−) ions. (The same is true of
the extracellular fluid.) As a consequence both extra- and intra-cellular fluids carry
an electrical charge. These differ, so that there is an electrical potential difference
between them.

In consequence, much of the function of a cell is enabled by electrochemical pro-
cesses within the cell, which involve transport of ions through the cell membrane
which separates the intracellular environment from the extracellular one.

2.1 Membrane transport

The cell membrane is a phospholipid double layer about 7.5 nm thick separating the
cell interior (the cytoplasm) from the extracellular environment (see figure 2.1). The
term lipid refers to a class of water-insoluble, energy-rich macromolecules, typically
fats, waxes and oils. The most important property of the cell membrane is its selective
permeability; it allows the passage of some molecules but restricts the passage of
others, thereby regulating the passage of materials into and out of the cell.

The membrane contains water-filled pores with diameters of about 0.8 nm, and
protein-lined pores, called channels or gates, which allow the passage of specific
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Figure 2.1: Schematic diagram of the cell membrane.

molecules. The cell membrane acts as a barrier to the free flow of dissolved ionic
species, and to the flow of water.

The many mechanisms that exist for transporting molecules from one side of the
membrane to the other can be divided up into active and passive processes. An active
process is one which requires the expenditure of energy (for example, convection),
while a passive process is one which results solely from the randommotion of molecules
(for example, diffusion).

Passive mechanisms by which molecules are transported across the cell membrane
include osmosis, diffusion, and carrier-mediated mechanisms. Osmosis is the mecha-
nism by which water is transported across the cell membrane. Small molecules such as
chloride ions may diffuse through pores in the membrane, while lipid-soluble molecules
such as oxygen and carbon dioxide may diffuse directly through the membrane itself.
Carrier-mediated diffusion refers to a process by which a molecule ‘hitches a lift’ by
binding to a carrier molecule which is lipid soluble and can move readily through the
membrane. Carrier-mediated transport (figure 2.2) occurs when a protein which sits
in the membrane has an active site which may be exposed either on the exterior or
interior side of the membrane depending on the conformational state of the protein.
A substrate may bind to the protein in one conformation, the protein undergoes a
conformational change, and the substrate unbinds on the other side of the membrane.

extra

intra

binding site

binding site

Ce Ci

carrier protein
Ce, Ci

Figure 2.2: Carrier protein switches from binding-site-outwards to binding-site-
inwards.
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Ionic species extra intra
Na+ (sodium) 437 50
K+ (potassium) 20 397
Cl− (chloride) 556 40
Mg2+ (magnesium) 53 80

Table 2.1: Typical intracellular and extracellular ionic concentrations for the squid
giant axon. Units are mM = millimolar = 10−3 M. 1 M = 1 molar = 1 mole litre−1.

The transport of glucose and amino acids across the cell membrane is thought to be
by a carried-mediated process.

The concentration differences that exist between the intracellular and extracellular
environments are set up and maintained by active processes. One of the most impor-
tant of these is the Na+-K+ pump, which uses the energy stored in ATP molecules
to pump Na+ out of the cell and K+ in. There are also a variety of exchange pumps,
which use the concentration gradient of one ion to pump another ion against its con-
centration gradient, such as the Na+-Ca2+ exchanger (figure 2.3), which removes Ca2+

from the cell at the expense of allowing Na+ in. Differences in interior and exterior
ionic concentrations create a potential difference across the cell which also drives an
ionic current down ion-specific membrane channels. Some typical intracellular and
extracellular ionic concentrations are shown in Table 2.1.

2.1.1 Carrier mediated transport

We describe here a simple model for carrier mediated transport. We suppose that
the carrier protein has two conformational states, and that in the first state, labelled
Ci, the substrate binding site is exposed on the cell interior, while in the second
state, labelled Ce, the substrate binding site is exposed on the cell exterior (see figure
2.2). We suppose that substrate molecules outside the cell (concentration Se) can
bind to Ce to produce a complex Pe, and that substrate molecules inside the cell

extra

intra
carrier molecule

exchange
pump

Ca2+

Na+

Figure 2.3: The sodium–calcium exchanger.
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(concentration Si) can bind to Ci to produce a complex Pi . Furthermore, we assume
that Pi can conformally change into Pe and vice versa, and at the same rate as the
conformal changes of Ci and Ce (so that the binding of the substrate does not affect
the conformal changes of the protein). Thus the reaction scheme is

Si + Ci
k+
⇋
k−

Pi
k
⇋
k

Pe
k−
⇋
k+

Se + Ce

Ci
k
⇋
k

Ce, (2.1)

where we have assumed that the binding affinity of Si to Ci is the same as that of Se
to Ce, and that the two conformational states Ci and Ce are equally likely. To avoid
the system simply settling down to a steady state with zero flux, we assume that the
substrate is supplied at a constant rate J on the exterior and taken away at the same
rate from the interior, and we wish to determine this flux of substrate through the
membrane as a function of the interior and exterior concentrations.

Using the law of mass action the reaction kinetics are given by

dSi
dt

= k−Pi − k+SiCi − J,

dSe
dt

= k−Pe − k+SeCe + J,

dPi
dt

= kPe − kPi + k+SiCi − k−Pi,

dPe
dt

= kPi − kPe + k+SeCe − k−Pe,

dCi
dt

= kCe − kCi − k+SiCi + k−Pi,

dCe
dt

= kCi − kCe − k+SeCe + k−Pe. (2.2)

Adding (2.2)3-(2.2)6 gives

d

dt
(Pi + Pe + Ci + Ce) = 0, (2.3)

so that
Pi + Pe + Ci + Ce = C0 = constant, (2.4)

i. e., the total amount of carrier is conserved. Adding (2.2)1-(2.2)4 gives

d

dt
(Si + Se + Pi + Pe) = 0, (2.5)

whence
Si + Se + Pi + Pe = S0 = constant, (2.6)

and the total amount of substrate is conserved. In the steady state, assuming J is
unknown, we have six equations for seven unknowns, so that there is a one parameter
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family of solutions, even when C0 and S0 are given. However, solving the linear
system (2.2)2-(2.2)5 and (2.4) for J , Pi, Pe, Ci, Ce in terms of Si and Se gives

J =
k−kC0

2k+

Se − Si
(Km + Si)(Km + Se)−K2

d

, (2.7)

where

Km =
k− + k

k+
, Kd =

k

k+
. (2.8)

There are also other, more complicated, mechanisms for carrier-mediated trans-
port. The carrier molecule may have binding sites for more than one substrate
molecule, leading to cooperative behaviour and more complicated kinetics. It may
also have binding sites for different types of substrate molecules. These different sub-
strates may both be transported across the membrane in the same direction (symport
transporters), or may be transported in opposite directions (antiport transporters). A
key assumption in modelling such transporters is that the carrier may only undergo
the conformational change when either all or none of the substrate molecules are
bound. While the different states of the carrier and the transitions between them
are easy to write down, the resulting system of equations is sufficiently large that the
expression for the flux as a function of concentration is very complicated.

2.1.2 Active transport: the sodium-potassium pump

The carrier-mediated transport described above moves molecules down chemical gra-
dients. Any process which move molecules against a chemical or electrical gradient
requires the expenditure of energy, and is known as an active transport mechanism.
One of the most important of these is the Na+–K+ pump, which pumps sodium ions
out of the cell against a steep electrochemical gradient, while pumping potassium ions
in. In fact, this pump alone consumes almost a third of the energy requirement of a
typical animal cell.

The pump uses the energy stored in ATP which is released when it is dephospho-
rylated into ADP, through the overall reaction scheme

ATP + 3Na+i + 2K+
e → ADP+ Pi + 3Na+e + 2K+

i , (2.9)

where the subscripts i and e denote intracellular and extracellular ions respectively.
The individual components of the reaction are thought to be as follows. When the
carrier protein (Na+-K+ATPase) is in its dephosphorylated state, three sodium bind-
ing sites are exposed to the cell’s interior. When all three binding sites are filled,
the carrier protein is phosphorylated by the hydrolysis of ATP into ADP. This phos-
phorylation induces a change in conformation, so that the sodium binding sites are
exposed to the cell exterior, and their binding affinity is reduced, causing the release
of the sodium ions. At the same time, two potassium sites are exposed to the cell’s
exterior. When potassium ions have bound to these two sites, the carrier protein is de-
phosphorylated, inducing the reverse conformational change, exposing the potassium
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binding sites to the cell interior and reducing the binding affinity so that potassium
is released. If we simplify the process slightly, assuming that there is a single binding
site for sodium and potassium, leading to a one-for-one exchange rather than the
three-for-two which actually happens, then the detailed reaction scheme is

Na+i + C
k1
⇋
k−1

NaC
ATP

kp
→ ADP
−→ NaCP

k2
⇋
k−2

Na+e + CP,

CP +K+
e

k3
⇋
k−3

KCP
k4
⇋
k−4

P + KC,

KC
k5
⇋
k−5

K+
i + C, (2.10)

where the carrier protein is represented by C in its unphosphorylated, unbound state,
CP in its phosphorylated unbound state, NaC when bound to sodium and unphos-
phorylated, NaCP when bound to sodium and phosphorylated, KC when bound to
potassium and unphosphorylated, and KCP when bound to potassium and phos-
phorylated. Using mass action kinetics, assuming that intracellular potassium and
extracellular sodium are removed at a constant rate J , leads to a steady-state flow of
ions through the pump

J =
J0 [Na

+
i ][K

+
e ]

[Na+i ] + α[K+
i ] + β[K+

e ]
(2.11)

where

J0 =
C0k3k4k5

k−3k−3[P] + k−3k5 + k4k5
, α =

(k−1kp + k2k−1 + k2kp)k−3k−4k−5

k1k2kp(k−3k−3[P] + k−3k5 + k4k5)
,

β =
(k−1kp + k2k−1 + k2kp)k3k4k5

k1k2kp(k−3k−3[P] + k−3k5 + k4k5)
, (2.12)

C0 is the total concentration of carrier molecule, and [Na+e ] denotes the concentration
of sodium ions in the extracellular medium, etc. The important thing to note is that
for both carrier-mediated transport (2.7) and active transport (2.11), pump fluxes
have the same features as enzyme catalysed reactions, that is, they are linear in the
concentrations at small concentrations, but saturate to a maximum value at large
concentrations.

2.1.3 The membrane potential

The differences in the concentration of various ions between the extracellular and
intracellular medium which are set up and maintained by active transport mechanisms
can cause a potential difference to be generated between the inside and the outside
of the cell.

Suppose we have two reservoirs containing different concentrations of a positively
charged ion X+. We suppose both reservoirs are electrically neutral to begin with, so
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that there is an equal concentration of a negatively charged ion Y−. Now suppose the
reservoirs are separated by a semi-permeable membrane which is permeable to X+

but not to Y−. Then the difference in concentration of X+ on each side will lead to
the flow of X+ across the membrane. However, because Y− cannot diffuse through the
membrane, this will lead to a build up of charge on one side. This charge imbalance
sets up an electric field, which produces a force on the ions opposing further diffusion
of X+. It is important to realise that the actual amount of X+ which diffuses through
the membrane is small, and the excess charge all accumulates near the interface, so
that to a good approximation the solutions on either side remain electrically neutral.
The potential difference at which equilibrium is established and diffusion and electric-
field-generated fluxes balance is known as the Nernst potential. We may derive an
expression for it as follows.

If c denotes the concentration of an ion S then the flux of ions due to diffusion is
J = −D∇c, where D is the diffusion coefficient. To this we must add the flux due to
the fact that the ion carries a charge and is in the presence of an electric field, which
is given by

J = −uzc|z| ∇φ, (2.13)

where u is the mobility of the ion (defined as the velocity under a constant unit
electric field), z is the valence of the ion (so that z/|z| is either +1 or −1 and gives
the sign of the force on the ion; positive ions move down potential gradients, negative
ions move up potential gradients), and φ is the electric potential, so that −∇φ is the
electric field. Thus the total flux is given by

J = −D∇c− uzc

|z| ∇φ. (2.14)

Now, there is a relationship (determined by Einstein) between the ionic mobility and
the diffusion coefficient, which is

D =
uRT

|z|F , (2.15)

where R is the universal gas constant, T is the absolute temperature and F is Fara-
day’s constant. Furthermore, since the membrane is thin we can replace the Nernst-
Planck equation (2.14) with the one-dimensional version

J = −D
(
∂c

∂x
+
zFc

RT

∂φ

∂x

)

, (2.16)

where x is a coordinate normal to the membrane. Now, at equilibrium the flux J is
zero, giving

∂c

∂x
+
zFc

RT

∂φ

∂x
= 0. (2.17)

Assuming that the interior of the membrane is at x = 0 while the exterior is at x = L,
we may integrate from 0 to L to give

φi − φe =
RT

zF
ln

(
ce
ci

)

, (2.18)
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where the subscripts e and i denote extracellular and intracellular quantities respec-
tively. If we follow the standard convention of defining the potential difference across
the cell membrane as V = φi − φe, then the Nernst potential for S is

VS =
RT

zF
ln

[Se]

[Si]
. (2.19)

Using the values of intra- and extracellular concentrations given in table 2.1, typical
Nernst potentials for the squid giant axon for potassium and sodium are VK = −77 mV
(millivolt) and VNa = 56 mV. Note that when more than one ion is present, and
they have different Nernst potentials, the flux of each individual ion will not be
zero even when there is no net current across the membrane. For example, when
-77 mV < V < 56 mV there will be a flux of K+ out of the cell and Na+ into the
cell through ion-specific channels. This flux is balanced by the action of the Na+-K+

pump. This is illustrated in the following section.

The resting potential

Let us now consider a cell in which there are sodium channels with outward ionic
flux (equals current since the valency of sodium is one) JNa, potassium channels with
outward flux JK, and sodium-potassium pumps in which the flux of sodium outwards
is JP (and thus the outwards potassium flux is −JP ). JNa and JK are still given by
(2.16), but are no longer zero in equilibrium. Rather, we have

JNa + JP = 0, JK − JP = 0. (2.20)

As in (2.11), we presume JP is given in terms of extracellular and intracellular con-
centrations, and is thus constant when integrating (2.20). Additionally, we need an
equation in the channels for φ. In a steady state, the constant current is propor-
tional to the potential gradient, which is therefore also constant. This means that
the potential is

φ = V
(

1− x

L

)

, (2.21)

where V is the internal potential and L is the channel length, so that in (2.16),
∂φ

∂x
= −V

L
. We thus have to solve the two equations

∂s

∂x
=

V s

V0L
+
JP
D
,

∂p

∂x
=

V p

V0L
− JP
D
, (2.22)

where s and p are the sodium and potassium concentrations, and we have written

V0 =
RT

F
. (2.23)

To be specific, let us suppose that

JP = J0sipe, (2.24)
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Figure 2.4: Schematic diagram of the build up of charge on the cell membrane.

where the subscripts indicate the intracellular and extracellular values. We then find,
on integrating (2.22) and using the definitions of the Nernst potential in (2.19), that

V − VNa = −V0 ln
[

1− Bpe
V

(
e−V/V0 − 1

)
]

,

V − VK = V0 ln

[

1− Bsi
V

(
1− eV/V0

)
]

, (2.25)

where

B =
J0V0L

D
, (2.26)

and these define the resting potential Veq. We see from this that if V < 0, then
VK < V < VNa, as is the case.

If we suppose the extracellular ionic concentrations are prescribed, then (2.25)
provides two equations for si and pi, and further such equations would arise if other
ions are present. What then determines V ? The answer is that the electric potential
inside the cell is just due to the total ionic charge, so V is also a function of the ionic
concentrations.

2.1.4 Ionic currents

The flow of ions through the cell membrane due to concentration differences leads to
a build up of charge near the membrane and a potential difference (see figure 2.4).
Thus the cell membrane is effectively acting as a capacitor. The voltage across any
capacitor is related to the charge stored Q by

V =
Q

C
, (2.27)

where C is the capacitance. If I is the ionic current out of the cell (the rate of flow
of positive charges outwards) then the stored charge changes according to

I = −dQ
dt
. (2.28)
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Figure 2.5: Schematic diagram of channel gating.

Thus, assuming the capacitance is constant,

C
dV

dt
+ I = 0. (2.29)

This equation is the basis for much theoretical electrophysiology. The difference
between the various models arises in the expression used for the ionic current I.

The simplest model to use is to assume a linear dependence of I on V (as in Ohm’s
law). For a single ion S, with Nernst potential VS, this gives an ionic current

IS = gS(V − VS), (2.30)

where the constant gS is the ion-specific membrane conductance, since the current
must be zero when V = VS. If more than one ion is present the currents from different
ions are simply added together to produce the total ionic current I. Note that the
action of pumps such as the sodium-potassium pump do not contribute, as no charge
is transferred.

2.1.5 Gating

It is found experimentally that gS is not constant, but depends on both V and time
t. One proposed explanation for this is that the channels are not always open, but
may be open or closed, and that the transition rates between open and closed states
depend on the potential difference V (see figure 2.5). The membrane conductance
may then be written as ngS, where gS is the constant conductance which would result
if all channels were open, and n is the fraction of open channels.

Denoting the open channels by O and the closed channels by C, the reaction
scheme is simply

C
α(V )
⇋
β(V )

O, (2.31)

giving
dn

dt
= α(V )(1− n)− β(V )n, (2.32)

or equivalently

τn(V )
dn

dt
= n∞(V )− n. (2.33)

where n∞(V ) = α/(α + β) is the equilibrium value of n and τn(V ) = 1/(α + β) is
the time scale for approach to this equilibrium. Both n∞ and τn can be determined
experimentally.
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2.1.6 Multiple gates

The simple model presented in Section 2.1.5 can be generalised to channels which
contain multiple identical subunits, each of which can be in either the open or closed
state (see figure 2.6). For example, suppose as shown that there are two such gates.
If we let Si denote the density of states with i open gates then the transition between
channel states is governed by the reaction scheme

S0

2α
⇋
β
S1

α
⇋
2β

S2. (2.34)

The coefficients of two arise because there are two possible states with one gate open
and one gate closed. Since each gate is identical we have lumped these two states
into one variable S1. Using mass action kinetics gives

dS0

dt
= βS1 − 2αS0,

dS2

dt
= αS1 − 2βS2. (2.35)

We could write down an equation for S1 also, but this equation is superfluous since
S1 can be determined from the conservation of channels

S0 + S1 + S2 = 1. (2.36)

Simple substitution shows that (2.35)-(2.36) are satisfied by

S0 = (1− n)2, S1 = 2n(1− n), S2 = n2, (2.37)

providing
dn

dt
= α(1− n)− βn. (2.38)

Thus n satisfies the differential equation (2.32) for a single gate, and the proportion
of open channels is n2.

Equation (2.38) is a first order equation, whereas (2.35)-(2.36) is a second order
system. Thus not all solutions to (2.35)-(2.36) are of the form (2.37); only if the initial
conditions are compatible with (2.37) will the solution be of this form. However, if
we write

S0 = (1− n)2 + y0,

S1 = 2n(1− n)− y0 − y2,

S2 = n2 + y2, (2.39)

Figure 2.6: A channel with two identical gate units.
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then y0, y2 satisfy

dy0
dt

= −2αy0 − β(y0 + y2),

dy2
dt

= −α(y0 + y2)− 2βy2. (2.40)

This linear system of equations has eigenvalues −(α + β), −2(α + β) so that y0, y2
decay exponentially to zero. Thus even if an initial condition not compatible with
(2.37) is given, the solution will still approach exponentially that given by (2.37)-
(2.38) (that is, (2.37)-(2.38) defines a stable invariant manifold of the full system
(2.35)-(2.36)).

The analysis of a two-gated channel above generalises easily to channels containing
more gates. In the case of k identical gates the fraction of open channels is nk, where
n again satisfies (2.38).

2.1.7 Non-identical gates

Often channels are controlled by more than one protein, with each protein controlling
a set of identical gates, but with the gates of each protein different and independent.
Consider, for example, the case of a channel with two types of gate, m and h say,
each of which may be open or closed. Suppose also that there each channel has two
m-gates and one h-gate. If Sij denotes a channel with i open gates of type m and j
open gates of type h, then the reaction scheme is

S00

2α
⇋
β

S10

α
⇋
2β

S20

γ
⇋

δ γ
⇋

δ γ
⇋

δ

S01

2α
⇋
β

S11

α
⇋
2β

S21

. (2.41)

Simple substitution shows that the rate equations are satisfied by

S00 = (1−m)2(1− h), S10 = 2m(1−m)(1− h), S20 = m2(1− h),

S01 = (1−m)2h, S11 = 2m(1−m)h, S21 = m2h, (2.42)

so that the proportion of open channels is m2h, providing

dm

dt
= α(1−m)− βm,

dh

dt
= γ(1− h)− δh. (2.43)

As before, not all solutions of the rate equations (which form a fifth-order system)
are solutions of the second order system (2.43). However, such solutions again form
a stable invariant manifold.
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Figure 2.7: Schematic illustration of a large neuron in the brain (Guyton and Hall
2000, figure 45-1). Signals propagate from the cell body downwards along the axon,
and are transmitted at the synapses to the dendrites of further neurons.

2.2 Hodgkin-Huxley model

The nervous system is a communication system formed by nerve cells called neurons
(figure 2.7). Information is propagated along long cylindrical segments called axons
by electrochemical signals.

An important property of neurons is excitability. If a small current is applied to
the cell for a short time, then the membrane potential changes slightly, but returns
directly to its equilibrium potential (the resting potential) once the applied current
is removed. However, if a sufficiently large current is applied for a short time the
membrane potential undergoes a large excursion (called an action potential) before
returning to its resting value. It is by the propagation of such action potentials along
the axons of neurons that signals are transmitted.

In chapter 3 we will consider the propagation of an action potentials along the
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axon. In building up to that model we first consider here the Hodgkin-Huxley model
of the excitability of an axon without the extra complication of spatial variation in
the membrane potential. Such a situation can be realised experimentally by inserting
a thin electrode along the centre of the axon, which acts to short-circuit the cell and
keep the membrane potential V constant along its length (this is known as the space
clamp technique).

If we suppose that we are applying an external inward current I to the cell, then
the total outward current is Ii − I, where Ii is the outward ionic current as before.
Then equation (2.29) gives

Cm
dV

dt
= I − Ii, (2.44)

where Cm is the membrane capacitance. In the squid giant axon, as in many neurons,
the most important ionic currents are due to the motion of sodium and potassium
ions. Experimentally it is found that the potassium conductance may be modelled
by a gated channel of the form described in Section 2.1.5 with an exponent of 4, that
is, the conductance is gKn

4 where

τn(V )
dn

dt
= n∞(V )− n. (2.45)

While this seems to imply that the potassium channel is controlled by a protein
with four identical gates, it should be noted that the exponent is determined as a
reasonable fit to measured ionic currents, and not from any detailed physiological
knowledge of the potassium channel itself. The equilibrium value n∞ is found to
be an increasing function of V . Thus at elevated potentials n is increased, thereby
turning on, or activating, the potassium current. The Nernst potential for potassium
is below the resting potential, so that the potassium current is an outward current at
potentials greater than the resting potential. The function n(t) is called the potassium
activation.

For the sodium conductance, experimental data suggests that there are two pro-
cesses at work, one which turns on the sodium current and one which turns it off.
The Hodgkin-Huxley model assumes a channel controlled by two proteins, with a
conductance of the form gNam

3h where

τm(V )
dm

dt
= m∞(V )−m,

τh(V )
dh

dt
= h∞(V )− h. (2.46)

Again, while this seems to imply a channel with three m gates and one h gate, the
exponents are determined as a reasonable fit to measured ionic currents, and not from
a detailed knowledge of the sodium channel itself. At the resting potentialm∞ is small
and h∞ is close to one. For elevated potentials h∞ decreases and m∞ increases. Thus
m is called the sodium activation, and h is called the sodium inactivation. The Nernst
potential for sodium is above the resting potential, so that the sodium current is an
inward current at potentials greater than rest.
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Symbol Meaning Typical value
gNa Sodium conductance 120 mS cm−2

gK Potassium conductance 36 mS cm−2

gL Leakage conductance 0.3 mS cm−2

VNa Sodium Nernst potential 56 mV
VK Potassium Nernst potential −77 mV
VL Leakage Nernst potential −60 mV
Veq Equilibrium potential −70 mV
Cm Membrane capacitance 1 µF cm−2

τn Potassium gate time scale 5 ms

Table 2.2: Values of the parameters of the Hodgkin-Huxley model. Unfamiliar units
are S, siemens, V, volts, F, farads, and these are defined in the text.

The Hodgkin-Huxley model for the outward ionic current is thus

Ii = gNam
3h(V − VNa)

︸ ︷︷ ︸

Na+ current

+ gKn
4(V − VK)

︸ ︷︷ ︸

K+ current

+ gL(V − VL)
︸ ︷︷ ︸

leakage

, (2.47)

where, apart from the sodium and potassium currents detailed above, the final term
represents a ‘leakage’ current due to other ions, particularly chloride, Cl−. The resting
potential is the value of V when the outward ionic current is zero, and this is denoted
as Veq, and is approximately −70 mV (though this and other such values depend on
the particular animal species and nerve cell under consideration). The experimentally
measured values of the conductances and the Nernst potentials for the squid giant
axon, as given by Hodgkin and Huxley, are given in table 2.2, and the electrical units
are as follows.

The basic electrical unit is that of charge, for which the unit is a coulomb, denoted
as C. The unit of electrical current is the amp A, and 1 A = 1 C s−1. The unit of
electric potential is the volt, but it easier first to define the unit of power, which is
the watt W, and 1 W = 1 V A = 1 J s−1, and thus the volt has units of energy per
charge, thus 1 V = 1 J C−1.

Subsidiary units are used for the coefficients of electrical properties, such as ca-
pacitance, resistance and conductance; the corresponding units are the farad F, the
ohm Ω, and the siemens S, and these are defined by 1 F = 1 C V−1, 1 Ω = 1 V A−1,
and 1 S = 1 Ω−1 = 1 F s−1. Note that conductance is the inverse of resistance.

The experimentally measured forms of the functions k∞ and τ∞, k = m, h, n, are
shown in figure 2.8, and these can be used to explain the form of the action potential.
If an inward current I is applied to the membrane, then we can see from (2.44) that
the membrane potential begins to rise. Now we can see that τm is much smaller
than the other response times, and thus the sodium m-gates respond rapidly. m∞

increases and, because VNa = 56 mV > Veq = −70 mV, the open sodium gates allow
sodium ions to flood into the axon, allowing the potential to rise further via this

37



positive feedback effect. There is as yet nothing to stop this rise in potential, and so
V increases above the sodium Nernst potential; this causes a reverse in the sodium
current, but more importantly, after the longer time scale τh ∼ τn ∼ 2 ms (note that
this response time decreases as the potential increases), the n-gates start to open
and the h-gates start to close. The opening of the n-gates means that the potassium
channels open, while the closing of the h-gates shuts down the sodium channels;
this causes a flood outwards of potassium current (since V > VK), which decreases
the potential, and it continues to decrease and overshoot the resting potential (since
VK < Veq); the fact that then V < VNa (which would allow inward sodium current) is
irrelevant, since although the decrease of V starts to open the h-gates, the effect is
offset by the rapid (small τm) decrease of the open m-gates, which keeps the sodium
channels shut. Finally, with V < Veq, the sodium channels remain fairly well shut,
but the potassium channels allow a weak inflow which carries the potential back to
its resting value. An illustration of an action potential is shown in figure 2.9.

This description of the time course of an action potential shows that the membrane
is excitable. Insofar as the space-clamped system is described by the four ordinary
differential equations (2.44)-(2.46), it is clear that the resting state V = Veq, n =
n∞(Veq), etc., is a steady state of the system; we suppose (and will show) that it is
stable; but a sufficiently large perturbation (and in practice not that large) causes the
potential to undergo an excursion as described above: the action potential. It is of
course difficult to analyse such excursions in a four-dimensional system, but luckily
we can analytically reduce the system to a two-dimensional model, which is amenable
to phase plane analysis. This model is called the FitzHugh-Nagumo model.
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Figure 2.8: Experimentally measured values of the equilibrium gate variables (left)
and their relaxation times (right) as functions of potential relative to the resting
potential.
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Figure 2.9: An action potential, obtained by solving the Hodgkin-Huxley model
(2.44)-(2.46).

2.3 FitzHugh-Nagumo model

The FitzHugh-Nagumo model is an approximate asymptotic reduction of the Hodgkin-
Huxley model, based on two key assumptions. The first is the observation, mentioned
above, that

τm ≪ τn, τh; (2.48)

thus m → m∞(V ) rapidly, on a time scale of a fraction of a millisecond. As is
suggested by figure 2.9, the action potential evolves over a much longer time scale of
>∼ 1 ms; this can be confirmed by noting that (2.44) can be written in the form (if
we ignore variation of the gate variables from their equilibrium values)

Cm
dV

dt
= I −

(
gNam

3h + gKn
4 + gL

)
(V − Veq), (2.49)

where

Veq =
(gNam

3hVNa + gKn
4Vk + gLVL)

(gNam3h+ gKn4 + gL)
(2.50)

(which provides an implicit definition of Veq since m = m∞(Veq), etc.); thus that the
response time constant for V is

τV =
Cm

gNam3h + gKn4 + gL
. (2.51)

To estimate this, note that at equilibrium, figure 2.8 suggests that the sodium channels
are effectively shut, while n ≈ 0.3 and thus gKn

4 ≈ 0.36 mS cm−2. Using the value
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Figure 2.10: The variation of n∞+h∞ as a function of perturbation potential V −Veq.

for Cm in table 2.2, this suggests τV ∼ 3 ms; it follows therefore that also τm ≪ τV ,
so that it is safe to suppose that m = m∞(V ) always.

Next we make the crude but feasible assumption that τn ≈ τh. As can be seen in
figure 2.8, this is not quantitatively accurate, but it is not hugely inaccurate; further,
we suppose that

n∞ + h∞ = h̄, (2.52)

a constant. This is suggested by figure 2.8, and in fact we plot the corresponding
graph of n + h as a function of V − Veq in figure 2.10. To be specific we will take
h̄ = 0.8. Now since

τn
dn

dt
= n∞ − n,

τh
dh

dt
= h∞ − h, (2.53)

it follows with the two assumptions above that after an initial transient, we may take

n+ h ≡ h̄, (2.54)

so that h may be eliminated in favour of n. The effect of all this is that the four-
dimensional Hodgkin-Huxley model can be reduced to an approximately equivalent
two-dimensional system,

Cm
dV

dt
= I −

{
gK(V − VK)n

4 + gNa(V − VNa)m
3(V )(h̄− n) + gL(V − VL)

}
,

τn(V )
dn

dt
= n∞(V )− n. (2.55)
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Parameter Typical value
v∗K 0.1
v∗L 0.1
γK 0.3
γL 0.3× 10−2

ε 0.2× 10−2

Table 2.3: Typical values of the dimensionless parameters defined in (2.61).

Non-dimensionalisation

It is now helpful to non-dimensionalise the system. First we define the potential
relative to the resting potential to be

v = V − Veq, (2.56)

and there are corresponding values

vNa = VNa − Veq ∼ 126 mV, vK ∼ −7 mV, vL ∼ 10 mV. (2.57)

We non-dimensionalise the model by scaling the variables as

v ∼ vNa, t ∼ τn, (2.58)

and this leads to the dimensionless system

dn

dt
= n∞(v)− n,

ε
dv

dt
= I∗ − g(v, n), (2.59)

where
g(v, n) = γK(v + v∗K)n

4 + γL(v − v∗L)− (1− v)(h̄− n)m3(v), (2.60)

and the dimensionless parameters are defined by

I∗ =
I

gNavNa
, γK =

gK
gNa

, γL =
gL
gNa

,

v∗K = − vK
vNa

, v∗L =
vL
vNa

, ε =
Cm
gNaτn

. (2.61)

Typical values of these parameters based on the values in table 2.2 are given in table
2.3.

Because ε ≪ 1, we see that v will rapidly relax to a quasi-equilibrium in which,
if we take the applied current I∗ to be zero, v is simply given by g = 0. This is in
fact the v-nullcline for the pair of equations (2.59). In order to see what the nullcline
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Figure 2.11: The v-nullcline g(v, n) = 0. This is the exact curve including the small
γL term.

looks like, we first note that γL ≪ 1, and if we neglect the corresponding term, then
(2.60) implies that the g-nullcline is approximately given by

n4

h̄− n
≈ (1− v)m3(v)

γK(v + v∗K)
. (2.62)

To see what this looks like, we note that as v increases towards one, the right hand
side decreases towards zero. However as v decreases towards zero, m is very small so
the right hand side also becomes very small; thus for 0 < v < 1 the right hand side is
a positive function with a single maximum. For v < 0, the right hand side increases
again, tending to infinity as v → v∗K.

This same shape is reflected in the nullcline, because the left hand side is an
increasing function of n. The only difference is that as v → v∗K, n → h̄ and n will
reach its maximum possible value of n = 1 at some finite value of v < v∗K. The small
term in γL does not affect this discussion, as it provides a regular perturbation near
v = 1 and v = −v∗K, as is easy to show. Figure 2.11 shows the form of the g-nullcline.
Note that at large n (for −v∗K <∼ v <∼ 1) g is positive, so that v is decreasing above the
nullcline, and increasing below it. Thus the left and right hand branches are stable,
and the intermediate branch where n increases with v is unstable.

Phase plane analysis

In order to elucidate the behaviour of the system, we need to add the other nullcline,
that for n, on which ṅ = 0; this is just given by n = n∞(v), and is shown in figure
2.12, using the original functional fits for the functions m∞, etc., determined by
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Figure 2.12: Phase plane for (2.59), together with the trajectory of an action potential.

Hodgkin and Huxley. There is a unique fixed point P , and trajectories cycle around
it as indicated by the arrows. This tells us that P is not a saddle, but either a
node or a focus. As is well known, the behaviour in the vicinity of the origin for the
two-dimensional system ẋ = Mx (M is sometimes called the community matrix) is
determined by T = trM and D = detM ; specifically, 0 is a saddle if D < 0 and is
stable (either node or spiral) if T < 0 and D > 0. Since we know already that P
in figure 2.12 is not a saddle, its stability is determined by the trace of the matrix
obtained by linearising (2.59) about P .

By definition, P is at v = 0, n = n∞(0). We put n = n∞(0) + N and linearise
(2.59); this gives

d

dt

(
N
v

)

=

(
−1 n′

∞

−gn/ε −gv/ε

)(
N
v

)

, (2.63)

and thus T = −1 − gv/ε, so that P is stable if gv > −ε.1 Figure 2.12 suggests
that the v-nullcline (n = nv(v)) slope n′

v < 0, and thus, since gn > 0 (figure 2.11),
that gv = −n′

vgn > 0, and P is stable. Analytically, since n∞(0)4 ≈ 10−2 while
m∞(0)3 ≈ 10−4, it follows that near v = 0,

g ≈ γK(v + v∗K)n
4 + γL(v − v∗L), (2.64)

and thus
gv ≈ γKn∞(0)4 + γL > 0 at v = 0. (2.65)

1Figure 2.12 already tells us, purely geometrically, that P is not a saddle and thus that D > 0.
But D = gv + gnn

′

∞
is a tremendously complicated function; how can we tell that it is positive?

The answer to this that if we define the v-nullcline to be n = nv(v), then the above definition can
be written in the form D = gn[n

′

∞
−n′

v], and a glance at figure 2.11 shows that gn > 0, while figure
2.11 shows that n′

∞
> n′

v at P .
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Figure 2.13: The v- and n- nullclines for the system (2.59), with I∗ = 0.005.

Although P is stable, it is evident from figure 2.12 that a fairly small increase in v
will lead to a large excursion: this is the action potential. v jumps rapidly to Q where
v ≈ 1, and then subsides along the green curve to R, where a second rapid transition
to S occurs, overshooting the rest state; the trajectory then recovers along the green
curve to P . The first part of the action potential describes depolarisation, because
the resting potential is −70 mV, so that the increase causes the potential difference
to drop.

Limit cycles

If we apply a current I∗, the v-nullcline is raised, as shown in figure 2.13. We then
see that n′

v > 0, so that gv = −n′
vgn < 0, and it is possible that then there may be a

range I− < I∗ < I+ where the fixed point is oscillatorily unstable (if gv < −ε); this
would lead to a limit cycle, and thus periodic neuron firing. If we compare figures
2.12 and 2.13, we can crudely estimate that gn ∼ 0.17 and n′

v ∼ 0.4, and thus (at
least for I∗ = 0.005) gv ∼ −0.07 and oscillations are predicted; they take the form of
relaxation oscillations which mimic the behaviour of the red trajectory in figure 2.12,
that is, they rapidly shuttle between the left and right branches of the ‘slow manifold’
g = 0. Relaxation oscillations typically have a distinctive appearance, as shown in
figure 2.14. They indicate repetitive firing of the neurons.

FitzHugh-Nagumo equations

The FitzHugh-Nagumo model refers here to the reduction of the Hodgkin-Huxley
model to a simplified two-dimensional system. The FitzHugh-Nagumo equations con-
sist of an analytically simpler pair of equations which have the same behaviour as
(2.59) due to a choice of nullclines which is topologically similar to those in figure
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Figure 2.14: Oscillations of the reduced Hodgkin-Huxley model for I∗ = 0.005.

2.12. We define w = n − n∞(0), so that the rest state in (v, w) space is the origin;
then the FitzHugh-Nagumo equations are

εv̇ = I∗ + f(v)− w,

ẇ = γv − w, (2.66)

v

w

Figure 2.15: Nullclines of (2.66) and (2.67), for values γ = a = 0.2.
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and f(v) is commonly taken to be the cubic

f = v(v − a)(1− v), a ∈ (0, 1), (2.67)

as shown in figure 2.15; the parameter γ is chosen sufficiently large that the origin is
the only fixed point of the system.
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Chapter 3

Wave propagation in neurons

3.1 Excitable media

We now turn to study the behaviour of the Hodgkin-Huxley model when spatial
effects are allowed. What we will find is that a local action potential propagates along
the axon, and this enables the transmission of signals along the nerve. Essentially,
the axon acts like an electric cable, and the spatially dependent model is somewhat
analogous to that for an electrical cable, which is described by the telegraph equation.
The situation is shown in figure 3.1. The axon’s internal electrical potential V is now
a function of distance x along the cable and time t. The space dependence is one-
dimensional because the axon is long and thin, and this causes the lateral variation
of the potential in the interior to be negligible (but still different to the exterior: all
the lateral resistance is in the cell membrane).

Before beginning, we need to recall some facts about electromagnetism. In an
electrically conducting medium, current density J is related to the electric field E by
the relation (Ohm’s law)

J = σE, (3.1)

where σ is the electric conductivity. The units of J are A m−2 and those of E = −∇V
are V m−1, so the units of σ are S m−1. In our case, the axial current I‖ is thus the

resistance

capacitor

x

I‖

I⊥

ext

int

Figure 3.1: Schematic representation of the axon as a resistive cable.
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current density thus defined multiplied by the cross-sectional area of the neuron,

I‖ = −σAi
∂V

∂x
, (3.2)

and this can be written in the form

I‖ = − 1

R

∂V

∂x
, (3.3)

where

R =
1

σAi
(3.4)

is the axial resistance, with units of Ω m−1. Obviously this is not a property of the
medium, but by defining the resistivity of the medium as

Rc =
1

σ
, (3.5)

with units of Ω m, the two quantities are related by

R =
Rc

Ai
. (3.6)

Equally, the membrane capacitance given in table 2.2 is a capacitance per unit
area, but we need the capacitance per unit length, C; this is

C = pCm, (3.7)

where p is the length of the perimeter of the axon. The same applies to the ionic
current; Ii defined in (2.47) is a current per unit area, but we require the transverse
current per unit length, I⊥, and this is given by

I⊥ = pIi. (3.8)

We now derive the cable equation for the Hodgkin-Huxley model. From first
principles we consider the balance of charge in a short section of axon of length δx.
The quantity of charge is CV δx, and its change in a short time interval δt is CδV δx,
and this is due to the outward ionic current, a quantity I⊥ δx δt, and also to the axial
current space increment, a quantity δI‖ δt; hence the cable equation takes the form

C
∂V

∂t
= −I⊥ − ∂I‖

∂x
. (3.9)

The axial current has already been defined in (3.3). Putting this and (3.9) to-
gether, we obtain the Hodgkin-Huxley cable equation in the form

Cm
∂V

∂t
= −Ii +

d

4Rc

∂2V

∂x2
, (3.10)
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where we have used (3.6), (3.7) and (3.8), together with the fact that for a circular
cross section, the hydraulic radius is

Ai
p

=
d

4
, (3.11)

where d is the axon diameter. The effect of the spatial variation is simply to add a
diffusion term to the equation for V . The gate equations for m, n and h remain the
same, however.

Nondimensionalisation

We now non-dimensionalise the model, in the same way as in chapter 2. Specifically,
we define V − Veq = v, and then scale the variables as

v ∼ vNa, t ∼ τn, Ii = gNavNa g(n, v), x ∼ l, (3.12)

where l will be chosen below, and this leads to

ε
∂v

∂t
= I∗ − g(n, v) + ε2

∂2v

∂x2
,

∂n

∂t
= n∞(v)− n. (3.13)

The length scale is then determined by the requirement that the diffusion term in
(3.13) should be ε2 (for reasons which will emerge below), and this leads to the choice

l =
τn
2Cm

(
dgNa

Rc

)1/2

. (3.14)

Values appropriate for the squid giant axon (most of these were given in table 2.2)
are

d = 5× 10−2 cm, gNa = 120 mS cm−2, Rc = 30 Ω cm,

τn = 5 ms, Cm = 1 µF cm−2, (3.15)

which imply that l ∼ 35 cm! In practice, the effective length scale is less than this,
because (as may be inferred from figure 2.13), although we assume g = O(1), in
practice it is somewhat smaller.

In more detail, figure 3.2 shows contours of g in the vicinity of the nullclines,
which show that in fact g ∼ 0.1. If we rescale g ∼ ḡ, where ḡ ≈ 0.1, then we find that
(3.13) is regained, but with ε → ε/ḡ, and the length l in (3.14) is rescaled with

√
ḡ.

3.2 Wave propagation in the FitzHugh-Nagumo

model

We now study the propagation of an action potential for the FitzHugh-Nagumo model.
Ideally we would use (3.13), but it is simpler for the sake of exposition to use instead
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Figure 3.2: The n and v nullclines (the latter being the contour g = 0), together with
contours of g = −0.1,−0.05, 0.05, 0.1 as indicated.

the spatially dependent version of (2.66), which can be written in the form

εvt = f(v)− w + ε2vxx,

wt = γv − w, (3.16)

and f(v) is a cubic, for example

f(v) = v(v − a)(1− v). (3.17)

Here w masquerades as n− n∞.
The idea is that if a stimulus is applied at a point on the axon, then the potential

there will undergo the action potential excursion of figure 2.9 or figure 2.12. The
principal apparent effect of diffusion is then to raise the potential ahead of this point,
which then causes a new action potential to begin there; in this way the action
potential propagates its way down the axon. This scheme is illustrated in figure
3.3, where the wave representing the action potential propagates to the right. If a
stimulus were applied in the middle of an axon, this theory would predict that a pair
of waves would be set up (just as occurs in the Fisher equation), since the model
has reflectional symmetry, but in reality signals propagate along the axon from the
cell body, sometimes called the soma; this can be associated with the appropriate
boundary conditions at either end of the axon: the synapses allow incoming signals
to the dendrites but not vice versa.

As well as initiating an action potential, diffusion has a controlling effect on its
spatial form, as we shall find below: in particular, the excursion from the rest state
back to itself is different from that shown in figure 2.12. Just as for the Fisher
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Figure 3.3: The form of the travelling wave of the action potential.

equation, an arbitrary disturbance at the cell body end of the axon will lead to a
travelling wave being formed, although this needs to be confirmed numerically. We
therefore look for a solution in which

v = v(ξ), w = w(ξ), ξ = ct− x, (3.18)

as shown in figure 3.3; we presume the wave speed c > 0. With this assumption, the
model reduces to the pair of ordinary differential equations

εcv′ = f(v)− w + ε2v′′,

cw′ = γv − w, (3.19)

where the primes denote derivatives with respect to ξ. Since we seek a solitary wave
in which the solution returns to the rest state at each end, the appropriate boundary
conditions for (3.19) are

v = w = 0 at ±∞. (3.20)

This problem is harder to solve than the equivalent second order differential equa-
tion which is appropriate for the Fisher equation, and the reason for this is that (3.19)
is a third order system. Although it is not inconceivable to do phase portrait analysis
in three (or more!) dimensions, it is very difficult. At least one reason for this is that
in two dimensions, solution trajectories for non-autonomous systems cannot intersect
themselves, so that there is a strong geometric constraint on where the trajectories
can go. This is not true in three dimensions: it is still true that trajectories can-
not intersect, but they can wind around indefinitely without self-intersecting, as is
familiarly the case for chaotic trajectories.

In the present case, we are able to circumvent this difficulty by dividing the tra-
jectory into four segments, each of which lives in a different two-dimensional section
of the three-dimensional phase space. The reason we are able to do this is because of
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Figure 3.4: The passage from A to B.

the parameter ε≪ 1. The wave indicated in figure 3.3 consists of four segments: AB,
BC, CD, DA. As suggested in the figure, AB and CD are fast segments in which it is
appropriate to rescale the independent variable as ξ = εX , and the rescaled form of
(3.19) is then

cv′ = f(v)− w + v′′,

cw′ = ε(γv − w); (3.21)

here the primes refer to X derivatives, and we will anticipate that the unknown wave
speed c = O(1). We will consider the four segments of the wave indicated in figure
3.3 in turn.

(i) The first part of the wave is the passage from A to B. This is a fast segment, and
thus described by (3.21). We see that to leading order, w is constant and thus
zero, and the passage from A to B is described by the second order equation

cv′ = f(v) + v′′, (3.22)

and this is amenable to phase plane analysis. We define u = v′, so that (3.22)
can be written as the pair

v′ = u,

u′ = cu− f(v). (3.23)

As we assume c > 0, the phase plane is as shown in figure 3.4. There are three
equilibria, which are the zeros of f(v), with u = 0. Simply by ascertaining the
directions of the trajectories away from the nullclines, it is straightforward to
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see that A (v = 0) and B (v = 1) are saddles. The stability of the intermediate
fixed point, which is evidently a node or a spiral, is determined by linearising
about it, thus v = v∗+ V , (v∗ = 0.2 in figure 3.4), so that the linearised system
is

˙(
V
u

)

=

(
0 1

−f ′ c

)(
V
u

)

, (3.24)

whose stability is determined by the trace of the matrix, which is c > 0. Thus
the intermediate fixed point is an unstable node or spiral, so that the separatrix
from A extends past this fixed point, and the transition is effected by connecting
the unstable separatrix from A to the stable separatrix to B.

But generally such a connection will not occur. This is where the unknown
wave speed c comes in. The idea is that we can choose c such that the unstable
separatrix from A actually lands on B, as shown in figure 3.4. It is quite straight-
forward to prove this using a comparison argument; the same method can be
used to prove that the travelling wave of the Fisher equation is monotonic.

We write (3.23) in the form

du

dv
= c− f(v)

u
, (3.25)

with initial condition
u ∼ λ+v as v → 0, (3.26)

where
λ+ = 1

2
[c + {c2 + 4|f ′(0)|}1/2], (3.27)

which is the initial condition for the unstable separatrix from A. Now we con-
sider the family of such solutions u(v, c) as c varies. Since λ+ is an increasing
function of c, it is clear that if c1 < c2, then at least for small v, the corre-
sponding solutions satisfy u1 < u2. Next, suppose that u1 = u2 for some v > 0.
Then at this value, we must have u′1 ≥ u′2 and thus from (3.25), c1 ≥ c2, in
contradiction to our assumption. Thus in fact no such intersection can occur,
and this proves that u increases monotonically with c.

Next we consider the limits as c → ∞ and c → 0. As c → ∞, we have firstly
u ∼ cv, and the consequent correction

u ≈ cv − 1

c

∫ v

0

f(v′) dv′

v′
, (3.28)

and evidently u → ∞ as v → ∞. On the other hand, as c → 0, the limiting
trajectory satisfies (3.25) with c = 0, and thus

1
2
u2 = −

∫ v

0

f(v′) dv′. (3.29)

We see in figure 3.4 that f is initially negative, so that the right hand side of
(3.29) is positive, and (providing

∫ 1

0
f(v) dv > 0) u defined by (3.29) reaches zero
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before v = 1; this, together with the large c behaviour and the monotonicity
result, shows that there is a unique value of c for which the separatrix from
A connects to that into B providing

∫ 1

0
f(v) dv > 0, which for the FitzHugh-

Nagumo cubic in (3.17) requires a < 1
2
. It is evident from (2.14) that this

applies for the Hodgkin-Huxley model as well.

(ii) When the trajectory reaches B the system switches to a slow phase, in which
the appropriate scaling is as in (3.19). Approximately, we have

w = f(v), cw′ = γv − w, (3.30)

and as indicated in figure 3.5, this causes a slow migration up the ‘slow manifold’
w = f(v) on which w increases since w < γv. Since u = εvξ, u remains close to
zero.

w

v

B

C

Figure 3.5: The passage from B to C.

In the purely time-dependent system, the action potential climbs up the slow
manifold all the way to the top, but for the travelling wave, this is not the
case, as we shall see. We suppose that w reaches a value wC , which is yet to be
determined. Evidently this is positive, and less than (or equal to) the maximum
of f(v).

(iii) Next we propose another fast phase in which (3.21) is appropriate, but now
w ≈ wC is constant, and thus (3.22) is modified to

cv′ = f(v)− wC + v′′, (3.31)

and the phase plane system (3.23) is modified to

v′ = u,

u′ = cu− [f(v)− wC]. (3.32)
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Figure 3.6: The passage from C to D.

The phase plane for this system is shown in figure 3.6. This is similar to figure
3.4, with the exception that the v-nullcline is lower. The object is to find a
trajectory from the slow equilibrium at C (which is at u = 0, w = f(v) = wC)
to that at D. As for AB, both are saddles, and in general they will not connect.
This is where the choice of wC comes in. The idea, analogous to that for the
wave speed selection in the transition from A to B, is to choose wC in order to
effect the connection. The proof that there is a unique wC which enables this
connection is similar to that used to show that there is a unique value for which
A connects to B, and it is consigned to an exercise.

(iiii) Given that there is indeed a value of wC such that C connects to D in figure

w

v

D

A

Figure 3.7: The passage from D to A.
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Figure 3.8: A representation of the trajectory of the wave in the (u, v, w) phase space.

3.6, it remains to connect D back to A in figure 3.7. This is again effected by
using the slow manifold equations (3.30), but now since the initial point D lies
above the w-nullcline, the motion is that of a slow relaxation back towards the
rest state. This completes the description of the form of the travelling wave.

We see that in the (u, v, w) phase space, the fast trajectory AB is on the plane
w = 0, while the slow trajectory BC is on the plane u = 0. Similarly the fast trajectory
CD is on the plane w = wC (and u < 0) and the concluding slow trajectory is on the
plane u = 0. A schematic representation in the three-dimensional phase space of the
trajectory is shown in figure 3.8.
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Chapter 4

Calcium dynamics

So far the story has been largely about sodium and potassium, but another important
ion is that of calcium, Ca2+. Calcium in sea water has a concentration similar to that
of potassium, around 10 mM.1 The typical extracellular concentration is lower than
this, around 1 mM, but this is much higher than the normal intracellular concentra-
tion, around 10−4 mM; the difference is maintained in similar fashion to that of other
ions.

Intracellular calcium is important in a number of physiological systems, for ex-
ample in muscle contraction and cardiac signalling. Most of the calcium in the body
is stored in bones, whence it is released by hormonal stimulation to maintain the
extracellular Ca2+ concentration. However, because intracellular Ca2+ concentra-
tions are so low, control mechanisms exist both to maintain them at such levels,
but also to enable rapid release when required. Both functions are enabled by stor-
ing intracellular calcium in various compartments. The one we will focus on is the
the sarcoplasmic reticulum (SR) (found in skeletal and cardiac muscle cells). Other
calcium-sequestering compartments store calcium in non-muscle cells.

Skeletal muscle consists of bundles of muscle fibres, which are cells containing nu-
merous filamentary structures called myofibrils, as shown in figure 4.1. The myofibrils
themselves contain myosin and actin filaments, and it is the action of calcium on these
which causes muscles to contract. So in normal circumstances, the intracellular fluid
matrix (called the sarcoplasm in muscle cells) must maintain the low level of calcium
(cramp is an example of when this control fails), but also must be able to release
calcium rapidly from the internal stores when stimulated to do so (and pump it back
rapidly when the stimulus ceases).

The way in which the muscle fibres are activated by nervous stimulation is by the
release of acetylcholine, a neurotransmitter, which causes membrane channels to open
and sodium to flood in to the cells; this causes an action potential to travel along the
muscle fibre much as they do in nerve cells, and it is this which causes the release of
calcium from the internal stores. The precise mechanism by which this release occurs
is a subject of ongoing research (there are numerous different mechanisms at play),

1Recall that 1 M (molar) is 1 mole l−1.
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Figure 4.1: Diagram representing the sarcoplasmic reticulum in a muscle cell (Guyton
and Hall 2000). Despite appearances, the SR lies within the cell membrane (the
sarcolemma) and sheathes the constituent myofibrils.

and we shall limit ourselves to the description of one particular mechanism, that of
calcium-induced calcium release.

4.1 Calcium-induced calcium release

One way in which the release of intracellular calcium can occur is called calcium-
induced calcium release (CICR), and it forms the principal focus of this chapter. When
the sarcolemma (the muscle cell membrane) is stimulated by the agonist acetylcholine,
channels open and as well as sodium, this allows calcium in. The release may then
occur due to the calcium sensitivity of the internal store (the SR). Such releases
and uptake are enabled by differing kinds of receptors, called IP3 (inositol (1,4,5)-
triphosphate) receptors and ryanodine receptors (RyR), located on the SR. So what
we have in mind is that there should be a rest state in which sarcoplasmic Ca2+ is
low and SR Ca2+ is high, but that under a stimulus, this rest state is excitable.

4.1.1 Intracellular oscillations

In certain circumstances, experimental work has shown that periodic oscillations in
the sarcoplasmicic Ca2+ can occur. Some examples are shown in figure 4.2, and have
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Figure 4.2: Oscillations of Ca2+ in a rat liver cell (hepatocyte) under stimulation by
vasopressin, from Woods et al. (1986). Increasing stimulation (left to right) leads to
a decrease in the period.

a typical spiky form, with periods which are quite variable, but generally of the order
of tens to hundreds of seconds. A number of such examples have been documented
from various sources by Berridge and Galione (1988). The one illustrated in the figure
shows the interesting feature that the frequency increases noticeably as the concen-
tration of the effecting agonist (here the hormone vasopressin) is increased, whereas
the amplitude remains essentially the same. A further feature of such oscillations is
that they do not occur if the stimulus is too high or too low. Both of these features
are ones which we would like a model of the process to be able to explain.

4.1.2 The two pool model

The model we will build is based on the above description, and is illustrated in figure
4.3; it is called the two-pool model, as it describes the interaction between two internal
calcium pools, one of which is the sarcoplasm itself, and the other is the Ca2+ sensitive
SR.

A hormone, called an agonist because it acts on the cell membrane, causes the
opening of channels at the cell membrane, and these admit calcium, which diffuses
through the sarcoplasm to IP3 and RyR receptors on the SR, which has the effect of
opening gates which allow the release of Ca2+. The key to the model we now describe
lies in the prescription of two transport terms: J+, the rate at which sarcoplasmic
Ca2+ is taken up by the SR, and J−, the rate at which the SR releases its internal
store.

To build a model to describe the interactions indicated in figure 4.3, we define c
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Figure 4.3: The two-pool model.

to be the concentration of Ca2+ in the sarcoplasm, and cs to be the concentration
of Ca2+ in the Ca2+ sensitive SR. The effect of the agonist is simply modelled as an
influx rate of Ca2+ from the extracellular fluid, and there is an equivalent pumping
out term (effectively a leakage). The influx term is denoted by r, and represents the
experimental effect of the applied stimulus. As mentioned, we denote the uptake rate
of Ca2+ by the ryanodine receptors as J+, and the calcium-induced calcium release
rate from the Ca2+ sensitive store as J−. Finally, and importantly, there is a leakage
term from the SR. As we shall see, this term and the sarcoplasmic leakage term are
of crucial importance.

The model thus enunciated is described by the system

dc

dt
= r − kc− F,

dcs
dt

= F, (4.1)

where F is the calcium flux into the calcium sensitive store, and is given by

F = J+ − J− − kscs. (4.2)

It remains to choose specific forms for the uptake and output from the Ca2+ sensitive
store. We choose these to be given by Hill functions

J+ =
V1c

n

Kn
1 + cn

,

J− =

(
V2c

m
s

Km
2 + cms

)(
cp

Kp
3 + cp

)

. (4.3)
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The choice of J+ is unremarkable, as is the first parenthesis of the J− term. It is the
second part which induces the CICR. It states that the release from the SR increases
as the external cytosolic concentration increases, i. e., Ca2+ stimulates its own release.
Clearly this acts in the opposite direction to what one would expect from diffusion
(higher cytosolic Ca2+ would diminish the gradient flow from the SR), and thus is a
positive feedback term, and it is because of this that we shall find that oscillations
can occur.

Nondimensionalisation

The first task is to non-dimensionalise the equations. To do this, we define

c = K1u, t ∼ 1

k
, cs = K2v, F = V2f, (4.4)

which choice is made to sensibly balance various terms in the equations, and this
leads to the dimensionless system

u̇ = µ− u− γ

ε
f(u, v),

v̇ =
1

ε
f(u, v), (4.5)

where

f = β

(
un

1 + un

)

−
(

vm

1 + vm

)(
up

αp + up

)

− δv. (4.6)

The dimensionless parameters in this model are defined by

µ =
r

kK1
, γ =

K2

K1
, ε =

kK2

V2
,

α =
K3

K1

, β =
V1
V2
, δ =

ksK2

V2
. (4.7)

Representative experimentally derived values of the parameter values are taken to be

k = 10 s−1, K1 = 1 µM, K2 = 2 µM, K3 = 0.9 µM,

V1 = 65 µM s−1, V2 = 500 µM s−1, ks = 1 s−1,

m = 2, n = 2, p = 4, (4.8)

and these suggest the following estimates for the dimensionless parameters:

α ∼ 0.9, β ∼ 0.13, γ ∼ 2, δ ∼ 0.004, ε ∼ 0.04. (4.9)

We do not suggest an estimate for µ because this represents the size of the stimu-
lus and is under experimental control, but it is natural to suppose that interesting
behaviour will occur when µ = O(1), and we will assume this. Note that µ = 1 if
r = 10 µM s−1.
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Figure 4.4: The v-nullcline of (4.5), given by (4.10).

Phase plane analysis

Being a two-dimensional system, the dynamics can be investigated by using phase
plane analysis, and to this end we need to analyse the shape of the nullclines. Addi-
tionally the fact that ε ≪ 1 means that the principal dynamics are controlled by the
slow v-nullcline, because we expect v to rapidly approach it. This is treated in the
following section.

The v-nullcline is given by f = 0, and thus

β

(
un

1 + un

)

−
(

vm

1 + vm

)(
up

αp + up

)

− δv = 0, (4.10)

and is shown in figure 4.4. It is instructive to explain the form of this curve. We can
do this using the fact that δ ≪ 1. Ignoring the term in δ, (4.10) can be written in
the form

L(v) ≡ vm

1 + vm
≈ J(u)

K(u)
, (4.11)

whence

v =

[
J(u)

K(u)− J(u)

]1/m

, (4.12)

in which

J(u) =
βun

1 + un
, K(u) =

up

αp + up
. (4.13)

Now, as shown in figure 4.5, J and K are monotonically increasing sigmoidal func-
tions, with J/K ∼ un−p as u → 0. With the important assumption that n < p, it
follows that J/K → ∞ as u→ 0. As u→ ∞, J/K → β, but because J = β+O(u−n),
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Figure 4.5: Behaviour of the functions J and K defined by (4.11). The inset shows a
close-up near the origin.

while K = 1 +O(u−p), we see that J/K increases towards its limit. Therefore, J/K
decreases from infinity to a (positive) minimum, and then increases to its far field
asymptote.

Because L(v) is monotonic in v, v(u) defined by (4.12) has a similar shape, and
this is illustrated in figure 4.6. There is one significant difference between the graphs
of v = L−1{J(u)/K(u)} and L(v) = J(u)/K(u) as functions of u, which is due to the
fact that as v → ∞, L→ 1. At the point uc (figure 4.5) where J = K, v(u) given by
(4.12) tends to infinity. The approximation (4.12) thus only applies for u > uc.

u

v

Figure 4.6: The function v(u) defined by (4.12), using α = 0.9, β = 0.13, m = n = 2,
p = 4.
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Figure 4.7: Small-v and large-v approximations to the v-nullcline in u < uc and
u > uc, together with the exact curve.

What then happens for u < uc? The key thing to notice is that the assumption
that the term in δ in (4.10) is negligible is only valid if v is bounded, and this
assumption becomes invalid on the asymptote in figure 4.6. So we need to consider a
different approximation when v is large, and specifically of O(1/δ). We thus define

v =
V

δ
, (4.14)

so that L(v) ≈ 1, and (4.10) reduces to the new approximation

V ≈ J(u)−K(u). (4.15)

We can see from figure 4.5 that V > 0 only for u < uc, so that this approximation
works precisely when the earlier one does not.

Figure 4.7 shows both the original approximation and the large-v approximation,
together with the exact curve. Two things stand out. The first is that although the
two approximating curves are disjoint, the actual nullcline is continuous. The second
is that the large-v approximation is rather poor, and indeed for the parameters used
in (4.9), v is not even larger than one!

The reason for this second observation is easily understood from figure 4.5. The
value of uc ≈ 0.28, but in fact this value (which we might think to be O(1)) is actually
small, in the sense that J = K ≈ 0.0096 there, and in fact V given by (4.15) has a
maximum at u ≈ 0.199 which is just 0.00257. We would actually need δ to be much
smaller than this in order for the large-v approximation to be a good one.

The first observation is accommodated by the fact that when u ≈ uc, both ap-
proximations break down, and there is a distinguished limit in which elements of both
approximations are appropriate. In this overlap region, we suppose that both v ≫ 1
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and u ≈ uc. Expanding (4.10) in this region, and noting that J(uc) = K(uc), we find

J ′(uc)(u− uc) + . . .+
K(uc)

vm
−K ′(uc)(u− uc) + . . .− δv = 0, (4.16)

and thus at leading order in the overlap region,

u− uc ≈
1

{K ′(uc)− J ′(uc)}

{
K(uc)

vm
− δv

}

. (4.17)

It is clear that the overlap region is where we have the distinguished limit

v ∼ 1

δ
1

m+1

, u− uc ∼ δ
m

m+1 . (4.18)

We leave it as an exercise to show that this approximation matches to the two other
approximations, and thus provides a suitable approximation which can describe how
they join up.

4.1.3 Relaxation oscillations

We now return to the dynamics of the model (4.5), which we can write in the form

u̇+ γv̇ = µ− u,

εv̇ = f(u, v). (4.19)

Since ε ≪ 1, it follows that v rapidly approaches the v-nullcline, but the novelty here
is that this approach is along lines u + γv = constant. The resultant motion on the
slow manifold f = 0 then depends on the value of the stimulus parameter µ. There
is a finite interval of values µ− < µ < µ+ for which self-sustained oscillations occur.

Before commenting on these oscillations, we note that in the normal unstressed
state where µ < µ−, the steady state is stable but excitable. Sufficient elevation
of µ for a sufficiently long time will cause an excursion in the sarcoplasmic calcium
concentration, which corresponds to muscle contraction. Note also that if µ > µ+

(and particularly µ≫ µ+), then the intracellular Ca2+ remains high, and the muscle
will permanently contract. Presumably this corresponds to cramp (and rigor mortis).

For the case in which µ− < µ < µ+, figure 4.8 shows how the dynamics works in
the (u, v) phase plane. The two arrowed lines are the tangents to the nullcline of slope
dv

du
= −1

γ
(thus u+γv is constant on these lines). The values of µ where these tangents

touch the nullcline define µ±, as shown; their values are µ+ = 0.69, µ− = 0.28,
approximately (always using the values of the parameters in (4.8) and (4.9)). For an
arbitrary initial condition, for example at P in the figure, v changes rapidly, and since
f < 0 above the nullcline, the trajectory rapidly (on a time scale t ∼ ε) approaches
the nullcline at A, and remains on it. Now, if we suppose µ− < µ < µ+, we see
that u̇ + γv̇ < 0 at A since u > µ there, and therefore the solution migrates along
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Figure 4.8: Phase portrait for (4.19).

the nullcline to the left on the slow time scale t ∼ O(1). If µ were greater than µ+,
this migration would end when u = µ, which then defines a stable steady state of
the system. But if µ < µ+, the trajectory reaches B, and can not continue along the
nullcline, since on the nullcline, u+ γv starts to increase again. The only possibility
is that the slow phase AB finishes and there is another phase of rapid change. This
is BC; again v changes rapidly while u + γv remains constant, until the trajectory
lands on the nullcline again (note that here v increases, because BC lies below the
nullcline, where f > 0).

We revert to another slow phase, but now, if µ > µ−, u̇ + γv̇ > 0 because
u < µ− < µ at C, and so the trajectory moves up along the nullcline and slightly
past its maximum to D, where again it must enter a rapid transition phase. If µ
were < µ−, then the trajectory would reach a stable steady state where u = µ, but if
µ > µ−, this does not occur. In this way, the trajectory is doomed to cycle repeatedly
around ABCD, forming a periodic limit cycle which, because of the alternation of
fast and slow components, is called a relaxation oscillation (the solution alternately
relaxes to the slow phases AB and CD).

How do we describe this in the more conventional fast and slow variable formula-
tion? If we define

w = u+ γv, (4.20)

then the system takes the form

ẇ = µ− w + γv,

εv̇ = F (w, v) ≡ f(w − γv, v), (4.21)

and it is not difficult to see that the nullcline F = 0 will be multi-valued as in figure
4.9. The other nullcline u = µ is equivalently v = (w − µ)/γ, and an example for
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Figure 4.9: The nullclines for (4.21). The red w nullcline is drawn for the value
µ = 0.5 ∈ (µ−, µ+).

which µ− < µ < µ+ is shown in the figure as the red line. This is the classical sort of
situation where a relaxation oscillation occurs. The fixed point on the intermediate
branch of the v-nullcline is unstable, and the limit cycle ABCD cycles back and forth
between the upper and lower branches.

While ordinary phase plane analysis can be done in figure 4.9, it is less easy to do
in figure 4.8. First, let us try to do this in figure 4.9. The trajectories go through the
v-nullcline horizontally and the red w-nullcline vertically. Then the trajectories cycle
clockwise around the unstable fixed point. If we try and then draw in the relaxation
limit cycle for ε≪ 1, we see that the trajectory on AB must lie marginally above the
v-nullcline, and on CD, marginally below; the relaxation oscillation is thus consistent
with the demands of phase plane analysis.

But it is less easy to do this for figure 4.8. This is not to say that the description
above is inaccurate, but think about this: trajectories must cross the v-nullcline in
figure 4.8 horizontally. Thus as in figure 4.9, the section AB must lie marginally
above the v-nullcline. Equally, since u+ γv decreases along DA, the trajectory there
dips slightly more rapidly than the straight line DA. So the trajectory must switch
rapidly through the vertical close to A, and this is where the u-nullcline must be. So
where is the u-nullcline?

From (4.19), we see that it is given by

f(u, v) =
ε

γ
(µ− u), (4.22)

and thus it lies very close to the v-nullcline. In fact, if we denote the v-nullcline
as v = g(u), then expansion of (4.22) leads to the approximate formula for the u-
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nullcline,

v = g(u) +
ε(u− µ)

γ [δ + L′{g(u)}K(u)]
, (4.23)

and this allows us to complete a phase plane analysis satisfactorily.
What do the solutions look like? According to the theory, the cytosolic Ca2+

oscillations (thus u) should be spiky, like those shown in figure 4.2. With the param-
eter values we have been using, figure 4.10 shows that this is mildly true, but not
dramatically so. The reason for this is that ε is not small enough; indeed the phase
plane on the left shows that the trajectory dresses the v-nullcline, but is not glued to
it.

If we reduce ε, however, the spikiness increases, as shown in figure 4.11, in which
ε = 0.005, and the solution follows the v-nullcline much more closely. Normally we
think of ε = 0.04 as being in practice small, but this example shows that one must
always take ideas of numerical largeness or smallness with a degree of circumspection.
In fact, there is a good reason for the inaccuracy, which is to do with the confounding
effect of δ also being small. We already saw on page 64 how the smallness of δ
was compromised in approximating the v-nullcline by the ‘smallness’ of uc. Here a
different confusion occurs, because the smallness of δ interferes with the smallness of
ε.

We can use our various approximations to estimate such quantities as the ampli-
tude and the period of the oscillation when ε and δ are small, though we should bear
in mind the issues above. First, it is clear that as ε is reduced, the shape of the limit
cycle in the phase plane becomes fixed, and thus the ampltude is fixed as ε is reduced
and is independent of µ. The period also becomes independent of ε, but depends, as
we shall see, on µ; it is dominated by the passage of the trajectory through the slow
phases AB and CD. In fact, figure 4.11 suggests that most of the time is spent on
the low branch CD.

 0

 0.5

 1

 0  0.5  1  1.5  2

u

v

 0

 0.5

 1

 1.5

 2

 10  15  20  25  30

t

u

Figure 4.10: Phase plane and time series for (4.19), standard parameter values, in-
cluding ε = 0.04.
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Figure 4.11: Phase plane and time series for (4.19), standard parameter values, except
that ε = 0.005.

To quantify this, we note that on the slow branch CD, u is O(1) but v is O(1/δ).
It is appropriate to rescale the time also, thus we put

v =
V

δ
, t =

T

δ
, f ≈ J(u)−K(u)− V, (4.24)

and (4.19) is approximately (overdots now being differentiation with respect to T )

δu̇ = µ− u− γV̇ ,

εV̇ = J(u)−K(u)− V. (4.25)

This suggests that, on this longer time scale, V relaxes to its equilibrium

V ≈ G(u) = J(u)−K(u), (4.26)

and then u satisfies

u̇ ≈ µ− u

γG′(u)
. (4.27)

The duration of this phase is thus (in terms of t)

tCD ≈ 1

δ

∫ uD

uC

γG′(u) du

µ− u
, (4.28)

where u = uC at C and u = uD at D. Note that G′(u) >∼ 0 for u < uD, and that also
u < µ in this range, so the integrand is positive and bounded.

Next, since v ∼ 1

δ
at D, it follows that u ∼ 1

δ
at A, and we can put

u =
U

δ
, f ≈ β − L(v), (4.29)
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Figure 4.12: Time series for (4.19), standard parameter values, except that ε = 0.005,
δ = 0.0001.

and therefore the system (4.19) takes the form

U̇ = −U + δ(µ− γv̇),

εv̇ = β − L(v), (4.30)

whence v ≈ L−1(β) is constant and U̇ ≈ δµ − U . We could go on with this, but

the main point is that the duration of CD is ∼ 1

δ
, while that of AB is ∼ ln

(
1

δ

)

,

which is the time for U in (4.30) to reach O(δ). The oscillation becomes increasingly
spiky as δ us reduced, and this is shown in figure 4.12, where we take δ = 0.0001 and
ε = 0.005.

At leading order, the period is thus approximately given by tCD, with a correction

of O

(

ln
1

δ

)

, and it is a decreasing function of µ. This is consistent with the data

shown in figure 4.2.

4.2 Wave propagation

Ca2+ oscillations can cause waves to propagate inside cells at speeds 10-100 µm s−1.
These are particularly evident in large cells (e. g., oocytes (developing eggs)) where
periodic wave trains can be seen. Spiral waves have been seen in Xenopus oocytes.

The simplest model to describe such waves is the two pool model where we also
allow diffusion of cytosolic Ca2+. Thus (non-dimensionally), and in one spatial di-
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Figure 4.13: The sought-after trajectory of a periodic travelling wave in the (u, v)
phase plane.

mension,

ut + γvt = µ− u+ νuxx,

εvt = f(u, v), (4.31)

where

ν =
D

l2k
, (4.32)

l is the length scale used to non-dimensionalise x, and D is the diffusion coefficient.
In what follows, we seek travelling wave solutions of the form

u = u(ξ), v = v(ξ), ξ = x+ st; (4.33)

our discussion will be very similar to that used in discussing travelling waves in
the FitzHugh–Nagumo model (section 3.2, page 49); the difference is that there the
diffusion term was included in the fast equation: here it is the other way round. In
addition, the excitable steady state led to a solitary travelling wave; here the limit
cycle of the phase plane is expected to yield periodic travelling waves. In somewhat
similar fashion to section 3.2, we will aim to construct a relaxational wave having the
cyclic phase plane trajectory indicated in figure 4.13, where the values of uD and uB
are as yet unconstrained. If we anticipate that s > 0, then we expect the wave profile
to be as indicated in figure 4.14.

In keeping with the FitzHugh–Nagumo equation analysis, we need to choose the
size of the diffusion term so that it becomes important in the fast transition (between
the two quasi-steady branches AB and CD; evidently this will involve rescaling ξ ∼ ε,
and therefore we choose ν = ε, which thus implies

l =

(
D

kε

)1/2

. (4.34)
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Using values D ∼ 20 µm2 s−1, ε = 0.04, k = 10 s−1, we find that l ∼ 7 µm, and this
suggests a wave speed ∼ lk ∼ 70 µm s−1 if s ≈ 1.

We now sketch the structure of the solution. Substituting (4.33) into (4.19), we
obtain (with ν = ε)

s(u′ + γv′) = µ− u+ εu′′,

εsv′ = f(u, v). (4.35)

In the fast wavefront DA, we put ξ = εX ; (4.35)1 becomes approximately (primes
now denoting differentiation with respect to X)

s(u′ + γv′) = u′′, (4.36)

and a first integral of this together with (4.35)2 gives the system

u′ = s[u− uD + γ(v − vD)],

sv′ = f(u, v), (4.37)

where uD and vD are the values of u and v atD. The object now is to find a solution of
this which connects the fixed point (uD, vD) to the corresponding fixed point (uA, vA).
As for the FitzHugh–Nagumo case, we expect this to require a particular choice of s.

It is convenient to shift D to the origin by writing

U = u− uD, V = v − vD, f(u, v) = F (U, V ), (4.38)
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Figure 4.14: Presumed shape of the wave. (This figure is actually the time series of
the limit cycle when δ = 0.001.) As indicated, the wave moves backwards, thus s > 0
in (4.33). Note that it repeats periodically.
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Figure 4.15: Phase portrait for (4.39). The default parameters are used, and the
choice of s which connects D to A for this is s = 0.816, approximately. The values of
uD and vD used are uD = 0.21 and vD = 1.003.

so that

U ′ = s(U + γV ),

sV ′ = F (U, V ). (4.39)

The phase portrait for this system is shown in figure 4.15. D is a saddle, as is A,
and the fixed point between them is an unstable node or focus. (In this case it is
a node.) In order to connect D to A as required, the unstable separatrix in U > 0
from D must connect to the stable separatrix to A. In general this will not occur,
but as we decrease s, the separatrix trajectory becomes lower, and at one particular
value it connects to A. For the default parameters of the model, this is at s ≈ 0.816.
(In order to construct figure 4.15 numerically, it is necessary to determine s to seven
decimal places, but while these are necessary to construct the figure, the later places
have little meaning, since they depend on the details of the numerical method used.)

To prove such a value of s exists, one can use comparison arguments. To do this,
we would write (4.39) in the form

dV

dU
=

F (U, V )

s2(U + γV )
, V ∼ kU as U → 0+, (4.40)

where k is the positive root of

k =
FU − |FV |k
s2(1 + γk)

, (4.41)

73



-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.2  0  0.2  0.4  0.6  0.8  1

V

U

C

B

Figure 4.16: Phase portrait for (4.39). The choice of uB which connects B to C for
this is uB = 0.714, approximately. At C, uC ≈ 0.156, vC ≈ 0.697.

the derivatives being evaluated at U = V = 0; this selects the required separatrix
solution. It is easy to see by graphical means that k decreases as s increases, so
that, for small U where F > 0, V−(U) > V+(U), where V± are solutions of (4.40)
corresponding to two values s− < s+. Equally, for solutions of (4.40) which connect
to the stable separatrix to A, V− > V+. Now as s→ ∞, the separatrix solution from
D becomes V ≈ 0, while as s→ 0, it follows the v-nullcline to the (now stable) node;
so by continuity arguments there is at least one value of s for which the separatrices
are connected. Often one can demonstrate uniqueness using monotonicity arguments,
but that is not so easy here because of the change of sign of F . Numerically (at least
for these parameter values), it seems there is only one value of s, however.

In fact, it is noticeable in figure 4.15 that the trajectories to the left of the figure
are very flat. The reason for this is that for u less than about 0.5, f and thus F is
very small (which, as we noted earlier, is why the small δ approximation in figure 4.7
is not very accurate). In particular, the unstable separatrix from D in U > 0 in figure
4.15 is very close to V = 0; in fact, where it crosses the nullcline again into the region
where F < 0, U = 0.115 and V = 0.002. If we assume that as s varies, this value of
V stays constant, then the part of the trajectory in F < 0 varies monotonically with
s, which then proves the uniqueness of the value of s which connects D to A. One
supposes this will in general be true for sufficiently small but non-constant values of
V where the separatrix crosses the nullcline. In fact, it is possible to prove uniqueness
using a slightly different formulation of the problem.

Once the trajectory reaches A, it enters a slow phase, in which we return to the
variable ξ, and at leading order (4.35) implies f(u, v) ≈ 0, whence v ≈ g(u) (the
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v-nullcline), and

u′ ≈ µ− u

s(1 + γg′(u)
; (4.42)

this is negative, and u decreases along the v-nullcline until the point B, where another
fast phase is initiated. The value of uB is unknown, and must be chosen in a similar
manner to s, in order to connect the separatrices of the two outer fixed points of
(4.37), which now takes the form

u′ = s[u− uB + γ(v − vB)],

sv′ = f(u, v). (4.43)

The phase plane is shown in figure 4.16, in terms of the variables

U = u− uC, V = v − vC , (4.44)

so that the point C is the origin, and U and V satisfy (4.39); the construction of the
phase plane is left as an exercise.

Unlike figure 4.13, figure 4.16 appears to show that the point B is actually where
the U -nullcline U+γV = 0 is tangent to the V -nullcline, and numerically, this appears
to be the case. Figure 4.17 shows the connecting trajectory and figure 4.18 shows a
close-up. For visualisation purposes, the variables have been changed again to U and
W = U + γV , so that the curve F (U, V ) = 0 becomes W = G(U). In interpreting
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Figure 4.18: A close-up near B of the connecting trajectory.

these figures, it should be noted that the system is

U ′ = sW,

W ′ = sW +
γF

s
, (4.45)

so that while W = 0 is the U -nullcline, F = 0 (or W = G(U)) is not the W -nullcline,

which is given byW = −γF
s2

; for phase plane purposes we can think of theW -nullcline

in figure as being like W = −G(U).
The further close-up in figure 4.18 provides more evidence that the correct choice

of B is at the tangent, as also indicated in figure 4.16. It is worth commenting on
how such figures are produced. As mentioned, to the left of this figure, most of the
trajectories are horizontal, because F is small there. The exception is near the U -
nullcline (of (4.39)), which is why the stable separatrices to C almost lie on it (but
not exactly, as shown in figure 4.17). But this fact explains why the choice of B must
be close to the tangent, for if it were not (as in figure 4.13), then the stable separatrix
to C would follow the U -nullcline to the unstable node and terminate there.

So B needs to be close to the tangent; but why it should appear to lie exactly at
the tangent is not entirely obvious. A clue lies in the fact that if F is small enough
(as here) then B will be at the tangent, but that for larger F it will move away from
the tangent, as suggested in figure 4.13. In calculating the trajectory BC in figure
4.16, we adjusted B nearer and nearer to the tangent, until finally we put it precisely
at the tangent, and integrated the equations (4.39) backwards (in X) from near C.
When B is at the tangent, it becomes a degenerate saddle.
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Figure 4.19: Spiral waves in the Belousov-Zhabotinskii reaction. Image by Art Win-
free.

4.2.1 Waves in higher dimensions

We finish this chapter with some comments on wave propagation in higher dimensions.
In reality, waves such as described above propagate in a three-dimensional medium.
To be identifiable as a wave, solutions need to be quasi-one-dimensional, but the wave
fronts can now be curved. Various kinds of modifications can occur, but the principal
ones are target patterns and spiral waves, and both are essentially two-dimensional in
nature. As their name suggests, target patterns are circularly symmetric concentric
rings like those on an archer’s target. Spiral waves are similar, but are not rotationally
symmetric in the angular variable θ.

Both kinds of wave can be described in cylindrical polar coordinates by a repre-
sentation of the form

u = u[Ωt+mθ − ψ(r)]. (4.46)

If m = 0 these are target patterns, and typically they propagate outwards, thus
ψ′(r) > 0 if Ω > 0. The reason for this is that typically the waves are organised by
inhomogeneities or other entities at their centres. If m 6= 0, (4.46) represents a spiral
wave. The spiral shape is given by mθ = ψ(r), and the spiral rotates; sometimes
such waves are called rotating waves, and rotating Ca2+ waves have been observed in
Xenopus oocytes.

The best-known examples of target patterns and spiral waves occur in the Belousov-
Zhabotinskii reaction, which is a chemical reaction which spontaneously oscillates (the
oscillation is visible because of colour change in the reacting medium, see figure 4.19).
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When the experiment is done in a thin layer of reagent in a petri dish, the oscilla-
tions cause waves to propagate, generally of target or spiral form. It is commonly
thought that the centres of the waves are associated with impurities in the medium,
for example.

Another, and more pertinent, example is the electrochemical action of the heart.
We shall have more to say on this in chapter 5. The heartbeat is generated by a
pacemaker (oscillator) in the sino-atrial node which acts as an organising centre,
and causes a wave to propagate through the excitable atria and ventricles. Because
the medium is excitable, a solitary wave propagates, and in normal function this
would be something like a target pattern. However, blockage of conduction paths
by diseased heart tissue can lead to ‘re-entrant’ spiral waves (which cycle round the
diseased tissue), causing ventricular tachycardia. In the increasingly diseased heart,
such spiral waves can become chaotic, leading to ventricular fibrillation and death.
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Chapter 5

The electrochemical action of the
heart

The purpose of the heart is to pump blood through the body. The blood carries
nutrients to the tissues and carries away waste products; principally, the nutrient
is oxygen (O2) and the waste is carbon dioxide (CO2). Exchange of these gases
between the body and the atmosphere occurs via respiratory exchange at the lungs,
and is effected by a perfusion of the blood through a capillary bed in the pulmonary
circulation.

There are two parts of the heart function which we will focus on in these notes.
The first is the electrochemical action of the heart, that is to say, the way in which
electrochemical signals cause muscle contraction in the myocardium, which enables
the heart to pump blood round the body. The second is the mechanical action of the
heart, i. e., the way in which this contraction enables a uni-directional circulation of
the blood via a system of valves in the heart. We deal with the electrochemical action
in this chapter, and the pump action in the next.

5.1 Action potentials and the heart beat

The heart contains four chambers, comprising two atria and two ventricles. Blood
collects in the atria and is pumped to the ventricles, which in turn pump the blood
to the lungs and around the body. For the heart to act effectively it is necessary for
the sequence of contraction of the chambers to be synchronised. This is achieved by
electrical signals (cardiac action potentials) which are transmitted through the my-
ocardium (see figure 5.1). The heart is made of billions of individual cells. Each cell
is surrounded by a membrane which is electrically polarised (the membrane poten-
tial). The electrical signals that stimulate contraction cause the membrane potential
to depolarise and a second electrical signal repolarises the membrane. The electro-
cardiogram (ECG) is a measurement of these electrical signals on the surface of the
body and consists of a series of waves (see figure 5.2).

Each wave in the ECG is linked with a depolarisation wave or a repolarisation wave
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Figure 5.1: The electric pathways in the heart. The red lines are the Purkinje fibre
network, and the blue arrows show the direction of the electric signal (adapted from
Houghton and Gray (1997)).

PR interval QT interval

P wave

QRS complex

T wave

Figure 5.2: The electrocardiogram viewed from lead-I. The separate P wave, QRS
complex and T wave, signifying atrial depolarisation, ventricular depolarisation and
ventricular repolarisation respectively, are clearly visible (adapted from Houghton
and Gray (1997)).
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in the atria or ventricles. The first wave is the P-wave and is caused by a depolarisation
wave in the atria which originates from the sino-atrial (SA) node (figure 5.1). The
sino-atrial node is an electrical oscillator which is the heart’s pacemaker. The second
wave is the QRS-complex and is caused by the ventricles depolarising. There is a gap
between the P-wave and QRS-complex (the PR interval) which is due to a pause in
the transmission of the depolarisation wave in the atrio-ventricular (AV) node. The
depolarisation wave is transmitted rapidly though the ventricles by the Purkinje fibre
network which leads to the whole ventricle contracting simultaneously. The final wave
is the T-wave which is caused by the ventricles repolarising.

5.2 Cardiac cells

Similarly to neurons (see chapter 2), cardiac cells are electrically active. There are five
main types of heart cells, each type fulfilling a specific function. The cells are listed
below in the order in which they depolarise during a cardiac activation sequence:

1. Sino-atrial node cells are the pacemakers of the heart, and have oscillatory
action potentials. SA node cells do not contract. The SA node is situated on
the right atrium.

2. Atrial myocytes are excitable cells which conduct the action potential (the P-
wave) with a velocity of about 0.5 m s−1. Atrial myocytes are muscle cells and
contract when their membrane potential is depolarised.

3. Atrio-ventricular node cells are excitable cells which conduct action potentials
with a velocity of about 0.05 m s−1. The main role of the AV node is to create
a pause between the contraction of the atria and ventricles (the PR-interval).
However, if the SA node fails, then the AV node can take over as the pacemaker.

4. Purkinje fibres are excitable cells and conduct the action potential rapidly (at
about 5 m s−1). After the action potential has passed through the AV-node,
the rapid conduction in the Purkinje fibres makes the depolarisation of the
ventricles synchronous (this is why the QRS-complex is narrow).

5. Ventricular myocytes are excitable cells which conduct the action potential
slowly (at about 0.5 m s−1). Ventricular cells are muscle cells and contract
when their membrane potential is depolarised.

In the folowing sections, we shall see how the underlying ionic currents give rise to
the distinctive action potentials of the SA-node cells and of the ventricular myocytes.
The Nernst potentials for sodium, potassium and calcium in cardiac cells are approx-
imately VNa = 60 mV, VK = −95 mV and VCa = 130 mV.
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Figure 5.3: The action potential and principal ionic currents of the SA node cells.
The upward arrows represent depolarising currents, the downward arrows represent
repolarising currents, and the size of an arrow represents the relative size of the
current.

5.2.1 Sino-atrial node cells

The SA-node is the pacemaker of the heart, due to the fact that the SA-node cells
have oscillatory action potentials. The action potential contains three principal depo-
larising ionic currents and one principal repolarising current. Note that depolarising
currents are also called inward currents, and cause the membrane potential to in-
crease, while repolarising currents are also called outward or rectifying currents and
cause the membrane potential to decrease. Each of the ionic currents is voltage-
gated (see chapter 2) and they act at different times during the action potential (see
figure 5.3).

The main currents are the following:

1. If is the ‘funny’ depolarising current. This depolarising current is activated
(i. e., it contains voltage-gates which open) at low potentials (≈ −65 mV) and
it occurs at the beginning of the depolarising phase of the action potential.

2. ICa,T is the transient Ca2+ current, which contributes to the depolarisation at
potentials between −60 mV and −45 mV. At higher potentials it is inactivated.

3. ICa,L is the long-lasting Ca2+ current and is the most important pacemaking
current. The current is activated when the membrane potential rises above
−55 mV.

4. IK is the time-dependent potassium current. This current is responsible for the
repolarisation of the action potential and is activated when the potential rises
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above −40 mV. However, the voltage-gates take approximately 100 ms to fully
open.

Individual isolated SA node cells oscillate with different time periods (between 170 ms
and 350 ms). However, in the SA node neighbouring cells are electrically coupled,
which synchronises their action potentials. The SA node is electrically coupled to
the right atrium which allows the action potential to spread from the SA node. This
electrical coupling has a second effect: during the initial depolarisation phase it acts as
a current sink, which slows the rate of depolarisation and thus reduces the frequency
of the pacemaker. The frequency of the pacemaker can be increased by increasing
the size of the depolarising current ICa,L, ICa,T and If . For example catecholamines
(such as adrenaline and noradrenaline), which are neurotransmitters released when
the sympathetic nerves are stimulated, dramatically increase ICa,L and can increase
the frequency of the pacemaker by a factor of three. Conversely, acetylcholine (Ach),
which is a neurotransmitter released when the parasympathetic nerves are stimulated,
reduces both ICa,L and If , and decreases the frequency of the pacemaker.

5.2.2 Ventricular myocytes

The ventricular muscle is made of billions of individual ventricular myocytes. The
ventricles contract when all the myocytes contract simultaneously. The electrophys-
iology of ventricular myocytes therefore must play two rôles. First, it must allow
electrical signals to pass between the cells to synchronise the contractions, and sec-
ond, it must stimulate the contraction. The resting potential for ventricular myocytes
is typically −90 mV, which is close to the Nernst potential for the potassium ions. The
principal currents involved in the ventricular action potential are shown in figure 5.4.
The action potential starts with a rapid depolarisation phase which is followed by the
long plateau phase where the potential changes slowly. After approximately 300 ms
the plateau phase ends and the cell membrane rapidly repolarises. The exact make-up
and balance of the ionic currents during the plateau phase is still an area of active
research and is known to differ between species.

1. INa is the fast inward sodium current which is the main current during the
depolarisation phase. As the membrane potential rises above −65 mV, this
current is rapidly activated and then deactivated by voltage-gates. The current
is very large leading the membrane to depolarise fully in less than 1 ms.

2. Ito is the transient outward current which causes a small but rapid repolarisation
immediately after the initial depolarisation.

3. ICa,L is the long-lasting Ca2+ current which is a depolarising current. It is
activated when the potential rises above −40 mV, and is deactivated by the
increased intracellular Ca2+ during an action potential and the membrane po-
tential. The current triggers the release of Ca2+ from the sarcoplasmic reticu-
lum, which is the internal store of Ca2+ (see chapter 4). This process is called
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Figure 5.4: The action potential and principal ionic currents of the ventricular my-
ocyte. The upward arrows represent depolarising currents, the downward arrows
represent repolarising currents, and the size of an arrow represents the relative size
of the current.

calcium-induced calcium release (CICR) and is essential in electro-contraction
coupling (E-C coupling) because the high levels of Ca2+ it produces cause the
cell to contract.

4. INCX is the sodium-calcium exchanger and is responsible for removing Ca2+

ions from the cell (note Ca2+ enters the cell via ICa,L, so it must eventually be
removed in order to prevent a build up of Ca2+). The INCX pumps Ca2+ against
the concentration gradient (the extracellular [Ca2+] is over 10,000 times greater
than the intracellular [Ca2+]) by allowing three sodium ions to enter the cell for
each calcium ion which is removed. When Ca2+ is being removed from the cell
there is a net inward current which helps to maintain the action potential.

5. IK is the outward potassium current which is a repolarisation current. During
the plateau phase it balances the inward ICa,L and INCX.

6. IK1
is the background potassium current and is a repolarisation current which

is inactivated at high membrane potentials. It is responsible for the rapid re-
polarisation at the end of the plateau phase and for maintaining the resting
potential.

The plateau phase ends when the outward currents IK and IK1
become larger then

the balancing inward currents ICa,L and INCX.
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5.2.3 The Noble model

Mathematical models (e. g., those of Noble (1962), Beeler and Reuter (1977), or Luo
and Rudy (1994)) of cardiac cells can be constructed describing these ionic currents
and their associated voltage-gates. These models are similar to the Hodgkin-Huxley
model for nerve cells, but involve more variables due to the greater number of currents
involved. However, the basic feature of cardiac cells is that they are excitable and that
the upstroke of the action potential is much more rapid than repolarisation during the
plateau phase. The FitzHugh-Nagumo model (chapter 2) also has these properties
and can be used as a crude approximation to model cardiac action potential.

As one example of such models, we here describe the Noble model, not for its
veracity, but because it is relatively simple, and also it sets the historical precedent
for later models such as those cited above. In particular, note that the action potential
illustrated in figure 5.4 has quite a different shape to that of the SA node cells as
illustrated in figure 5.3.

The Noble model was designed for Purkinje fibres, but was used by him to de-
scribe pacemaker activity, that is, self-sustained oscillations; it is quite similar to
the Hodgkin-Huxley model, and represents the ionic current as the sum of potas-
sium, sodium and leakage (what Noble calls anionic, i. e., of negatively charged ions)
currents, thus

CmV̇ = −Ii, Ii = INa + IK + IL. (5.1)

(Note the difference between this and figure 5.4.) The distinction lies in the forms used
for the gating variables, and also specifically in considering the potassium currents
to be of two types (through two different channels), to accommodate the fact that
‘the fibres differ from squid nerve in that depolarisation decreases the potassium
permeability of the membrane’. The form of the model Noble suggested was based
on experimental results, but the precise forms of the functions used were somewhat
empirical. This difference from the Hodgkin-Huxley model appears to be significant.
Specifically, Noble prescribes (units of V are mV)

INa =
[
g0 + gNam

3h
]
(V − VNa),

IK = (fK + gKn
4)(V − VK),

IL = gL(V − VL), (5.2)

where the fast potassium conductance is given by (units are mS cm−2 and V in mV)

fK = 1.2 exp

[

−(V + 90)

50

]

+ 0.015 exp

[
V + 90

60

]

, (5.3)

and the gate variables m, h, n satisfy

ṁ = αm(1−m)− βmm,

ḣ = αh(1− h)− βhh,

ṅ = αn(1− n)− βnn, (5.4)
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Figure 5.5: Experimentally measured values of the equilibrium gate variables (left)
and their relaxation times (right) as functions of potential, as given by Noble (1962).
V in mV, τk in ms; note the logarithmic scale for τk. The resting potential in practice
is typically Veq ≈ −90 mV.

where the coefficient functions are

αm =
0.1(V + 48)

1− exp

[

−(V + 48)

15

] , βm =
0.12(V + 8)

exp

[
V + 8

5

]

− 1

,

αh = 0.17 exp

[

−V + 90)

20

]

, βh =
1

1 + exp

[

−(V + 42)

10

] ,

αn =
10−4(V + 50)

1− exp

[

−(V + 50)

10

] , βn = 0.002 exp

[

−(V + 90)

80

]

. (5.5)

For each k = m, h, n we define the time constant τk and limit k∞ by

τk =
1

αk + βk
, k∞ = αkτk, (5.6)

so that these equations can be written in the form

τkk̇ = k∞ − k. (5.7)

The graphs of these time constants and limit functions are shown in figure 5.5. Figure
5.6 shows the fast potassium conductance fK .

As for the Hodgkin-Huxley equations, there are four equations to solve, but unlike
them, there is no clear FitzHugh-Nagumo type reduction to a more amenable two-
dimensional system. Instead, a different approach is possible. This is based on the
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Figure 5.6: The fast potassium conductance fK (units mS cm−2): V in mV.

observation (see figure 5.5) that the time scales for the gating variables are very
different; roughly τm ∼ 0.25 ms, τh ∼ 8 ms, and τn ∼ 500 ms. This allows for
successive relaxation of the gate variables, with the n-gate being the slowest-acting.

What is the time scale tV for the potential V ? We define the sodium and potassium
conductances to be g and f ,

g = g0 + gNam
3h, f = fK + gKn

4, (5.8)

and then it seems, on inspecting table 5.1, that we might expect g ∼ 400 mS cm−2,

and, noting figure 5.6, f ∼ 1 mS cm−2, hence tV ∼ Cm
g

∼ 0.03 ms, and thus even

faster than them-gate variable. This observation must be tempered with the fact that
(see figure 5.5) the product gNam

3
∞h∞ is actually ∼ 1 mS cm−2; in fact it increases

monotonically from a value ∼ 0.01 mS cm−2 at −90 mV to a value of 0.8 mS cm−2

at ≈ −10 mV, and decreases above this. So when depolarised, the apparent time
scale is about 15 ms, and 1,200 ms at the resting potential! So a degree of wariness
is appropriate. However, we shall find that the assumption that tV <∼ τh is generally
reasonable.

Figure 5.7 reproduces figure 6 in Noble’s 1962 paper,1 and shows self-sustained
(pacemaker) periodic behaviour with gL = 0. The basis for ignoring the leakage
current is that it is small, though in fact it has quite an effect on the value of the resting
potential. Indeed, computation of Ii(V ) when the gate variables are in equilibrium
shows that Ii is a non-monotonic function of V which, if gL = 0, has a single steady
state at Veq ≈ −35 mV. Oops! What happened to −90 mV?. It seems this is due to

1Sixty years ago, Noble used a Runge-Kutta method, and with a time step of 0.1 ms, his calcula-
tions on a Mercury computer took an hour; the computation in figure 5.7 with a time step of 0.001
ms took about two seconds on a 2016 Macbook Pro.
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Parameter Typical value
Cm 12 µF cm−2

gK 1.2 mS cm−2

gL <∼ 0.405 mS cm−2

gNa 400 mS cm−2

g0 0.14 mS cm−2

VNa 40 mV
VK −100 mV
VL −60 mV

Table 5.1: Parameters in the Noble model.

the specific choice of the constituent functions. The function Ii(V ) (using m∞, n∞

and h∞) resembles a cubic. When gL = 0, its maximum is at about −78 mV, and
only slightly negative. If gL is reduced, two further roots appear, and if gL = −0.234
mS cm−2, the lower of these is at −90 mV. There are of course then three steady
states of the system. It seems this is due to the rather sensitive prescription of the
model in terms of the various coefficient functions chosen.

Figure 5.8 shows a close up of the peak, and helps us to understand the dynamics of

V

t (ms)

Figure 5.7: Periodic solutions of the Noble model; parameters as in table 5.1, with
gL = 0.
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Figure 5.8: Close-up of the fast depolarisation of the solution in figure 5.7. The units
of V are mV.

the model. Starting at the minimum of the oscillation, at around−80 mV, we can take
m ≈ m∞(V ), and indeed this assumption remains approximately valid throughout
the cycle.2 On the slow part of the oscillation, h and V are in approximate equilibrium
also, and n slowly relaxes towards n∞: this is similar to the FitzHugh-Nagumo model.

The fast phase occurs on the time scale τh. On this time scale n ≈ constant, and
the fast phase is determined by the second order system (putting gL = 0)

τhḣ = h∞(V )− h,

CmV̇ = −
[
{g0 + gNam

3
∞(V )h}(V − VNa) + f(V )(V − VK)

]
, (5.9)

and we might aim to seek a trajectory in the (h, V ) phase plane connecting two fixed
points of these equations: this is essentially what happens, with a slight twist. Thus
it seems that an analysis of the Noble model is possibly by its reduction to a third
order system, and an analysis similar to that used in analysing periodic travelling
waves.

To proceed formally, we take the gate times τk to be constant, m = m∞(V ), and
non-dimensionalise the system by scaling the variables as

V ∼ |VK|, t ∼ τh, (5.10)

2Examination of the numerical solution shows that it is very accurate everywhere, except in the
fast depolarisation phase, where m∞−m rises to a maximum of about 0.12 before decreasing again.
Nevertheless, we retain the assumption that m ≈ m∞ throughout.
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Parameter Typical value
τm 0.25 ms
τh 8 ms
τn 500 ms
vNa 0.4
vL 0.6
γ0 0.09
γK 0.8
γL < 0.27
γNa 267
ε 0.016
φK < 1

Table 5.2: Time scales and dimensionless parameters. The estimate of the decreasing
function φK is based on fK < 1.5 mS cm−2 for V > −100 mV.

so that the equations become

ṅ = ε(n∞ − n),

ḣ = h∞ − h,

V̇ = −G(V, h, n), (5.11)

where

G(V, h, n) = {γ0+γNam
3
∞(V )h}(V−vNa)+{φK(V )+γKn

4}(V+1)+γL(V+vL), (5.12)

and

ε =
τh
τn
, vNa =

VNa

|VK|
, vL =

|VL|
|VK|

, γ0 =
g0τh
Cm

,

γNa =
gNaτh
Cm

, φK(V ) =
τhfK(V )

Cm
, γK =

gKτh
Cm

, γL =
gLτh
Cm

. (5.13)

We formally assume that G >∼ 1 (and specifically ≫ ε). Values of the parameters
are given in table 5.2, which shows that indeed G >∼ 1. The fact that γNa ≫ 1 does
not matter, since if G is large it simply emphasises the validity of the fast phase
approximation. (In principle, one should also pay attention to the validity of the
m-equilibrium, as mentioned in the footnote on page 89.)

We limit ourselves to a discussion of the fast upstroke of the action potential. We
have n ≈ constant, and with γL = 0, the equations are

ḣ = h∞ − h,

V̇ = −G(V, h, n),
G(V, h, n) = −{γ0 + γNam

3
∞(V )h}(vNa − V ) + φ(V + 1), (5.14)
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Figure 5.9: The h and V nullclines of (5.14) for values of gL = 0 and n = 0.5. V is
plotted in dimensional units. Note the logarithmic scale for h.

where we define
φ = φK(V ) + γKn

4. (5.15)

In the phase plane, the h-nullcline is just h = h∞(V ), as shown in figure 5.5. The
V -nullcline is given by

h = h0(V ) =
S

γNam
3
∞(V )

, S =
φ(V + 1)

vNa − V
− γ0. (5.16)

For V < vNa, S is a monotonically increasing function of V , S = 0 for V ≈ −1 and
S → ∞ as V → vNa. The V -nullcline would then have the same shape, except that as
V decreases, m∞ decreases dramatically, and this causes h0 to increase again before it
reaches zero. The possibility thus arises of the V -nullcline intersecting the h-nullcline
not only at large V , as it must, but also at small V . It turns out, for the particular
choice of functions used by Noble, that this indeed occurs. Figure 5.9 shows that
this is indeed the case (the h values are plotted logarithmically, as the two nullclines
are so close). It is clear that the precise way in which the nullclines intersect is very
sensitive to the precise forms of the constituent functions, and in particular m∞.

In this figure, it is not difficult to show that the extreme fixed points are stable,
and the intermediate one is a saddle: we are not trying to construct connecting orbits
here! Now when V = −80 mV, figure 5.5 shows that n∞ ≈ 0.1, whereas when
V ≈ 0 mV, n∞ ≈ 0.9. Thus in figure 5.9 (where n = 0.5), if we are at the left hand
stable fixed point, ṅ < 0 and thus φ decreases, and this decreases h0(V ): the V -
nullcline gradually lowers. At a critical value of n (about 0.4), the two left hand fixed
points coalesce, and there is a rapid transient to the other fixed point this is the fast
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depolarisation of the action potential. Moreover this transient starts off slowly, but
when V > −60 mV, the sodium conductance term becomes large, and the trajectory
in the phase plane becomes horizontal and rapidly approaches the V -nullcline on a

dimensionless time scale ∼ 1

γNa

; it then slowly migrates down the V -nullcline towards

the remaining steady state on the longer dimensionless time scale ∼ 1. This provides
the explanation for the very fast upstroke and the slightly slower relaxation that can
be seen in figure 5.8.

Having reached a quasi-steady state near V = 0 mV, we still have n ≈ 0.4 but now
n∞ ≈ 0.9, so n starts to increase, and as it does so, φ and thus h0 start to increase.
Consequently the two left hand fixed points reappear, and as the V -nullcline continues
to rise, eventually the two right-hand fixed points coalesce and disappear (at about
n = 0.7), and there follows a rapid decrease of V back to the next slow, polarised
phase. In this way the oscillation continues.

However, it is obviously sensitive to the precise choice of functions used. It is
fairly clear how minor adjustments to the constituent functions can be made in order
that the resting potential is about −90 mV, and that it is stable but excitable. This
is also why inclusion of the leakage term causes the oscillations to disappear. As gL
increases, the slope of the V -nullcline, given by (5.16) in the form

h = h0(V ) =
S

γNam
3
∞(V )

, S =
φ(V + 1) + γL(V + vL)

vNa − V
− γ0, (5.17)

increases, so that when gL = 0.4 mS cm−2, there is only one intersection of the
nullclines, and consequently only one fixed point, and it is stable.

5.3 Wave propagation in two dimensions

Ventricular myocytes are very small, typically only 100 µm long and 10 µm wide. The
heart muscle is made of billions of interconnected ventricular myocytes which divide
the tissue into two regions: the intracellular space and the extracellular space. The
myocytes are aligned approximately parallel to each other defining the fibre direction.
The fibre structure of cardiac tissue makes it anisotropic. Adjacent cells form connec-
tions in regions called intercalated discs. Within these discs are gap junctions, which
form electrical connections between the cells. The majority of the gap junctions are
concentrated at the ends of the cells, leading to a larger electrical conductivity in
the direction of the cardiac fibres compared with the direction perpendicular to the
fibres. In theory it is possible to write down equations that model the fine structure
of the intercellular connections; however, to solve these equations is computationally
impossible in practice. The macroscopic length scale over which the potential varies
is much greater than the microscopic length scale of the cellular structure, and there-
fore homogenisation techniques can be used to yield a continuum description of the
tissue. Without going into detail, we will model this spatial transmission of electric
potential by a diffusion term, just as we did in the Hodgkin-Huxley model. Our main
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focus in this section is to provide a geometrical theory of wave propagation which
allows the study of wave propagation in more than one dimension. To be specific, we
will begin by considering periodic travelling wave trains, which, as shown in chapter
4, are the common consequence of adding diffusion to oscillatory reaction kinetics,
such as describe the pacemaker potential of the cells in the sino-atrial node. The
propagation of solitary waves in this context can be understood as a limit in which
the period of the underlying limit cycle tends to infinity. In a second section, we
provide a description for the propagation of waves which are quasi-one-dimensional,
in the sense that the radius of curvature of the wavefront is much greater than the
thickness of the wave profile. Unfortunately, the presentation of the material is rather
abstract.

5.3.1 Periodic wave propagation

Suppose that a vector of concentrations w satisfies the general (non-dimensional)
reaction-diffusion equation

wt = f(w) + ε∇2w, (5.18)

where w ∈ Rn and ε is a small parameter. The assumption here is that if D is the
diffusion coefficient and T is the reaction time scale, then the macroscopic length
scale l ≫

√
DT . While this may be true in chemical reactions, for example, it is not

actually appropriate in the heart. In the simplest case n = 2, and while it is not
necessary that the diffusivities of the different species are all the same, it is simpler
to suppose this for the purposes of exposition.

Suppose that the reaction kinetics admit an attractive limit cycle for the under-
lying system wt = f(w) of period T , and denote this as W0(t), thus

W′
0 = f(W0); (5.19)

here the prime denotes differentiation with respect to the argument of W0. Now
because ε is small, different parts of the medium (different cells in our case) will
oscillate with the same period but with different phase. Such spatial phase gradients
can be expected to lead to solutions in which the phase varies in space, but also
(because diffusion is small), the spatial variation of the phase will evolve on a slow
time scale. This motivates the introduction of a slow time variabled e τ given by

τ = εt. (5.20)

The procedure we are about to adopt is called the method of multiple time scales.
Formally, we seek solutions of (5.18) in the form w(x, t, τ), where t and τ are con-
sidered to be independent variables. What we are doing is embedding the problem
in a higher dimensional space, but we will eventually project the resulting solution
on to the line τ = εt. The reason for doing this is that we want to find a uniform
asymptotic expansion for w, and a straightforward approach will fail (as we will see).

Introducing this second slow time variable means that the equation takes the form

wt + εwτ = f(w) + ε∇2w. (5.21)
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Expanding w as
w ∼ w0 + εw1 + . . . (5.22)

leads to

w0t = f(w0),

w1t − Jw1 = −w0τ +∇2w0, (5.23)

and so on; here J = Df(w0) is the Jacobian of f at w0. After an initial transient, we
may take

w0 = W0(t+ ψ), (5.24)

where ψ(τ,x) is the slowly-varying phase, and the Jacobian J = Df(W0) is a time-
periodic matrix. Thus we find that w1 satisfies

w1t − Jw1 = −(ψτ −∇2ψ)W′
0 + |∇ψ|2W′′

0. (5.25)

Note that s = W′
0 satisfies the homogeneous equation st−Js = 0. It follows that

the solution of (5.25) is

w1 = −t(ψτ −∇2ψ)s+ |∇ψ|2u, (5.26)

where

u =M(t)

∫ t

0

M−1(θ)J(θ)s(θ) dθ +M(t), (5.27)

and M is a fundamental matrix for the homogeneous equation, i. e., M ′ = JM ,
M(0) = I. Floquet’s theorem implies that

M = PetΛ, (5.28)

where P is a periodic matrix of period T (the same as that of the limit cycle W0).
3

We can take the matrix Λ to be diagonal if the characteristic multipliers are distinct,
and since we assume W0 is attracting, the eigenvalues of Λ will all have negative real
part, except one of zero corresponding to s. With a suitable choice of basis, we then
have

(etΛ)ij → δi1δj1 as t→ ∞, (5.29)

i. e., a matrix with the single non-zero element being unity in the first element. In
this case the first column of P is s, i. e., Pi1 = si.

From (5.27), we have

u = P (t)

∫ t

0

eηΛP−1(t− η)J(t− η)s(t− η) dη +Mc. (5.30)

3This is not so complicated. Suppose M(T ) has eigenvalues eλiT . By a change of coordinates
if necessary, we take M(T ) = eTΛ to be diagonal, Λ = diag (λi). Then if F = etΛ, we have
F (0) =M(0) = I, F (T ) =M(T ), and so the matrix P =MF−1 is periodic: hence (5.28).
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The effect of the transient dies away as t→ ∞, and if we ignore it, then we can take
Mij = siδj1, whence Mc = c1s, and thus

u = s

[∫ t

0

α(η) dη + c1

]

, (5.31)

where the periodic function α is given by4

α = (P−1)1mJmjsj. (5.32)

We define the mean of α to be

ᾱ =
1

T

∫ T

0

α(η) dη, (5.33)

so that

β =

∫ t

0

(α− ᾱ) dη (5.34)

is periodic with period T . Then (5.26) is

w1 =
[
t{−ψτ +∇2ψ + ᾱ|∇ψ|2}+ c1 + β(t)

]
s. (5.35)

Aside from all the technical jargon, what have we actually done here? (5.35)
provides the second term in the expansion in powers of ε. Suppose we had done
this straightforwardly, without the slow time variable; then we would have obtained
the same result (via all the technical wizardry) but without the term ψτ . And then

what? The term ∝ t would grow in time until, when t ∼ 1

ε
, the asymptotic nature

of the expansion breaks down. Well, unless ∇2ψ + ᾱ|∇ψ|2 = 0. But that would
imply ∇2eᾱψ = 0, and thus (with no boundary forcing) ψ = constant: but there is
no reason this should be the case. The whole point of the method of multiple scales
is to provide the flexibility via the extra slow time variable to suppress these growth
terms, called secular terms, and we can do this by requiring the phase ψ to satisfy
the evolution equation

ψτ = ∇2ψ + ᾱ|∇ψ|2. (5.36)

This is an integrated form of Burgers’ equation; in one dimension, u = −ψX
2ᾱ

satisfies uτ + uuX = uXX . Disturbances will form shocks, which are jumps of phase

gradient. More generally, if u = −∇ψ

2ᾱ
, then (bearing in mind that ∇ × u = 0) we

find
uτ + (u.∇)u = ∇2u, (5.37)

which is the Navier-Stokes equation with no pressure term. Phase gradients move
down phase gradients, and form defects where the (sub-)characteristics intersect.5

(5.36) has both target and spiral wave patterns, as we now show. (Target and spiral
waves were discussed in section 4.2.1 on page 77, and were visualised in figure 4.19.)

4We use the summation convention, which implies summation over repeated suffixes.
5Physicists call (5.36) the KPZ equation (after Kardar et al. (1986)). The substitution φ =

exp(ᾱψ) reduces it to the diffusion equation φτ = ∇2φ for φ; this is the Hopf–Cole transformation
(see Whitham 1974).

95



5.3.2 Target patterns and spiral waves

Solutions of (5.36) which vary with x correspond to travelling wave trains. For exam-

ple, in one dimension, waves travel locally at speed
dx

dt
≈ −

(
∂ψ

∂x

)−1

. In the heart, a

more relevant situation is to suppose that, by analogy with the SA node pacemaker,
ψ is prescribed at a central nucleus, which we take to be the origin. In this case,
target patterns are formed; these are circular wavefronts which originate from a point.
To be specific, suppose that

ψ = τ at r = b, (5.38)

where r is the polar radius in two dimensions; we then seek a solution ψ = τ − f(r),
where f satisfies

f ′′ +
1

r
f ′ − ᾱf ′2 + 1 = 0, (5.39)

together with f(b) = 0 and an appropriate condition at large r; this is prescribed by
restricting attention to a target pattern originating near the origin and thus suppress-
ing incoming waves (this is known as a radiation condition). The relevant solution if
ᾱ > 0 is

f(r) = − 1

ᾱ
ln

[
K0(

√
ᾱr)

K0(
√
ᾱb)

]

, (5.40)

where K0 is the modified Bessel function of the second kind of order zero. The
other Bessel function I0 is suppressed because of the radiation condition (it produces
incoming waves). At large r, ψ ∼ τ − r/

√
ᾱ, which represents an outward travelling

wave of speed dr/dt ≈
√
ᾱ. If, on the other hand, ᾱ < 0, then K0 is replaced by a

combination of the Bessel functions J0 and Y0, and the solution is singular at finite
r, and target pattern solutions of this type do not exist. More generally, if ψ = Ωτ
on r = b, then target patterns exist if ᾱΩ > 0.

Spiral waves can also be described as solutions of (5.36). We put

ψ = Ωτ +mθ − g(r), (5.41)

where m is an integer, associated with an appropriate boundary condition at a central
‘dead’ core at r = b. Again we require ᾱΩ > 0, and the solution, if we suppose Ω > 0,
is

g(r) = − 1

ᾱ
ln

[

Kν(
√
ᾱΩr)

Kν(
√
ᾱΩb)

]

, ν = iαm, (5.42)

if we suppose g = 0 at r = b. If Ω < 0, we select the modified Bessel function I0
instead of K0 (to maintain the radiation condition). At large r,

ψ ∼ Ωτ +mθ −
√

Ω

ᾱ
r. (5.43)

This is an Archimedean spiral, which winds outward clockwise if m > 0, and then
rotates anti-clockwise. In practice, and as shown in figure 5.11, the existence of spiral
waves is associated with a core which allows the maintenance of a travelling wave
circulating round its boundary.
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5.3.3 Curved front propagation

We saw in chapter 3 that action potentials (solitary waves) propagating in neurons
consist of two wave fronts of width ∼ 5 mm separated by a depolarised region of
length ∼ 30 cm. In practice, therefore, the solitary wave effectively consists of two
separate travelling waves which are respectively activating and de-activating. The
same is true in the heart. The upstroke of the action potential of the sino-atrial
node causes propagation of an activation wave across the heart, causing contraction,
and the downstroke sends another wave, causing relaxation. Thus in practice it is
sufficient in studying the propagation of curvilinear waves to use just the activation
part of a FitzHugh–Nagumo type model.

To be specific, we consider the equation

vt = f(v) +∇2v, (5.44)

which we suppose admits a travelling wave solution in one dimension of the form

v = V (ξ), ξ = ct− x, c > 0, V (∞) = 1, V (−∞) = 0, (5.45)

thus
V ′′ − cV ′ + f(V ) = 0, (5.46)

and c is uniquely determined if f has a cubic-type shape.
Now we want to find a solution in two (or three) dimensions which is slowly

varying in directions transverse to the direction of propagation (think for example of a
circularly expanding wavefront of large radius). On the large scale, the travelling wave
front at each instant is approximately a surface. This family of surfaces, parameterised
by time, defines a function ψ(x, t), such that the front position can be taken to be

ψ(x, t) = 0, (5.47)

and we will suppose ψ < 0 ahead of the front. To think of a specific example, we might
think of a target pattern with ψ = ct− r. We want to define a curvilinear coordinate
system in which ξ measures distance along the normals to the family of curves ψ =
constant, where we define the unit normal to be in the direction of propagation, thus

n = − ∇ψ

|∇ψ| , (5.48)

but ξ points in the opposite direction (thus in the same direction as increasing ψ).
We then have (at fixed t)

δψ = ∇ψ. δx = −|∇ψ|n.δx = |∇ψ| δξ. (5.49)

Next, we seek a solution to (5.44) in the form v = V [ψ(x, t)]; it follows that

V ′(ψt −∇2ψ) = f(V ) + V ′′|∇ψ|2, (5.50)
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where V ′(ψ) =
dV

dψ
. We want to transform this to an ordinary differential equation

in physical space; to do this we use (5.49), and specifically we take

Vξ ≈ |∇ψ|V ′(ψ). (5.51)

There is a subtle point here. It is tempting to think that the wavefront locations
ψ = 0 themselves define the orthogonal curvilinear system used at any fixed t, but
this is not necessarily the case (though it can be, as in a target pattern). Think, for
example, of a wave front which is planar (say, x = x0) at time t0 but which is curved
at time t > t0. The natural coordinate system at t0 is Cartesian, but not at later time.
So the transformation from a coordinate system (ψ, θ, χ), say, to the system (ξ, η, ζ)
has ψ = ψ(ξ, η, ζ), and the quasi-one-dimensional assumption in (5.51) is based on
the assumption that the wavefront is slowly varying in its transverse directions η and
ζ compared to the variation of ψ within it: the thickness of the wave is much less than
its curvature. A slightly different version of this argument is given in the following
section.

Adopting (5.51), it follows that

Vξξ +
Vξ

|∇ψ|

{

−∂|∇ψ|
∂ξ

+∇2ψ − ψt

}

+ f(V ) = 0, (5.52)

and the unique solution requires

ψt = ∇2ψ − ∂|∇ψ|
∂ξ

+ c|∇ψ|. (5.53)

This equation can be compared with (5.36), since ψ here can be identified as the
phase of the wave. It can be written as

ψt
|∇ψ| = c+

1

|∇ψ|

[

∇2ψ − ∂|∇ψ|
∂n

]

. (5.54)

Now the second term on the right hand side of this expression is just the negative of
the divergence of the normal

n = − ∇ψ

|∇ψ| , (5.55)

and thus

vn = c−∇.n, vn =
ψt

|∇ψ| ; (5.56)

vn is the normal velocity of the front, and ∇.n is its curvature. The equation (5.56) is
sometimes called the eikonal equation.6 It relates the normal velocity vn of the surface

6More commonly, the eikonal equation is |∇φ| = 1. This is regained if ψ = φ(x) − t and the
curvature term is ignored.
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to the curvature ∇.n. At large distance and time, we can rescale ψ ∼ t ∼ x ∼ 1

ε
,

ε≪ 1, and then (5.56) takes the form

ψt = c|∇ψ|+ ε|∇ψ|∇.

(
∇ψ

|∇ψ|

)

, (5.57)

which again can be compared to (5.36).

5.3.4 A more formal derivation

The above discussion is accurate but rather slapdash. Dare one say, it takes an
engineer’s, or even a physicist’s, approach. It gets the right answer but without due
regard to the error corrections associated with geometric nonlinearity. To be satisfied
mathematically, we need to come at this another way.

We return to the equation (5.44), but in its ‘outer’ scaled form (cf. (3.16))

εvt = f(v) + ε2∇2v, (5.58)

and we suppose that f(0) = f(1) = 0 as before. An ‘outer’ approximation to (5.58) is
just f(v) = 0, and thus v = 0 or v = 1. As a particular case, we consider a piecewise
continous solution in which v jumps from zero to one across a surface. We suppose
this surface can move in time, and thus it defines a family of non-intersecting surfaces
ψ(x, t) = 0, and we suppose that v = 0 for ψ < 0, v = 1 for ψ > 0. Because of the
non-intersection of this family, we can suppose that there is a unique value of t for
each x for which ψ = 0. We denote this function as T (x), thus ψ[x, T (x)] ≡ 0.

The family of surfaces can be used to construct a set of orthogonal curvilinear
coordinates X = (X1, X2, X3). First we construct the X1-axis, with unit vector n.
The X1-axis is normal to each member of the family ψ(x, t) = 0. How do we know
we can construct this? We simply solve (in principle) the equation

∂X

∂s
= λn[X, T (X)], (5.59)

where the unit normal n is defined by (5.55); this is subject to the initial condition
X = X0(η, ζ) at s = 0, where η and ζ are orthogonal curvilinear coordinates on the
initial (at t = 0) surface, i. e., ψ[X0(η, ζ), 0] ≡ 0. The coefficient λ is arbitrary, and
can generally be a function of X. It is obviously convenient to choose it so that s = t,
and this requires λ = vn, where vn is the normal velocity of the interface; we assume
this. Distance along these curves is denoted X1 = s, and the corresponding unit
vector is denoted E1 = n[X, T (X)]. By choice of λ = vn, the front position is simply
X1 = t.

The other two coordinates can be taken to be η and ζ at t = 0, but these will not
in general extend orthogonally to t > 0. Instead, one can for example select the unit
vectors

E2 =

∣
∣
∣
∣

∂X

∂η

∣
∣
∣
∣

−1
∂X

∂η
, E3 = E1 ×E2, (5.60)
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with corresponding coordinates X2 and X3. Here, X = X(X1, η, ζ) is the solution of
(5.59). E2 is a tangent vector to the front.

We now transform (5.58) to the orthogonal curvilinear coordinates (X1, X2, X3).
Note that the change of coordinates is independent of t. The result of this is

εvt = f(v) +
ε2

h1h2h3

[
∂

∂X1

(
h2h3
h1

∂v

∂X1

)

+
∂

∂X2

(
h3h1
h2

∂v

∂X2

)

+
∂

∂X3

(
h1h2
h3

∂v

∂X3

)]

,

(5.61)
where the metric coefficients are given by

hi =

∣
∣
∣
∣

∂X

∂Xi

∣
∣
∣
∣
. (5.62)

We can assume these coefficients and their derivatives are O(1). Also, because X2

and X3 are functions of η and ζ , our earlier choice of the metric λ on the X1-axis
implies

h1 = vn. (5.63)

The front is defined by X1 = t, and so we seek a solution for the front structure
by putting

X1 = t− εξ

h1
, (5.64)

under which the derivatives transform as

∂

∂t
→ ∂

∂t
+
h1
ε

∂

∂ξ
,

∂

∂X1
→ −h1

ε

∂

∂ξ
+

ξ

h1

∂h1
∂X1

∂

∂ξ
,

∂

∂X2
→ ∂

∂X2
+
t

ε

∂h1
∂X2

∂

∂ξ
,

∂

∂X3
→ ∂

∂X3
+
t

ε

∂h1
∂X3

∂

∂ξ
. (5.65)

We now anticipate that in fact h1 = vn is approximately constant, so that its deriva-
tives are small, and explicitly O(ε). In that case, (5.61) takes the form

εvt + h1vξ = f(v) + vξξ −
εvξ

h1h2h3

∂(h2h3)

∂X1
+O(ε2). (5.66)

Now in fact

∇.n =
1

h1h2h3

∂(h2h3)

∂X1
, (5.67)

thus correct to O(ε2), (5.66) is

εvt = vξξ − [h1 + ε∇.n] vξ + f(v), (5.68)

and consistency with (5.46) now shows that

h1 = vn = c− ε∇.n+O(ε2), (5.69)

which reproduces (5.57). Our ansatz that vn ≈ constant is thus vindicated.
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Figure 5.10: Solutions of the FitzHugh-Nagumo equation in the form εvt = f(v) +
ε2∇2v, with f(v) = v(v− a)(1− v), showing target patterns (white is v = 0; black is
v = 1). When a large circular wavefront is excited (A), the wave propagates outwards
(B). However, when a small circular wavefront is excited (C) the wave front decreases
in size (D) due to curvature blocking.

5.3.5 Target patterns

An example of a target pattern in the heart is the depolarisation wave which originates
from the sino-atrial node (the pacemaker region). Further examples of target patterns
occur in monomorphic ventricular tachycardia and Wolff-Parkinson-White disease. A
numerical solution of the FitzHugh-Nagumo equations (using a cubic function for f(v)
with stable roots at v = 0 and v = 1) showing a target pattern is shown in figure 5.10.
The initial conditions used were v = 0 when r > r0 and v = 1 when r < r0 (i. e., a
circular region of tissue was excited). When the external medium is excitable, then
the initial perturbation needs to be large enough to cause propagation, otherwise it
dies away: this is shown in the figure, and is associated with the existence of a critical
initial patch size.

To understand this, we consider a two-dimensional wave front at r = R(t); then
(5.56) implies simply that

Ṙ = c− 1

R
, (5.70)

and thus if R(0) <
1

c
, the patch will shrink. If it is bigger than this, the wave will

propagate outwards indefinitely, and the wave speed approaches the Cartesian limit
as R → ∞. Consequently, an important question to ask is how large must the sino-
atrial node be for the depolarisation wave to successfully transmit from the sino-atrial
node into the atria. Normally the sino-atrial node is larger than the critical value of
the patch radius. However in conditions such as hyperkalaemia, when the excitability
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B CA

Figure 5.11: Solutions of the FitzHugh-Nagumo equations as in figure 5.10 showing
spiral waves (white is v = 0; black is v = 1). The initial condition (A) is a plane
wave in half the domain which wraps around a central core forming a re-entrant spiral
wave (C) which continues to re-excite the tissue. In the centre of the domain is a
core consisting of a small disk of ‘dead tissue’ (where f(v) = 0) which pins the spiral
wave to the centre.

of the tissue is greatly reduced, it is possible for the wave to fail to transmit from the
sino-atrial node: this is called sino-atrial block.

5.3.6 Spiral waves

Spiral waves are self-replicating patterns which consist of a rotating spiral and occur in
the heart during certain types of polymorphic tachycardia (for example, Torsades de
pointes). Figure 5.11 shows a solution of the FitzHugh-Nagumo equations exhibiting
a spiral wave. The fact that spiral waves rotate means that spiral wave solutions are
periodic in time.

Spiral waves are important because they lead to re-entrant behaviour without
pacemaking cells. Re-entrant behaviour is when one part of tissue is continually re-
excited. Spiral waves are thought to be the cause of polymorphic ventricular tachy-
cardia. Instabilities in spiral waves can cause them to break up and form multiple
wavelets. This is a possible explanation for the breakdown of ventricular tachycardia
into ventricular fibrillation, which is fatal if not treated immediately.

Can the curved front equation describe spiral waves? This is not as simple to
assert as it was for target waves, or in the pacemaker phase model (5.36). If we
suppose a two-dimensional wavefront r = R(θ, t), then (5.56) implies

Rt =
c (R2 +R2

θ)
1/2

R
− (R2 + 2R2

θ − RRθθ)

R (R2 +R2
θ)

. (5.71)

The target pattern solution R = R̄(t) of (5.70) is clear, but whether spiral wave
solutions exist is less obvious. One idea is to seek solutions of the form

R = R(η), η = ωt− θ (5.72)
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(by analogy with (5.41)), and then R satisfies the second order system

ωR′ =
c (R2 +R′2)

1/2

R
− (R2 + 2R′2 − RR′′)

R (R2 +R′2)
. (5.73)

The detail of what happens for small R is clearly complicated, but a solution when
R is large (which is in fact consistent with the assumption that the wave thickness
is small compared to the curvature) is available by expansion of (5.73); the result of
this is

R ≈ cη

ω
− 1

c
ln η + . . . , (5.74)

which represents an Archimedean spiral wave, consistent with what can be seen in
figure 5.10.
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Chapter 6

The heart as a pump

The rhythmic contraction of the heart described in the preceding chapter causes blood
to be expelled into the arterial system. The heart, together with the arteries (which
carry oxygenated blood to the tissues) and the veins (which carry the de-oxygenated
blood back to the heart), form a closed system of some five litres in volume, and in
order for contraction of the heart to effect a one way pulsatile flow, a system of valves
is necessary in order to prevent back flow. In this chapter we describe this system,
and also how it is controlled.

6.1 The circulation

A semi-schematic illustration of the human circulation is shown in figure 6.1. Blood is
pumped from the heart through the pulmonary capillary bed, where gas exchange in
the alveoli of the lung (described in chapter 7) removes metabolically produced carbon
dioxide and charges the blood with oxygen. The red, oxygenated blood returns to the
heart where it is then pumped to the tissues of the body via the arteries; the blood
dumps its oxygen in the tissues, and acquires a load of CO2, which it takes back to
the heart in the veins.

In order to function in this way, the heart really consists of two parts, the right
heart (which sends the blood to the lungs) and the left heart (which sends the blood
to the tissues). Each side consists of an atrium, where the incoming blood is stored,
and a ventricle, where the blood is pumped. Thus the heart contains four chambers:
the right and left atria, and the right and left ventricles. The wall between the left
and right ventricles is called the septum.

The detailed pathway taken by the blood is shown in figure 6.2; de-oxygenated
blood returns to the heart through the vena cava into the right atrium. From there
it is sucked into the right ventricle, before being ejected into the pulmonary artery.
On returning to the heart via the pulmonary vein, the oxygenated blood flows into
the left atrium, from where it is sucked into the left ventricle before being ejected
into the aorta under high pressure. The ventricular walls are much thicker than the
atrial walls, since they are responsible for creating the majority of the blood pressure.
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Figure 6.1: The human circulation. Blood flows from the heart to the lungs and
back (the pulmonary circulation), before carrying the consequently oxygenated blood
through the arteries to the tissues, and then back to the heart via the veins.
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Figure 6.2: A schematic diagram of the chambers and valves of the heart, and the
connecting arteries and veins. The direction of the blood flow is shown, the blue
arrows represent de-oxygenated blood and the red arrows represent oxygenated blood.

Additionally the left ventricular wall is much thicker than the right ventricular wall
because it is responsible for pumping blood around the whole body as opposed to
just the lungs.

Fluid flow in the circulation is driven by a pressure gradient which descends from
arteries to microcirculation in the tissues to veins, and because the circulation is
closed, there must always be regions of contrary pressure gradient. It is precisely
in order that a back flow is prevented that the heart contains valves. There are, in
fact, four valves which enable the flow to proceed in the manner described above, and
these are indicated in figure 6.2. The tricuspid valve prevents back-flow into the right
atrium, the pulmonary valve prevents back-flow into the right ventricle, the mitral
valve prevents back-flow into the left atrium, and the aortic valve prevents back-flow
into the left ventricle.

Figure 6.3 indicates how pressure varies in the circulation. The left ventricular
pressure varies from a maximum of about 120 mmHg to a minimum close to zero.
The pressure in the arteries also oscillates, but less dramatically, a typical range being
from 80 to 120 mmHg (hence the typical blood pressure reference as “120 over 80”).
The varying pressure causes waves to propagate down the deformable arteries, but
their amplitude is quickly attenuated, and the pressure drop through the capillary
microcirculation is essentially constant. Moreover, it is in the capillaries that the bulk
of the pressure drop occurs, because of their small diameters. Because of their small
volume, one can think of the capillaries as providing (by analogy with an electrical
circuit) a resistance to the flow.

The actual sequence of events in the heart itself during a heartbeat is best de-
scribed with reference to the left ventricular pressure–volume diagram, which repre-
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Figure 6.3: Illustration of the variation of pressure with arterial distance from the
heart. LV: left ventricle; VC: Vena Cava.

sents how the pressure and volume of the left ventricle vary through the cycle. This
is shown in figure 6.4. The left and right hearts act more or less synchronously, so
that it suffices to describe the cycle in the left heart.

The heartbeat has two phases, called systole and diastole (the last ‘e’ is pro-
nounced in each word). Systole refers to the contraction phase, when the ventricular
pressure rises, and diastole refers to the relaxation phase, when ventricular pressure
is low. Each of these phases is further subdivided, depending on whether the two left

SV

0.08 s

0.3 s

0.5 s

AC

MO
MC

AO

contractionrelaxation

ejection

filling V

p

0.05 s

Figure 6.4: Left ventricular pressure volume diagram. AC: aortic valve closes; MO:
mitral valve opens; MC: mitral valve closes; AO: aortic valve opens. SV denotes
stroke volume.
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ventricular valves are open or closed.
The beginning part of systole is the isovolumetric contraction phase (between MC

and AO); both valves are shut, so that the volume VLV of the left ventricle remains
constant (because the contained blood is incompressible). In this phase the muscles of
the ventricular myocardium contract because of the cardiac action potential, and as a
consequence the left ventricular pressure pLV increases (think of the effect of tightening
a noose round your neck). This contraction phase is rapid, taking about 0.05 seconds.
When the pressure increases beyond the aortic arterial pressure, the aortic valve opens
and ejection of the blood into the aorta begins. Contraction continues for a further
short period before the ventricular pressure starts to decline as a consequence of the
ejection. During this ejection phase, of some 0.3 s duration, the ventricular volume
decreases from about 120 ml to about 50 ml; the volume of ejected blood is the stroke
volume, about 70 ml.

The end of the ejection phase usually occurs at the same time that the action
potential drops, and is due to the relaxation of heart muscle as the transient intra-
cellular calcium concentration decreases, and the crossbridges break (see chapter 5).
The declining ventricular pressure decreases below the arterial pressure once again,
thus closing the aortic valve. There now follows diastole: first an isovolumetric relax-
ation phase, during which the pressure drops sharply in a time of about 0.08 s, until
the ventricular pressure decreases below the left atrial pressure. At this point (MO)
the mitral valve opens (the aortic valve is still closed), and the fourth phase of the
cycle, the filling phase, begins; it lasts about 0.5 s. In this the ventricle is filled from
the atrium, and the ventricular volume increases once more towards its pre-systolic
value. The cardiac pacemaker fires, and the cycle begins again.

6.2 A simple one-chamber compartment model

The simplest model of the circulation is a compartment model, in which the veins,
arteries, capillary beds, and the chambers of the heart form separate compartments.
The model then simply traces the volume changes of the various compartments due
to the flow between them. The simplest of such models are those with the fewest
compartments, and the most basic one which retains the concept of the heart as a
pump is illustrated in figure 6.5. The pulmonary circulation is ignored, and the heart
is taken to have a single compartment, the left ventricle. The other compartments
are the veins, arteries and a capillary bed, whose primary function is in providing
resistance to the flow. The capillary volume is small, and is ignored in the following
discussion. In keeping with our assumption of a one chamber heart, there are only
two valves, the mitral and aortic valves.

We let V and p denote chamber volumes, and suffixes a, v, and LV refer to arteries,
veins and left ventricle, respectively. Blood flow rates to and from the left ventricle
are denoted by Q− and Q+, respectively, and the blood flow through the capillaries
is denoted by Qc (for both inflow and outflow, since we assume incompressible blood
and zero capillary volume). Conservation of blood volume is then expressed by the
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Figure 6.5: Simple compartment model of the circulation.

equations

V̇a = Q+ −Qc,

V̇v = Qc −Q−,

V̇LV = Q− −Q+, (6.1)

whence evidently total blood volume is conserved.
The capillary resistance is denoted by Rc, so that the capillary blood flow is

Qc =
pa − pv
Rc

. (6.2)

There are also, similarly, resistances associated with the flow to and from the left
ventricle. We denote these by Rv and Ra, so that

Q+ =
[pLV − pa]+

Ra
, Q− =

[pv − pLV]+
Rv

, (6.3)

and [x]+ = max{x, 0}; this represents the effects of the two valves, which do not allow
backflow.

The anatomically ‘correct’ figure 6.5 is not really consistent with this description,
since it portrays arteries and veins as passageways. In order for (6.3) to make sense,
we need to interpret pa and pv as pressures either side of the capillary bed, but in
consideration of the arteries and veins as compartments, they need to be thought of as
averages. This blurring is a necessary consequence of the neglect of spatial variation
of pressure with distance along the blood vessels.

In order for incompressible blood to circulate, it is necessary that compartment
volumes can change, and this is enabled by compliance of the blood vessels. This is
the balloon-like property of blood vessel walls, which allows their distension under
increased internal pressure. The simplest assumption is one of linear dependence, and
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thus we write

Va = Va0 + Capa,

Vv = Vv0 + Cvpv,

VLV = V0 + CLVpLV, (6.4)

and the quantities Ck are called compliances. Their inverses (Ek = 1/Ck) are called
elastances, and we will use elastance in discussing left ventricular volume.

This completes the simple mechanical description of the circulation, except that
the driving force for the heart beat is not present. As described in chapter 5, the
heart beat consists of a ventricular contraction, driven by the passage of a wave of
contraction through the atria and ventricles which originates in the sino-atrial node.
This periodic firing, and the resulting contraction of heart muscle, causes a stiffening
of the ventricles (one should think of the effect of tightening a noose round the neck),
and this reduces ventricular compliance. Thus the regular firing and consequent
contraction of the ventricles causes a periodic change in ventricular elastance, which
we suppose to take the form shown in figure 6.6. Essentially the elastance jumps from
a very low value Ed to a very high value Es, and back, with a period of about 0.9 s.

6.2.1 An approximate solution

The model above is simple but nevertheless nonlinear. We are hoping that its solution
will mimic the observed pressure-volume cycle shown in figure 6.4. This is shown again
in figure 6.7, where also we indicate the way the arterial and venous pressures cycle.
The heart valves open and close where these latter two curves touch the ventricular
pressure curves. Note that the (aortic) arterial pressure cycles between values of 120
and 80 mmHg, whereas the venous pressure is much lower, around 10 mmHg. Figure
6.8 shows how these pressures vary with time, together with left ventricular volume
and the ECG.
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Figure 6.7: Left ventricular pressure-volume curve, showing also arterial and venous
pressures. p+a is the end diastolic arterial pressure, V + is the corresponding left
ventricular volume. The diagram is idealised on the assumption that ventricular elas-
tance shuttles rapidly between two constant values. More realistically, left ventricular
pressure follows a curved path during ejection and filling, similar to that shown in
figure 6.4.

The equations (6.1)–(6.4) combine to give the model

RcCaṗa = −(pa − pv) +
Rc

Ra
[pLV − pa]+ ,

RcCvṗv = (pa − pv)−
Rc

Rv
[pv − pLV]+ ,

˙(
pLV
ELV

)

=
[pv − pLV]+

Rv
−

[pLV − pa]+
Ra

, (6.5)

in which ELV varies between the diastolic value Ed and the systolic value Es, as shown
in figure 6.6. Typical values of the parameters are given in table 6.1.

There are some notable features of the values in table 6.1. Most of the blood
volume resides in the venous system, which, with its large compliance, is like a large
soggy bag. The venous system is like an air mattress, while the arterial system is
like the bicycle pump with which you blow it up (and then the capillary system is
the nozzle of the pump). It is because of this disparity that the arterial pressure is
so high, while the venous pressure sits round a pressure of about 8 mmHg, and is
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Figure 6.8: Arterial, venous, and left ventricular pressures as a function of time
through the heart beat. Also shown is the left ventricular volume, and the ECG.
The letters C, R, E and F on the pressure curves stand for contraction, relaxation,
ejection and filling, respectively. Wiggles in the pressure curves are associated with
valve closure, in particular the dicrotic notch in the arterial curve at the end of
ejection, when the aortic valve closes.

more or less constant at this level. Another feature is the high value of the capillary
resistance compared with those of arteries and veins. It is a consequence of this that
the left ventricular pressure is close to the arterial pressure when the aortic valve is
open, and to the venous pressure when the mitral valve is open, as shown in figure
6.8. Finally, we notice the extreme change in the left ventricular elastance between
diastole and systole. These dramatic variations in the parameters will allow us to
derive approximate solutions of the model. We now seek to do this by solving for
each of the four phases of the heart beat in turn.

Isovolumetric contraction

We suppose, to begin with (see figure 6.7), that pLV < pv < pa at the end of di-
astole. We suppose that the end diastolic arterial and venous pressures are p+a and
p+v respectively, and that contraction has just commenced, with the left ventricular
volume being V + = V0+CdpLV

+. Because pv ≪ pa, arterial pressure is approximately
determined by

ṗa ≈ − pa
RcCa

. (6.6)
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Parameter Value Units
Va0 0 ml
Vv0 4500 ml
V0 17 ml
Ra 0.06 mmHg s ml−1

Rv 0.016 mmHg s ml−1

Rc 1.2 mmHg s ml−1

Ca 1.5 ml mmHg−1

Cv 50 ml mmHg−1

Ed 0.06 mmHg ml−1

Cd 16 ml mmHg−1

Es 3 mmHg ml−1

Cs 0.3 ml mmHg−1

∆tF 0.3 s
∆tR 0.6 s

Table 6.1: Values of the constants in (6.5). These are based on values used by Ursino
(1998), but modified to account for the simpler description used here (i. e., with fewer
compartments).

From table 6.1, RcCa ≈ 1.8 s, while the contraction phase is of duration 0.05 s.
Therefore pa ≈ p+a during contraction. Similarly, pv hardly changes, and pLV/ELV

remains constant, thus
pLV ≈ ELV(V

+ − V0). (6.7)

As ELV rises rapidly during contraction, so also does pLV, and the isovolumetric
contraction phase continues until pLV reaches p+a , the aortic valve opens, and the
ejection phase begins. This will occur provided Es(V

+ − V0) > p+a (which is indeed
the case).

Ejection (systole)

In the ejection phase, the aortic valve is open and pLV > pa > pv; outflow Q+ is
positive, but inflow Q− = 0. The governing equations are thus

RcCaṗa = −(pa − pv) +
Rc

Ra
[pLV − pa] ,

RcCvṗv = (pa − pv),

Rc

˙(
pLV
ELV

)

= −Rc

Ra
[pLV − pa] . (6.8)

Estimated values of the parameters are, from table 6.1, RcCa ≈ 1.8 s, RcCv ≈ 60
s, Rc/Ra ≈ 20, Rc/Es ≈ 0.4 s. Bearing in mind that the ejection phase lasts 0.3
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s, (6.8)3 implies that pLV ≈ pa since Rc/Ra ≫ 1; addition of (6.8)1 and (6.8)3 then
implies that

RcCaṗa +Rc

˙(
pa
ELV

)

≈ −pa, (6.9)

and this continues in the ejection phase until pLV = pa (exactly) again, which is when

˙(
pLV
ELV

)

≈
˙(
pa
ELV

)

= 0. (6.10)

Because RcCv is large, pv changes little during the ejection phase, and remains low.
(6.9) can be integrated explicitly to find pa, given ELV(t). For simplicity, we focus

on the case where the transition of ELV from diastolic to systolic values is rapid, as
is the transition back. From (6.7), the aortic valve opens when

ELV ≈ pa
(V + − V0)

, (6.11)

which is about 1.25 mmHg ml−1. Supposing that the continuing rise of ELV to its
peak value of about Es = 3 mmHg ml−1 is rapid, it follows that during this rapid
ascent phase,

RcCapa +
Rcpa
ELV

= RcCap
+
a +Rc(V

+ − V0), (6.12)

and thus pa jumps to the value

p̂a =
Cap

+
a + V + − V0
Ca + Cs

, (6.13)

bearing in mind that Cs = 1/Es. This is the peak arterial pressure in systole.
After ELV reaches its peak, (6.9) still applies, but now with ELV ≈ Es. Thus

pa ≈ p̂a exp

[

− t

Rc(Ca + Cs)

]

(6.14)

(starting from t = 0). The ejection phase finishes when (6.10) occurs, and this is
essentially where ELV starts to drop, at the end of the firing sequence, at t = ∆tF .
The arterial pressure at the end of the ejection phase is thus

pa ≈ p−a = p̂a exp

[

− ∆tF
Rc(Ca + Cs)

]

, (6.15)

and this is the end systolic arterial pressure, and ∆tF is the firing time. At this point
the left ventricular volume is

VLV = V − ≈ V0 + Csp
−
a , (6.16)

and thus the stroke volume ∆V = V + − V − is, using (6.13) and (6.15),

∆V = V + − V0 −
(

Cs
Ca + Cs

)
[
Cap

+
a + V + − V0

]
exp

[

− ∆tF
Rc(Ca + Cs)

]

. (6.17)
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Isovolumetric relaxation

At the end of the ejection phase, left ventricular elastance drops very rapidly, and
the aortic valve closes. With both valves now closed, pv < pLV < pa, inflow Q− and
outflow Q+ to and from the left ventricle are both zero, and left ventricular volume V−
remians constant. As for the contraction phase, both pa and pv are virtually constant,
and left ventricular pressure is given by

pLV ≈ ELV(V
− − V0). (6.18)

The mitral valve opens and filling commences when pLV = pv, and this is when

ELV ≈ pv
(V − − V0)

, (6.19)

and this is about 0.25 mmHg ml−1.

Filling (diastole)

During the filling phase, of about 0.5 s duration, pLV < pv < pa, Q+ = 0, and the
governing equations reduce to

RcCaṗa = −(pa − pv),

RvCvṗv =
Rv

Rc
(pa − pv)− (pv − pLV),

Rv

˙(
pLV
ELV

)

= pv − pLV. (6.20)

Relevant constants are RcCa ≈ 1.8 s, RvCv ≈ 0.8 s, Rv/Rc ≈ 0.013, and Rv/Ed ≈ 0.27
s. As for the ejection phase, ELV continues to fall rapidly to Ed, and during this short
period

pLV ≈ ELV(V
− − V0), (6.21)

while pv and pa hardly change. Thus the left ventricular pressure reaches the value

pLV ≈ Ed(V
− − V0). (6.22)

Following this, we have pLV < pv ≪ pa, so that pa is approximately

pa ≈ p−a exp

[

− t

RcCa

]

(6.23)

(measuring t from the beginning of filling). The second and third equations in (6.20)
then give a pair of linear equations for pv and pLV.

From (6.23), the subsequent value of end diastolic arterial pressure is

p++
a = p−a exp

[

− ∆tR
RcCa

]

, (6.24)
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where ∆tR is the refractory period. This provides a map from the previous value p+a
to p++

a . Conjoining (6.13), (6.15) and (6.24), we have

p++
a =

(
Cap

+
a + Cdp

+
v

Ca + Cs

)

exp

[

−
{

∆tF
Rc(Ca + Cs)

+
∆tR
RcCa

}]

, (6.25)

where p+v is the end diastolic venous pressure (initially, where pa = p+a ), and we have
supposed that end diastole occurs when pLV = pv, and that V + = V0 + Cdp

+
v . More

generally, the ventricular pressure will be less than pv. If venous pressure is known,
this provides a linear first order difference equation for p+a , which has a stable fixed
point. From (6.17), stroke volume is given in terms of venous pressure by

∆V = Cdp
+
v −

(
Cs

Ca + Cs

)
[
Cap

+
a + Cdp

+
v

]
exp

[

− ∆tF
Rc(Ca + Cs)

]

. (6.26)

Venous pressure

Although venous pressure is small and does not vary much, it is important in the
determination of arterial pressure and stroke volume through the formulae (6.25) and
(6.26), because the diastolic compliance is so high. In fact, Cdpv is of the same size
as Capa. Therefore we need to retrace our steps to calculate the corresponding map,
p+v → p++

v .
To begin with, the change of pv in the contraction phase is very small, and is

ignored. In the ejection phase, after ELV reaches Es, pv is given by (6.8)2, thus,
approximately,

RcCvṗv = pa, (6.27)

where pa is given by (6.14), and thus

Cv(pv − p+v ) = (Ca + Cs)(p̂a − pa). (6.28)

At the end of systole, pv = p−v , where from (6.15),

Cv(p
−
v − p+v ) = (Ca + Cs)(p̂a − p−a ). (6.29)

In the relaxation phase, pv is unchanged; then in the filling phase, (6.20)2 implies
(since pa ≫ pv) that pv and pLV satisfy

RvCvṗv ≈ Rvpa
Rc

− (pv − pLV),

RvCdṗLV = pv − pLV. (6.30)

The two time constants are RvCv ≈ 0.8 s, and RvCd ≈ 0.27 s, both comparable to
the filling time of about 0.5 s. Adding the two, and using (6.23), we get

CdṗLV + Cvṗv + Caṗa = 0 (6.31)

116



(as we should!), and thus the values at beginning and end diastole are related by

(Cd + Cv)p
++
v + Cap

++
a = Cvp

−
v + (Ca + Cs)p

−
a , (6.32)

where we use (6.16) and (6.22) to determine the initial condition for pLV, and use the
fact that pLV = pv at end diastole. (6.32) provides the other part of the map we seek.
More generally, one also needs to consider the variation of pLV.

6.3 Nervous control of the heart

Cardiac output (blood flow as volume per unit time) is equal to the stroke volume
times the heart rate; it is therefore the control of these quantities which controls the
blood flow to the body tissues. Since blood is the agent of nutrient (oxygen) supply, it
is evident that this needs to be tightly controlled. In the previous section we saw that
the pumping mechanism of the heart is itself an agent for control of stroke volume
and arterial pressure. Heart rate is controlled by the period of the oscillatory sino-
atrial node firing, and this (as well as other parts of the circulatory system) is mainly
controlled by the actions of the autonomic nervous system.

There are two parts to the nervous system which control cardiac output. These are
the sympathetic and parasympathetic systems. Each in turn consists of afferent nerves
(ad + fero, I carry to) taking messages to the brain, and efferent nerves (ex + fero, I
carry from) taking messages from the brainstem or spinal cord. The afferent nerves
transmit information from various kinds of receptors (baroreceptors, chemoreceptors);
the efferent nerves innervate different parts of the system. One speaks of the tonic
activity of these systems, meaning the rate of firing of the nerve fibres. Muscle tone
refers to the same notion.

The sympathetic nervous system has two sub-systems, the α-sympathetic system,
which innervates the peripheral vasculature, and the β-sympathetic system, which in-
nervates ventricular muscle. The sympathetic nerves act by releasing noradrenaline1

and other neurotransmitters. In the peripheral circulation, these cause vasoconstric-
tion, i. e., they constrict blood vessels, and thus increase peripheral resistance. This
has the effect of decreasing cardiac output.

The release of noradrenaline and also adrenaline (together, these are called the
catecholamines) by the β-sympathetic system in ventricular muscle has two effects.
The chronotropic effect is that on the firing rate of the sino-atrial node. The effect of
the release of catecholamines is to increase the inward calcium current to themyocytes,
which in turn increases the firing frequency of the SA node. Thus the sympathetic
system increases heart rate.

The other effect is the inotropic effect. Increasing sympathetic tone increases
the contractility, or elastance, of ventricular muscle (by increasing the intracellular
calcium transients). This then has the effect of increasing stroke volume.

1Noradrenaline is called norepinephrine in the American literature; similarly, adrenaline is called
epinephrine.
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In summary, the sympathetic system acts, via the release of catecholamines, to
increase cardiac output. The system acts slowly over a time scale of the order of ten
seconds, because this is the time scale for uptake of the catecholamines, and their
effect on intercellular calcium.

In contrast, the parasympathetic system acts to decrease cardiac flow. It in-
nervates the heart, particularly the sino-atrial node and the atrio-ventricular node,
through the left and right vagus nerves. The vagus nerves act by releasing another
transmitter, acetylcholine, which has an immediate effect on heart rate, causing it
to decrease (bradycardia) by altering the characteristics of the pacemaker firing os-
cillation; acetylcholine is an inhibitor for the pacemaking currents iCa,L and if . The
parasympathetic system also innervates peripheral blood vessels, having a vasodilative
effect, in contrast to the vasoconstrictive effect of the sympathetic system.

Baroreceptor reflex

Sympathetic and parasympathetic tone is determined by signals transmitted along
afferent nerves from various kinds of receptors. For the control of blood flow, the most
important of these are the baroreceptors, located in the aortic arch in the chest, and
in the carotid sinus in the neck. As their name indicates, baroreceptors respond to
arterial pressure (via its effect of stretching the arterial wall), and the control effected
through the feedback via the baroreceptors is called the baroreflex. Figure 6.9 shows
the multiple feedback control loops which the above description embodies.

6.4 Oscillatory patterns

The heart rate oscillates on a variety of time scales, conventionally separated into
three different magnitudes, each ascribed to a different control system.

The first of these is respiratory sinus arrhythmia (RSA), which is an oscillation of
frequency 0.2–0.4 Hz, and is due to the coupling between respiration and heart rate.
Specifically, heart rate increases on inspiration, and decreases during expiration. The
simplest cause for this is that during inspiration, the intrathoracic pressure is low,
and this correspondingly causes the filling (venous) pressure to be low. From (6.25),
this causes arterial pressure to drop, and hence the vagal feedback proposed in figure
6.9 leads to an immediate rise in heart rate.

The second oscillation, with a period of about ten seconds (frequency 0.1 Hz) goes
by the name of Mayer waves; because the time scale is comparable to the response
time of the sympathetic system, it is generally thought that Mayer waves are due to
the sympathetic system, although (as we shall see) there are different ways in which
their occurrence can be modelled.

The third frequency, <∼ 0.1 Hz, is associated with long term thermo-regulatory
control, and is not discussed further.
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Figure 6.9: A schematic representation of the autonomic and nervous control systems
of the heart. P and S represent parasympathetic and sympathetic systems, ABP is
arterial blood pressure, HR is heart rate, Rc is peripheral resistance, Es is systolic
ventricular elastance, SV is stroke volume; heart rate and stroke volume combine
to give cardiac output Q. Plus and minus signs indicate activating or inhibiting
effect; blue arrows represent autonomic (pump action) control, red is the sympathetic
system, green is the parasympathetic system.

6.5 Mathematical models of the baroreflex

The fundamental conceptual difficulty which arises in modelling the control of heart
rate is that the basic pumping mechanism itself is not smooth, because of valve
opening and closure. As we have seen above, this naturally leads to a pump action
model which gives a map: in our case, of the values of end diastolic arterial and
venous pressures from one cycle to the next. Vagal control fits naturally into this
scheme, because the response is virtually instantaneous, and this leads to a beat-to-
beat model, exemplified by the De Boer model which is discussed below in section
6.5.2. Such a model would hope to explain RSA, for example.

It is less easy to put sympathetic control into a beat-to-beat model, because it is
effected continuously by the uptake of catecholamines released at nerve endings. The
best one can do is to represent its effect by a distributed delayed effect over a number
of heart beats, and this is what the De Boer model does.

The natural alternative for longer term sympathetic control is to suppose that the
arterial and venous blood pressures and other quantities of the system vary slowly
under the influence of the slowly acting sympathetic system, so that their evolution
can be modelled by differential equations, and this is what the Ottesen model, de-
scribed next, does. Ideally, the resulting continuous model is derived from a more
realistic beat-to-beat model by a formal process of averaging, but in practice this
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procedure is short circuited, and one writes down the continuous model directly from
first principles, on the basis that pump action is continuous. A similar principle is
followed in modelling respiratory control (see chapter 7).

6.5.1 Ottesen model

This model is described by Ottesen (1997). There are three variables, the (averaged)
arterial and venous pressures pa and pv, and the heart rate H . Control is effected
by sympathetic and parasympathetic tones (i. e., firing frequencies), and these are
assumed to be given by

Ts = g(pτa), Tp = 1− g(pa), (6.33)

where pτa = pa(t− τ) is the arterial pressure a time τ in the past. The choice of the
controlling function g is the sigmoidal Hill function given by

g(p) =
1

1 + (p/p0)n
, (6.34)

and the choice of the Hill exponent n is quite high (for example n = 7) in order that
control be effected sharply.

The representation of sympathetic control in terms of delayed arterial pressure
is a simple surrogate to represent the slow response to release of catecholamines by
the sympathetic nerves. A more realistic model would have a distributed delay, and
ultimately one would want to incorporate details of the sino-atrial node cell firing
oscillation in terms of intracellular calcium, potassium and sodium concentrations.

The essence of the model lies in the way in which H responds to Ts and Tp.
Ottesen chooses Ḣ = F (Ts, Tp), and specifically (by way of example)

Ḣ =
λHTs

1 + γTp
− µHTp, (6.35)

which represents the effect of sympathetic and parasympathetic tone on rate of change
of heart rate, and also includes the inhibiting effect of the vagal response on the
sympathetic response, through the coefficient γ.

There is an odd feature of this choice. In reality, if one cuts (or deactivates) both
the sympathetic and parasympathetic systems in humans, then the heart rate settles
at a steady hundred beats per minute. In the model, this correponds to putting both
Ts and Tp to zero, but we see that there is then no preferred heart rate, and it is
neutrally stable. This is because there is no damping term in the equation for H ,
which is something in a real physical system that one might expect. It is suggestive
of structural instability in the model and, as we shall see, it can lead to unphysical
behaviour.

We therefore propose a modified version of the Ottesen model, which is

Ḣ = δH(H0 −H) +
λHTs

1 + γTp
− µHTp, (6.36)

120



where H0 denotes the natural resting heart rate in the absence of nervous tone. A
motivation for this choice can be found by consideration of what actually determines
heart rate. This was discussed in chapter 5. The heart rate is the inverse of the
period P of a limit cycle oscillation involving intracellular concentrations of calcium,
potassium and sodium in the sino-atrial node cells. The essence of any such model is
captured by the Landau-Ginzburg equation

dz

dt
= az − b|z|2z, (6.37)

where a and b are complex, and aR (= Re a) > 0, bR > 0.2 If we define the period
of the evolving oscillation as the interval P between values of zero phase (arg z = 0
mod 2π), then it is straightforward to show that P = P (A), where A is the amplitude
of z, and thus that H = 1/P satisfies an evolution equation of the form

Ḣ = r(H) [H0 −H ] . (6.38)

This provides the motivation for the form of (6.36) in the absence of nervous tone.
The model for heart rate is supplemented by the two blood pressure equations

Caṗa = −(pa − pv)

Rc
+H∆V,

Cvṗv =
pa − pv
Rc

− pv
Rv
, (6.39)

which can be compared directly to the first two equations in (6.5); the compliances
Ck and resistances Rk carry the same meaning as before, as does the stroke volume
∆V .

The first equation is the continuous version of conservation of arterial blood vol-
ume, since Q = H∆V is the cardiac output. The second equation represents conser-
vation of venous blood volume, if ventricular (or, more properly, atrial) pressure is
ignored in (6.20) during filling.

The model can be simplified in much the same way as the pump action model, by
observing that a balance of terms on the right hand side of (6.39) suggests pa − pv ∼
RcQ and pv ∼ RvQ, and thus that pv/pa ∼ Rv/Rc ∼ 10−2, if we use the values for
resistance in table 6.1. (Since 1/Rv is an average conductance over the heart beat,
the value we use for it in the continuous model should be reduced, and thus the
value for Rv should be increased in (6.39); a mild increase is still consistent with the
observation that pv ≪ pa. In fact, Ottesen uses a value four times higher for Rv, but
a similar value for Rc.)

Allowing that pv ≪ pa enables (6.39)1 to be approximated as

RcCaṗa = −pa +Rc∆V H. (6.40)

2This equation universally describes the amplitude of periodic solutions in the vicinity of a Hopf
bifurcation.
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We note from table 6.1 that we have typical values RcCa ∼ 1.8 s, and for cardiac
output Q = 5 l min−1 ∼ 80 ml s−1, RcQ ∼ 100 mmHg.

There are three time constants in (6.36): δH , λH/H0 and µH/H0. We choose
H0 = 100 min−1 = 1.7 s−1, as the resting heart rate in the absence of nervous control.
The choice of δH relies on a detailed model of the sino-atrial cell firing oscillation. In
the absence of any other information, the natural choice for δH is the time constant
of the oscillator, which is thus simply δH = H0. Ottesen’s preferred values for λH and
µH are λH = 0.84 s−2 and µH = 1.17 s−2, and we will use these for illustration. We
then have

λ =
λH
H2

0

∼ 0.3, µ =
µH
H2

0

∼ 0.4, δ =
δH
H0

∼ 1. (6.41)

He also chooses to put γ = 0, and we will do this also. In this simple model, the
stroke volume is taken as constant. More generally, we would take ∆V as a function
of arterial pressure.

We now non-dimensionalise the approximate (i. e., neglecting pv) model by writing

H = H0h, pa = p0p, t ∼ τ (6.42)

(p0 is defined in (6.34)); the corresponding dimensionless model is then

ṗ = κ[−p+ νh],

εḣ = δ(1− h) +
λg(p1)

1 + γ{1− g(p)} − µ{1− g(p)}, (6.43)

where now

g(p) =
1

1 + pn
, (6.44)

and the notation p1 denotes the delayed arterial pressure p(t − 1). The additional
parameters in (6.43) are given by

κ =
τ

RcCa
, ε =

1

H0τ
, ν =

Rc∆V H0

p0
, (6.45)

and we can take typical values κ ∼ 5.6, ε ∼ 0.06, ν ∼ 1 (the latter because we
can undoubtedly assume that the nervous controls are effective at a typical value of
arterial pressure).

We now take advantage of the fact that ε is relatively small. This suggests that h
rapidly approaches a quasi-equilibrium state. If we take γ = 0 and δ = 1, then this
quasi-steady state is

h ≈ 1 + λg(p1)− µ{1− g(p)}, (6.46)

and substituting this into (6.43)1 yields the delay recruitment type equation

ṗ = κ[ν(1 − µ)− p+ ν{λg(p1) + µg(p)}]. (6.47)
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The steady state solution p = p∗ satisfies

g(p) =
p− ν(1 − µ)

ν(λ+ µ)
, (6.48)

and is uniquely defined.
Stability of the steady state is ascertained by linearising the model about it. We

write
p = p∗ + P, (6.49)

so that the linear equation for P is

Ṗ = κ[−P − νs(λP1 + µP )], s = −g′(p∗) > 0. (6.50)

Solutions of this equation proportional to exp(σt) exist provided

σ = −B −Ge−σ, (6.51)

where
B = κ(1 + νsµ), G = κνsλ. (6.52)

Instability then occurs if Re σ > 0, and the instability is oscillatory if Im σ 6= 0.
This is an equation which we will meet again and again in the following chapters.

(6.51) is a transcendental equation, which has an infinite number of complex roots,
no more than two of which are real. The roots accumulate at the essential singularity
at σ = ∞, and Reσ → −∞ as σ → ∞, thus the set of Re σ is bounded above. There
is an instability criterion which determines when all the roots σ have negative real
part, and this is indicated in figure 6.10.

Evidently both G and B here are positive, and so the steady state is unstable if
G > γ1(B) in the figure. To estimate G and B in the present case, we suppose that
p∗ = 1.3, ν = 1.85, µ = 0.4, λ = 0.29. Then (6.48) implies g∗ = g(p∗) = 0.149, and
to be consistent with the definition of g, this requires n = 6.65. Using this value

together with the fact that s =
ng∗(1− g∗)

p∗
suggests s ≈ 0.65, and thus B ≈ 8.3,

G ≈ 1.95. For large B, one can show that γ1(B) ≈ B +
π2

2B
, so the Ottesen model

is stable for these parameter values. Since for large B, instability requires G >∼ B,
we see that instability would require λ > µ (and then a sufficiently large value of s).
Note that the dimensionless period of the resulting bifurcating periodic solution is
approximately 2 for large B; the dimensional period is simply ≈ 2τ . This suggests
that if this model is to be used to predict 10 second Mayer waves, then the delay in
the sympathetic response needs to be chosen to be τ ≈ 5 s.

The limit δ → 0

It is evident from (6.43) that if δ 6= 1, one simply replaces ε, λ and µ by ε/δ, λ/δ and
µ/δ. As long as ε ≪ δ, h still rapidly approaches equilibrium, and the subsequent
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Figure 6.10: Stability map for the solutions of (6.51). The curves demarcate the
behaviours of the two roots involved in transition to instability. ‘osc’ means complex
conjugate, and ‘U’ is unstable, ‘S’ is stable; ‘+’ and ‘-’ refer to the signs of real roots;
where only one sign is indicated, the other root has disappeared by tending to infinity.
The diagram indicates that stability occurs only if G lies within the sector bounded
by the two curves G = −B and G = γ1(B).

discussion above of steady states and stability is unaffected, except that one uses λ/δ
and µ/δ in (6.48) and (6.52).

On the other hand, suppose that δ <∼ ε, and let us in fact take δ = 0. The
equations (6.43) are thus (also with γ = 0)

ṗ = κ[−p + νh],

εḣ = λg(p1)− µ{1− g(p)}. (6.53)

This is a decidedly odd-looking pair, since h no longer appears on the right hand side
of its own equation. Apparently, for small ε, the h equation defines an approximate
map p1 → p, which has a unique fixed point, but experience with, for example, the
delay-recruitment equation εẋ = −x + f(x1) when ε is small suggests the possibility
of boundary layer behaviour, where p jumps rapidly from one iterate to the next (see
Fowler (1997), p. 360); however, that is not possible here, since on the face of it, p
cannot change rapidly.

The apparent resolution is to rescale the variables as

h = H

√
µ

νκε
, t ∼

√
ε

νκµ
, (6.54)
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which leads to the pair

ṗ = H − βp,

Ḣ = ζg(pT )− {1− g(p)}, (6.55)

where

T =

√
νκµ

ε
, β =

√
εκ

νµ
, ζ =

λ

µ
. (6.56)

For small ε, β is small and T is large; for our values of ε = 0.06, κ = 5.6, ν = 1.85,
µ = 0.4, we have T ≈ 8.31, ζ ≈ 0.73, β ≈ 0.67, so one might keep β ∼ O(1). The
fact that the delay T is large suggests that the steady state will be unstable.

To assess stability, it is simplest to write (6.56) as the single second order equation

p̈+ βṗ+ {1− g(p)} − ζg(pT ). (6.57)

Linearising about the steady state and seeking solutions eσt, we obtain

σ2 + βσ + s
(
1 + ζe−σT

)
= 0. (6.58)

For small s, all the roots have Re σ < 0, but instability will occur for sufficiently large
s. Formally, as ε→ 0 and thus also β → 0, the steady state will always be unstable.

6.5.2 De Boer model

The model of heart rate due to De Boer, Karemaker and Strackee (1987) is a beat-
to-beat model, which relates successive values of peak systolic pressure P and end
diastolic pressure D. In terms of the notation we used earlier, p+a = D, p̂a = S. While
the Ottesen model focuses on the control of heart rate by the nervous systems, the De
Boer model also allows for its effect on peripheral resistance Rc. This is done through
an equation for the time constant T , which in our notation is given by T = CaRc.
Finally heart rate is included by having an equation for the beat-to-beat interval I,
conventionally measured as the RR interval (see figure 6.8)

In the model, the effect of peak systolic arterial pressure on baroreceptor response
is represented by a function F (S) with units of pressure, which is taken as a sigmoidal
function increasing from about 90 mmHg to about 150 mmHg as S increases through
normal values of 120 mmHg. Thus F is essentially a shifted version of the Hill
function, F = A − Bg, and in some way it represents the firing rate of the efferent
nerves. In terms of this firing rate, the RR interval is taken to be

In = I∗ +
∑

k≥0

akFn−k, (6.59)

where n indexes the sequence of heart beats. This is an analogue of (6.36). Both
sympathetic and parasympathetic systems decrease heart rate (thus increase RR in-
terval) on increasing arterial blood pressure, and both effects are indicated by (6.59) if
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the coefficients ak are positive. The index k = 0 then represents the vagal effect, and
k > 0 represents the delayed sympathetic response. The continuum limit of (6.59)
would be

I(t) = I∗ + AV pa(t) +

∫ ∞

0

A(s)f [pa(t− s)] ds, (6.60)

with some suitable redefinition of ak and F , and this would be consistent with (6.43)2
if there were a distributed delay in the Ottesen model. De Boer et al. choose values
of ak for k > 0 distributed round a maximum at k = 4. The corresponding discrete
delay in the Ottesen model would then be 4/H , about 3.5 seconds. The value a0 is
manifested as the vagal coefficient AV .

Consulting figure 6.9, we see that the blood pressure has an inhibitory effect on the
peripheral resistance due to the sympathetic system, and thus on the time constant
T = CaRc. In the De Boer model, this is effected through the equation

Tn = T ∗ −
∑

k>0

bkFn−k, (6.61)

and the bk’s are taken to be a multiple (twice) of the ak’s. There is no correponding
effect in the Ottesen model, though it would simply be included by suitable functional
dependence of Rc in (6.39). The continuum limit of (6.61) would be

T (t) = T ∗ −
∫ ∞

0

B(s)f [pa(t− s)] ds. (6.62)

The model is completed by two equations for S and D which describe the pump
action of the heart. The equations (6.39) play the same rôle in the Ottesen model,
although the De Boer model omits reference to the venous or filling pressure. The
first equation is the Windkessel model,

Dn = cSn−1 exp

[

− In−1

Tn−1

]

. (6.63)

This equation comes directly from consideration of pump action, and is written, in
the notation of section 6.2, as

p++
a = cp̂a exp

[

−∆tF +∆tR
RcCa

]

, (6.64)

whereas from (6.15) and (6.24) we have, in fact,

p++
a = p̂a exp

[

− ∆tF
Rc(Ca + Cs)

− ∆tR
RcCa

]

. (6.65)

The Windkessel model thus follows from our simple pump model providing Cs ≪ Ca,
which is not unreasonable according to table 6.1.

The second equation relates pulse pressure S −D to the length of the preceding
RR interval, thus

Sn = Dn + γIn−1 + P ∗. (6.66)
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In our notation this is
p̂a = p+a + γ(∆tF +∆tR) + P ∗, (6.67)

whereas (6.13) implies

p̂a =
Cap

+
a + Cdp

+
v

Ca + Cs
. (6.68)

De Boer et al.’s motivation for (6.66) is that a longer filling interval leads to a
more powerful contraction (thus an increased stroke volume) via Starling’s law, and
also via the contractility of the myocardium, which also increases following a longer
filling interval. This discussion muddies the waters, since figure 6.9 suggests no direct
connection between heart rate and ventricular elastance. Starling’s law is indeed
manifested by (6.68), insofar as the increase of p̂a with p

+
v leads to an increase in stroke

volume (cf. (6.17)) and thus cardiac output, but the effect on ventricular elastance
is relatively small, and more importantly is effected through the slow sympathetic
system. In fact, (6.68) suggests that the De Boer model should properly include a
beat-to-beat model of the venous pressure, which would follow from (6.32).

For suitable choices of the model parameters, De Boer et al. found that model
simulations produced Mayer waves, and also respiratory sinus arrhythmia, when res-
piratory forcing was included by allowing P ∗ in (6.66) to vary in time with the res-
piratory frequency (the assumption being that respiration affects the filling pressure
via its effect on the intra-thoracic pressure).
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Chapter 7

Respiration

7.1 The respiratory system

The body consists of a huge collection of cells, and these cells, just like us, need to be
fed and have their waste products removed. The principal nutrient of cells is oxygen,
and the principal excretion is carbon dioxide. It is the primary function of the blood
to carry oxygen to all the cells of our body, and to remove carbon dioxide from them.
The cardiovascular system does this by passing blood through very small capillaries
which exchange blood gases through the capillary walls with the surrounding tissue.
Arterial blood from the heart is red and oxygen rich, while veinous blood returning
to the heart is blue and oxygen poor. It is the function of the respiratory system
to enable the veinous blood passing from the heart to the pulmonary circulation to
discharge some of its load of carbon dioxide, and to pick up a load of fresh oxygen
from the lungs. The way in which this is effected is similar to the way in which the
cardiovascular system interacts with the tissues.

The lungs form a branched system, with some twenty-three generations of branches
from the inlet windpipe or trachea to the alveoli. They are not therefore simply bags,
but very finely detailed structures as shown in figure 7.1. The reason for this is that
the alveolar sacs have a huge surface area of some 70 m2, and it is across this surface
that transfer of O2 and CO2 takes place. The alveoli are perfused by the capillaries of
the pulmonary circulation, and the contact is so extensive that blood passing the lungs
reaches gas concentration equilibrium before returning to the left atrium of the heart.
For example, oxygen partial pressure in the alveoli is about 100 mmHg (millimetres of
mercury: 760 is atmospheric pressure, 150 is atmospheric oxygen partial pressure1),
whereas it is about 40 mmHg in the incoming venous blood. Nevertheless, it reaches
100 mmHg before leaving the lungs. Similarly, alveolar CO2 partial pressure is some
40 mmHg, whereas incoming veinous blood has a CO2 partial pressure of about 45
mmHg, but the arterial blood which is ejected from the heart has had its CO2 load

1More precisely, the partial pressure of atmospheric oxygen in dry air at sea level is 159 mmHg,
but on inhalation it becomes warm and wet, with a consequent partial pressure of 149 mmHg. More
on this later.
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Figure 7.1: The lungs.

reduced to 40 mmHg.
The lungs have a volume of about three litres in normal respiratory circumstances.

The first sixteen generations of bronchi (i. e., the tubes which successively branch from
the trachea: see figure 7.1) down to the terminal bronchioles have no alveoli, and
simply perform the function of conducting towards the respiratory bronchioles, and
are for this reason known as the dead space. Despite the sixteen generations, they
occupy a volume of only 150 ml. Beyond the conducting airways, the respiratory
bronchioles have increasing numbers (as they continue to divide) of alveolar sacs
attached. This respiratory zone provides most of the lung volume, about three litres.

It is a matter of common experience that normal breathing neither completely
empties nor completely fills the lungs. A normal inspiration consists of 500 ml, and
this is called the tidal volume. Thus in normal breathing, the lung volume varies
between about 2.5 and 3 litres. In forced expiration, the lungs cannot be completely
emptied; the minimum volume obtainable is the residual volume, a bit more than 1
litre. Similarly, there is a maximum obtainable volume on inspiration, the total lung
capacity, and this is about 6 litres.
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7.1.1 The mechanics of breathing

As with the heartbeat, a breath consists of two separate actions: inspiration and
expiration. As with the heart, the action is driven by muscular contraction. But
unlike the heart, it is the filling (inspiratory) part of the breath which is driven by
contraction.

The lungs are contained within the thoracic cavity bounded by the chest wall,
and effectively glued to it by a thin layer of intrapleural fluid at negative (relative
to atmospheric) pressure. However, this fluid lubricates the chest wall, so that the
lungs can expand and contract freely during breathing. The lungs are framed by
various sets of muscles: most notably the diaphragm and the intercostal muscles. The
diaphragm sits at the base of the rib cage, and when it contracts, the lower surfaces of
the lungs are pulled downwards, and the thoracic volume increases. Consequently the
intrathoracic pressure decreases, and air is sucked into the lungs. Normal expiration
is simply an elastic recoil when the diaphragm relaxes.

Other muscles come into play during exercise. For example, the abdominal muscles
contract to assist expiration (try doing sit-ups, and see when you breathe), and the
external intercostal muscles assist inspiration by raising the rib cage. The idea that
our internal organs are relatively staionary within our bodies is misguided: they all
slosh around.

There are several respiratory groups of neurons within the brain. The dorsal
respiratory neurons in the medulla appear to generate a rhythmic firing pattern in
the phrenic nerves which innervate the diaphragm and cause inspiration. How this
rhythm is caused or maintained is not known; the mechanism is analogous to the rôle
of the pacemaker neurons in the sino-atrial node of the heart.

The ventral respiratory neurons are more associated with expiration (in exercise,
when the elastic recoil is insufficient). Another group of neurons is the pneumotaxic
centre in the upper pons, which sends signals to the respiratory centre to control the
duration of the inspiratory signals; less well understood is the apneustic centre in the
lower pons, which sometimes sends signals to the respiratory centre prolonging the
inspiratory signal. It is not known whether the apneustic centre plays any rôle in
normal respiratory control.

7.2 Arterial chemoreceptors and blood gas control

The principal way in which control of normal respiration occurs is through the effect
of the blood gases O2 and CO2 on two sets of chemoreceptors. There are other
receptors, but the chemoreceptors are thought to exert the primary control. This
is not true in exercise, where increased ventilation (hypernea) occurs (proportionally
to oxygen consumption) despite the fact that arterial O2, CO2 and pH levels are
virtually unaltered. The reasons for this are not known, but it may be that control
is effected at the neurogenic level. In this chapter we focus on the control of normal
respiration by blood gas concentrations.
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7.2.1 Central chemoreceptors

The central chemoreceptors are located in the medulla, like the dorsal and ventral
respiratory neurons. They are thought to lie within 200 microns of the ventral surface
of the medulla, which is bathed in cerebro-spinal fluid (CSF). They respond to H+

(low pH means high H+, i. e., acid), and ventilation increases with H+ concentration.
However, the blood-brain barrier is relatively impermeable to H+, and the central
chemoreceptors are effectively stimulated by blood CO2, in the following way. CO2

passes the blood-brain barrier easily, and then diffuses through the medulla towards
the CSF and the central chemoreceptors. In the brain extracellular fluid, CO2 reacts
with water, forming acid and bicarbonate ions:

CO2 +H2O ⇋ H+ +HCO−
3 . (7.1)

It is the H+ which is thus formed in the brain tissue which migrates to the central
chemoreceptors and causes changes in ventilation. CO2 thus acts as a surrogate for
H+, and it is often assumed in models that ventilation is centrally controlled by the
the blood concentration of CO2. More realistically, this effect is filtered by the delay
in diffusing the hydrogen ions across the medulla to the CSF.

7.2.2 Peripheral chemoreceptors

The peripheral chemoreceptors are located outside the brain. Most of them are in
carotid bodies located at bifurcations in the carotid arteries, in the neck. Others are in
the aortic arch, nearer the heart, and there are others elsewhere in the arterial system.
Afferent nerve fibres from the carotid bodies pass through the glossopharyngeal nerves,
while those from the aortic bodies pass through the vagal nerves.

The peripheral chemoreceptors respond to CO2 in much the same functional way
as the central chemoreceptors, but the amplitude of the response is much smaller,
perhaps a fifth. On the other hand, the response is much more rapid, presumably
because of the delay for the central chemoreceptors in transporting hydrogen ions
through the medulla.

The other significant feature of the peripheral chemoreceptor response is that
it is strongly affected by oxygen. The gain of the CO2 response increases sharply
with reduced oxygen levels. Alternatively, one can say that the peripheral controllers
increase ventilation sharply with reducing oxygen, and this response is amplified in
hypercapnea (elevated levels of CO2).

7.3 Periodic breathing

We have talked rather loosely about ventilation V̇ , as if it is a continuously defined
quantity. Like the heart rate, this is not actually the case. A typical adult human
takes 12–14 breaths per minute, and if each breath is of tidal volume 500 ml, then
this gives the minute ventilation, or simply the ventilation, V̇ , as 6–7 l min−1. Thus
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Figure 7.2: Cheyne-Stokes respiration.

the ventilation can be defined as the local time average of the inspired volume per
unit time. Normally, this is the same as the averaged expired volume per unit time.
Of more relevance is the alveolar ventilation: since there is 150 ml dead space, only
350 ml of each breath is involved in gas exchange. This effective alveolar ventilation
is thus 4–5 l min−1. We can, and do, think of the ventilation as a continuous variable
when it changes over time scales much longer than that of a single breath.

One such phenomenon which satisfies this constraint is the phenomenon of periodic
breathing, and particularly Cheyne-Stokes breathing. Cheyne-Stokes breathing is a
rhythmic oscillation in which the depth of breathing first increases and then decreases
over an interval of about 30 seconds, and then breathing ceases altogether (apnea),
perhaps for a further 30 seconds. The pattern then repeats, forming a periodic pattern
with a period on the order of a minute. An example is shown in figure 7.2. We will
devote the rest of this chapter to a consideration of mechanisms which may explain
this peculiar type of breathing.

Cheynes-Stokes breathing occurs in two particular clinical conditions, those of
heart failure and stroke. It is thought that the failing heart causes low blood flow,
and this leads to an increased delay before the central and peripheral chemoreceptors
can respond to changes in arterial CO2 concentrations at the lungs; such an increased
delay can cause oscillations to occur.

Stroke is associated with damage to the brain, and it is thought that this leads
to an increased sensitivity, or gain, in the dependence of ventilation on CO2 levels.
Again, this is a destabilising effect.

Periodic breathing, not necessarily apneic, occurs also in infants, and it also occurs
in climbers at altitude, before they have become fully acclimatised. In this case it can
be associated with a steepening of the CO2 response curve due to low oxygen levels.

As we have indicated, the classical explanation for Cheyne-Stokes or other periodic
breathing is that it arises through an oscillatory (Hopf) destabilisation of steady state
ventilation, in which the destabilising parameters are the delay in controller response
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due to heart to brain blood transport, and the gain (slope) of the ventilatory CO2

response curve. A number of models have been proposed to validate this idea, but
they are all conceptually similar compartment models. We will describe two: the
simplest model due to Mackey and Glass (1977), and the more elaborate Grodins
model due to Grodins et al. (1967).

7.4 The Mackey-Glass model

The model proposed by Mackey and Glass (1977), also expounded in their book (Glass
and Mackey 1988) is the simplest model for respiratory control that is consistent with
the principal features of the system. It represents the change in CO2 concentration
of a single compartment due to metabolic production and removal by ventilation.
Ventilation is controlled by CO2 levels at the central controller, located in the brain
and serviced (with a delay) by blood flow through the carotid artery. We will use
partial pressure rather than concentration to describe CO2 levels, and will denote the
CO2 partial pressure in the single compartment by P . The Mackey-Glass model is
then

K
dP

dt
=M − P V̇ . (7.2)

Here, K represents effective compartment volume andM is metabolic production rate.
The question arises, what is the compartment in this model? There are different ways
to interpret this, but perhaps the simplest is to suppose that the peripheral tissues
constitute the compartment, as illustrated in figure 7.3. The blood flows through the
tissues and past the lungs, where gas exchange takes place, and one views the blood
flow to the brain as a ‘shunt’ (i. e., a bypass) so that the central controller acts with

V
.

delay τ
brain

tissue

Figure 7.3: A simple one-compartment model of respiratory control.
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the delay due to transport from lungs (or heart—in this view there is no distinct
pulmonary circulation). It is evident that with this interpretation, one associates no
delay in transporting blood to the tissues, and this is one of the potential drawbacks
of the model, since in reality the mean transport time to the peripheral tissues is of
the order of 30 seconds, much larger than the 10 seconds or so that blood takes to
get to the brain.

The ventilation in (7.2) is taken to be a function of P (t− τ), where τ is the delay
in transport from blood to brain. Mackey and Glass choose a Hill type sigmoidal
function, but a more realistic assumption is the piecewise linear function

V̇ = GC [P − P0]+, (7.3)

where P0 is an apnea threshold and GC represents the gain of the central controller.
The peripheral controller is ignored in the sense that oxygen is not included in the
Mackey-Glass model.

We write the model in dimensionless form by defining

t = τt∗, P = P0 +∆Pp∗, V̇ = GC∆Pv, (7.4)

where ∆P is defined by

∆P =
M

P0GC

. (7.5)

The dimensionless model is then (dropping the asterisks on t∗ and p∗)

ṗ = α[1− (1 + µp)v],

v = v(p1) = [p1]+, (7.6)

where p1 ≡ p(t− 1). The parameters are defined by

α =
τGCP0

K
, µ =

M

P 2
0GC

. (7.7)

We use values M = 170 mmHg l min−1, P0 = 35 mmHg, GC = 2 l min−1 mmHg−1,
τ = 0.2 min (12 s), K = 39 l, and with these values we find

α ≈ 0.36, µ ≈ 0.07. (7.8)

Evidently the parameter µ ≪ 1, and we put it to zero. The (unique) steady
state is then given by p = 1, and then also v = 1. Note that the ventilation scale
is M/P0 ≈ 4.9 l min−1, as observed (for alveolar ventilation). To examine its linear
stability, we put p = 1 + p̃ and linearise (7.6) (actually, for small µ and p > −1, the
equation is already linear): we find

dp̃

dt
≈ −αp̃1, (7.9)
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and this has solutions p̃ ∝ exp(σt) provided

σ = −αe−σ. (7.10)

This is a transcendental equation we have seen before in chapter 6 (see figure
6.10). For positive α, there is a Hopf bifurcation if

α =
τGCP0

K
>∼
π

2
, (7.11)

and the period of the resulting oscillation is approximately four times the delay, i. e.,
4. In dimensional terms this is 4τ .

This simple theory provides a viable explanation for Cheyne-Stokes breathing,
but it is not clear that it is correct. A five fold increase in α is necessary to promote
instability, and this can be attained by a five fold increase in delay, due to a five
fold decrease in cardiac output. However, this seems extreme, and indeed, the basic
oscillation period would then be about twenty times τ , or four minutes — too long.
Alternatively, an increase in gain by a factor of five can produce instability, with the
period (48 seconds) being approximately correct. Although the basic mechanism may
be encapsulated by the Mackey-Glass model, it may also be that the quantitative
simpliofications which have been made are too simple. Next, we consider a more
complicated model which bears a closer resemblance to the physiological system.

7.5 The Grodins model for CO2

The Grodins model (Grodins et al. 1967) is a compartment model which describes
the oxygen, carbon dioxide and nitrogen concentrations in separate compartments of
lungs, brain, tissues, CSF, as well as the arteries and the veins. Nitrogen is passive,
and the model uncouples into separate subsystems for CO2 and O2. They are coupled
through the dependence of blood flow and ventilation on both blood gases. Here we
will ignore the oxygen transport, and discuss only the CO2 part of the model.

Figure 7.4 shows the schematic arrangement of the compartments of the Grodins
model. Blood flows separately to the brain and the other tissues, with four separate
delays describing arterial and venous blood flow between lungs and brain and lungs
and tissue. Equations describing the evolution of CO2 concentrations in lungs, brain
and tissues are given by Grodins et al.’s equations 1.1, 1.4 and 1.7:

KLḞACO2
= VIFICO2

− VEFACO2
+ βQ[CvCO2

− CaCO2
],

KBĊBCO2
= MRBCO2

+QB[CaBCO2
− CvBCO2

]−DCO2
[PBCO2

− PCSFCO2
],

KTĊTCO2
= MRTCO2

+ (Q−QB)[CaTCO2
− CvTCO2

]. (7.12)

In these equations, KL, KB, KT are the volumes of the lung, brain and tissue com-
partments, respectively. To be more precise, KL is the volume of air in the lungs.
FACO2

is the alveolar volume fraction of CO2 in the lung, FICO2
the inspired CO2

volume fraction, VI and VE the inspiratory and expiratory ventilation rates. CaCO2
is
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Figure 7.4: Compartments of the Grodins model.

the arterial CO2 concentration at the lung, CvCO2
the venous CO2 concentration at

the lung, and Q is the blood flow rate.
The numerical factor

β =
863

B − 47
(7.13)

arises for the following reason (West 1990). The blood gas concentrations C are mea-
sured at dry atmospheric conditions, or STPD: standard temperature and pressure,
dry. On the other hand, the lung gas fractions F are measured at BTPS: body tem-
perature and pressure, saturated (with water vapour). To convert a gas volume from
STPD to BTPS, we use the gas law PV/T = constant, and Dalton’s law of partial
pressures. Thus if B is barometric pressure (in units of mmHg: 1 mmHg = 133.3 Pa,
while 1 atmosphere = 1.013 × 105 Pa, thus standard pressure 760 mmHg ≈ 1 atm;
the related unit 1 torr = 1/760 atm, so that 1 mmHg ≈ 1 torr), then the saturated
water vapour pressure at 37◦C (body temperature) is 47mmHg, so (B − 47) mmHg
is the partial gas pressure. With STPD pressure and temperature of 760 mmHg and
273K, and BTPS values B − 47 and 310 (degrees Kelvin, = 273 + 37), then

760

273
l(STPD) =

B − 47

310
l(BTPS), (7.14)

whence
1 l(BTPS) = β l(STPD), (7.15)

where l denotes a litre. At sea level, where B = 760, β = 1.21.
Units in (7.12)1 are KL (l(BTPS))2, F (l(BTPS) l(BTPS)−1, i. e., dimensionless),

2This is why KL is defined to be the volume of air in the lung: the same quantity of air outside
the body would have a different volume.
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VI and VE (l(BTPS)) min−1), Q (l min−1)) and C (l(STPD)l−1), and with the defini-
tion of β in (7.15), we see that these are consistent.

Other terms in (7.12) are the metabolic production rates of CO2 in brain (MRBCO2
)

and tissues (MRTCO2
), the brain blood flow QB, the partial pressure of CO2 in brain

(PBCO2
) and cerebro-spinal fluid (PCSFCO2

), a transport coefficient (DCO2
) across the

blood-brain barrier through the medulla to the cerebro-spinal fluid, and concen-
trations of CO2 on arterial (a) and venous (v) side of brain (B) and tissues (T):
CaBCO2

, CvBCO2
, CaTCO2

, CvTCO2
.

In our discussion of these equations, we take

CvBCO2
= CBCO2

,

CvTCO2
= CTCO2

, (7.16)

and we take the values of CaB and CaT as those of Ca with an appropriate transport
delay:

CaBCO2
= CaCO2

(t− τaB),

CaTCO2
= CaCO2

(t− τaT). (7.17)

Inspiratory CO2 (FICO2
) is prescribed, and normally will be zero; the remaining vari-

ables in the equations are thus FACO2
, CvCO2

, CaCO2
, CBCO2

, CTCO2
. In the Grodins

model, their final equation 8.7 expresses the definition of venous CO2 in terms of
brain and tissue CO2:

QCvCO2
= QBCBCO2

(t− τvB) + (Q−QB)CTCO2
(t− τvT), (7.18)

τvB and τvT being venous transport delays from brain to lung and tissue to lung,
respectively.

We wish to write (7.12) in terms of partial pressures. In order to do this, we need
to write volume fractions F (dimensionless) and concentrations C (l(STPD) l−1) in
terms of partial pressures P (mmHg). According to Dalton’s law

FACO2
=

PACO2

B − 47
, (7.19)

where B − 47 has units of mmHg, and we make the additional assumption that the
arterial blood leaving the pulmonary capillary bed is in equilibrium with the alveolar
concentration, thus

PaCO2
= PACO2

. (7.20)

In addition, concentrations C are related to partial pressure P by dissociation
curves. The CO2 dissociation curve relating CaCO2

to PACO2
is given in the Grodins

model by their equation 3.1. Assuming that log means log10, this can be written in
the form (C = CaCO2

, P = PACO2
)

P = Q(C − ΣP ) exp[R(C − ΣP )], (7.21)
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Figure 7.5: The Grodins formula 3.1 for the saturation curve relating CaCO2
to PACO2

,
exhibiting the Haldane effect.

where from the Grodins appendix I, we have

Q ≈ 9.19, R ≈ 3.71, Σ ≈ 0.00067. (7.22)

This is plotted in figure 7.5, and in figure 7.6 we show a close up for P between 30
and 50mmHg, which shows that a useful linear approximation is

C ≈ 0.38 + 0.005P, (7.23)

PACO2
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0.64
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Figure 7.6: Close up of part of figure 7.5, together the linear fit from (7.23).
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where C is in l(STPD) l−1 and P is in mmHg. More generally, we take the dissocia-
tions curves to be of the form

CaCO2
= K1 +KCO2

PaCO2
,

CvCO2
= K1 +KCO2

PvCO2
,

CaBCO2
= K1 +KBCO2

PaBCO2
,

CvBCO2
= K1 +KBCO2

PvBCO2
, (7.24)

where KCO2
≈ 0.005 l(STPD) l−1 mmHg−1. In the Grodins model, the buffering

relations proposed by Grodins et al (their equations 4.1, 4.2) relating CBCO2
and

CvBCO2
to PBCO2

are similar to the alveolar/arterial relation. Therefore we will also
take KBCO2

= KCO2
in (7.24).

We can now write the Grodins model (7.12) in the form, using (7.16) and (7.17),

KLṖaCO2
= −VEPACO2

+ 863KCO2
Q[PvCO2

− PaCO2
],

KCO2
KBṖBCO2

= MRBCO2
+KCO2

QB[PaCO2
(t− τaB)− PBCO2

]

−DCO2
[PBCO2

− PCSFCO2
],

KCO2
KTṖTCO2

= MRTCO2
+ (Q−QB)KCO2

[PaCO2
(t− τaT )− PTCO2

]. (7.25)

These must be supplemented by (7.18), which we write in the form

QPvCO2
= QBPBCO2

(t− τvB) + (Q−QB)PTCO2
(t− τvT). (7.26)

In addition, the CSF CO2 partial pressure satisfies Grodins et al.’s equation 1.10:

KCSFkαCO2
ṖCSFCO2

= DCO2
(PBCO2

− PCSFCO2
) , (7.27)

in which KCSF is CSF volume, k is a conversion factor from atmospheric pressure to
mmHg (thus k = 1/760), and αCO2

is a solubility coefficient for CO2 in CSF. Values
for the parameters in the model are given in table 7.1.

Arterial and venous delays

In the Grodins model there four separate delays: τaB, τaT, τvB and τvT, representing
the blood transport time from heart to brain, heart to tissues, brain to heart, and
tissues to heart. Their definitions are similar, and exemplified by that for τaB:

τaB =
VaB (τaB − τ̃aB)
∫ t−τ̃aB

t−τaB

Qdt

+
ṼaBτ̃aB

∫ t

t−τ̃aB

QB dt

; (7.28)

the definitions of the other delays are completely analogous.
To understand how such terms arise, suppose that points R and S are joined by

an artery of volume VRS through which blood flows at a variable rate Q(t). If the
blood at point S at time t was at point R at time t−τRS, then the volume V of artery
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Symbol Units Typical value
Q∗
B l min−1 0.75

Q∗ l min−1 6
V ∗ l(BTPS) min−1 5
KL l(BTPS) 3
KB l 1
KT l 39
KCSF l 0.1
KCO2

l(STPD) l−1 mmHg−1 0.005
MRBCO2

l(STPD) min−1 0.05
MRTCO2

l(STPD) min−1 0.182
P ∗ mmHg 40
DCO2

l(STPD) min−1 mmHg−1 0.82× 10−5

τaB min (sec) 0.18 (11)
τaT min (sec) 0.32 (19)
τvT min (sec) 0.59 (35)
τvB min (sec) 0.11 (7)
863 mmHg l(BTPS) l(STPD)−1 863
k atm mmHg−1 0.0013

αCO2
l(STPD) l−1 atm−1 0.51

Table 7.1: Parameter values for the Grodins model.

traversed satisfies
dV

ds
= Q(s), V = 0 at s = t − τRS, V = VRS at s = t. Integrating

this, we find VRS =

∫ t

t−τRS

Q(s) ds.

If now a flow Q(t) traverses a volume VaB from the heart to the point C, and then
branches, so that a sub-flow QB traverses a further arterial volume ṼaB from C to B,
then the blood which is at B at time t is at C at time t − τ̃aB, and at the heart at
time t− τaB, where

VaB =

∫ t−τ̃aB

t−τaB

Q(s) ds, ṼaB =

∫ t

t−τ̃aB

QB(s) ds, (7.29)

and these relations are the basis for (7.28). In similar manner, we have

VaT =

∫ t−τ̃aT

t−τaT

Q(s) ds, ṼaT =

∫ t

t−τ̃aT

(Q(s)−QB(s)) ds,

VvB =

∫ t−τ̃vB

t−τvB

QB(s) ds, ṼvB =

∫ t

t−τ̃vB

Q(s) ds,

VvT =

∫ t−τ̃vT

t−τvT

(Q(s)−QB(s)) ds, ṼvT =

∫ t

t−τ̃vT

Q(s) ds. (7.30)
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The values of the arterial and venous volumes in the Grodins model are given in table
7.2.

Volume Value (litres)
VaB 1.062

ṼaB 0.015
VaT 1.062

ṼaT 0.735
VvB 0.06

ṼvB 0.188
VvT 2.94

ṼvT 0.188

Table 7.2: Arterial and venous volumes. These values include atrial and ventricular
components.

7.5.1 Central and peripheral controllers

In assessing the effects of both sets of controlling chemoreceptors on ventilation, it is
difficult to separate the two. Generally, it is assumed that the effects are additive,
thus

VI = VC + VP , (7.31)

where VI is the (inspiratory, assumed equal to expiratory, VE) ventilation, VC is the
centrally controlled ventilation, and VP is the peripherally controlled ventilation.

The peripheral ventilation responds to CO2 more or less linearly above a threshold,
and the slope (gain) of the response is modulated by O2. This is modelled by taking

VP = GP [PaCO2
(t− τa0)− IP ]+, (7.32)

which is a form of controller suggested by Khoo et al. (1982)3. In these expressions,
[x]+ = max(x, 0), τa0 represents the delay in transport between lung and carotid body,
and IP is a threshold value for activation of the peripheral controller. The value of
τa0 is almost the same as τaB, and we will assume they are the same.

In a similar manner, the Khoo central controller is of the form

VC = GC [PBCO2
− IC ]+ , (7.33)

and is supposed to respond directly to brain CO2. As we have seen, this is not thought
to be physiologically correct, and a better assumption is

VC = GC [PCSFCO2
− IC ]+ . (7.34)

3The actual form of the controller was VP = G̃P exp[−0.05PaO2
(t− τa0)][PaCO2

(t− τa0)− IP ]+,
but we assume in the present discussion that PaO2

is constant and equal to 100 mmHg. The value
of GP in table 7.3 reflects this assumption
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Parameter Units Value
GP l(BTPS) min−1 mmHg−1 0.2

GC (Khoo) l(BTPS) min−1 mmHg−1 1.8
GC (Grodins) l(BTPS) min−1 mmHg−1 1.04

IP mmHg 35
IC mmHg 49.3

Table 7.3: Controller parameters. GP and GC (Khoo) are from Batzel and Tran
(2000a) (assuming arterial oxygen partial pressure of 100 mmHg), GC (Grodins) is
derived from Grodins et al. (1967) (their equations 9.2. and 6.1). The values of IP
and IC are chosen so that a steady state alveolar ventilation rate of 5 l min−1 is
obtained when PasCO2

= 40 mmHg (see the discussion after (7.49)).

(More specifically, the dependence is on H+, but this is directly related to PCSFCO2

via the acid-base buffering relation (equation 6.1 of Grodins et al. (1967)).) Values
of the controller parameters are given in table 7.3.

7.6 Non-dimensionalisation

Typical observed values of ventilation, blood flow and arterial CO2 partial pressure
are denoted by V ∗, Q∗ and P ∗ respectively; representative values are 5 l min−1, 6 l
min−1 and 40 mmHg. A typical value of the blood flow to the brain is Q∗

B, and is 0.75
l min−1. We therefore define dimensionless blood flows q, qB and ventilation rate v
by

Q = Q∗q, QB = Q∗
BqB, (7.35)

and
VI = V ∗v. (7.36)

The CO2 partial pressure in the blood is determined by a balance between metabolic
production and its removal by ventilation. It is easy to solve (7.25), (7.26) and (7.27)
to find the steady state partial pressures in terms of (constant) ventilation V ∗ and
blood flows Q∗ and Q∗

B. These are

PaCO2
= P ∗, (7.37)

where we now explicitly define

P ∗ =
863

V ∗
[MRTCO2

+MRBCO2
] , (7.38)

and the conversion factor 863 is the same as that in (7.25). Then,

PvCO2
= P ∗(1 + ε),

PCSFCO2
= PBCO2

= P ∗(1 + εa),

PTCO2
= P ∗(1 + εb), (7.39)
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where

ε =
V ∗

863KCO2
Q∗
, (7.40)

and

a =

(
Q∗

Q∗
B

)(
MRBCO2

MRTCO2
+MRBCO2

)

, b =

(
Q∗

Q∗ −Q∗
B

)(
MRTCO2

MRTCO2
+MRBCO2

)

.

(7.41)
In scaling the blood CO2 partial pressure, we note that CO2 levels in the body

do not vary enormously, and this is manifested in (7.39) by the parameter ε, which
is found from table 7.1 to be relatively small, ε ≈ 0.19. For example, venous blood
returning to the lungs may only have a CO2 partial pressure of 45 mmHg. (The values
of a and b in (7.39) are O(1), a ≈ 1.72, b ≈ 0.9.) Thus the significant scale for the CO2

variables is their variation about this typical value. Therefore we non-dimensionalise
the pressure variables by writing

PaCO2
= P ∗[1 + εpa], PvCO2

= P ∗[1 + εpv], PCSFCO2
= P ∗[1 + εpC],

PBCO2
= P ∗[1 + εpB], PTCO2

= P ∗[1 + εpT ]. (7.42)

Finally we choose the dimensionless time scale

t ∼ KB

Q∗
B

. (7.43)

The dimensionless form of the equations (7.25), (7.26) and (7.27) is then

ṗa = Λ [q(pv − pa)− (1 + εpa)v] ,

ṗB = a + qB [pa(t− τ ∗aB)− pB]− ν(pB − pC),

ṗT = s

[

b+

(
q − δqB
1− δ

)

{pa(t− τ ∗aT)− pT}
]

,

ṗC = µ(pB − pC),

pv = pT (t− τ ∗vT) +
δqB
q

[pB(t− τ ∗vB)− pT (t− τ ∗vT)] . (7.44)

The new parameters appearing in these equations are defined as follows:

δ =
Q∗
B

Q∗
, Λ =

863KCO2
Q∗KB

KLQ
∗
B

, s =
(Q∗ −Q∗

B)KB

KTQ
∗
B

,

µ =
DCO2

KB

KCSFkαCO2
Q∗
B

, ν =
DCO2

KCO2
Q∗
B

. (7.45)

Note that b = 1− δ(a− b)
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Parameter Value Parameter Value
V ∗
aB 0.133 τ ∗aB 0.148

Ṽ ∗
aB 0.015 τ̃ ∗aB 0.015
V ∗
aT 0.133 τ ∗aT 0.238

Ṽ ∗
aT 0.092 τ̃ ∗aT 0.105
V ∗
vB 0.06 τ ∗vB 0.084

Ṽ ∗
vB 0.024 τ̃ ∗vB 0.024
V ∗
vT 0.368 τ ∗vT 0.444

Ṽ ∗
vT 0.024 τ̃ ∗vT 0.024

Table 7.4: Typical dimensionless blood volumes in (7.47), and the resulting dimen-
sionless delays assuming constant blood flow, q = qB = 1.

7.6.1 Dimensionless delays

The dimensionless delays τ ∗pq are defined, from (7.29) and 7.30), via the relations

V ∗
aB =

∫ t−τ̃∗
aB

t−τ∗
aB

q(s) ds, Ṽ ∗
aB =

∫ t

t−τ̃∗
aB

qB(s) ds,

V ∗
aT =

∫ t−τ̃∗
aT

t−τ∗
aT

q(s) ds, Ṽ ∗
aT =

∫ t

t−τ̃∗
aT

(q(s)− δqB(s)) ds,

V ∗
vB =

∫ t−τ̃∗
vB

t−τ∗
vB

qB(s) ds, Ṽ ∗
vB =

∫ t

t−τ̃∗
vB

q(s) ds,

V ∗
vT =

∫ t−τ̃∗
vT

t−τ∗
vT

(q(s)− δqB(s)) ds, Ṽ ∗
vT =

∫ t

t−τ̃∗
vT

q(s) ds, (7.46)

and the dimensionless blood volumes are defined by

V ∗
aB =

δVaB
KB

, Ṽ ∗
aB =

ṼaB
KB

,

V ∗
aT =

δVaT
KB

, Ṽ ∗
aT =

δṼaT
KB

,

V ∗
vB =

VvB
KB

, Ṽ ∗
vB =

δṼvB
KB

,

V ∗
vT =

δVvT
KB

, Ṽ ∗
vT =

δṼvT
KB

. (7.47)

Using table 7.2, we find typical values of these dimensionless volumes to be those
shown in table 7.4; the corresponding values of the delays for constant blood flow
(q = qB = 1) are also shown.
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7.6.2 Dimensionless controllers

The controllers (7.32), (7.33) and (7.34) can be written in the dimensionless form

vP = [JP + γPpa]+ ,

vC = [JC + γC(pB − a)]+ , (Khoo)

vC = [JC + γC(pC − a)]+ , (Grodins) (7.48)

where the definitions of the parameters are

JP =
GP (P

∗ − IP )

V ∗
, γP =

GP [MRTCO2
+MRBCO2

]

KCO2
Q∗V ∗

,

JC =
GC

V ∗

[

P ∗ − IC +
MRBCO2

KCO2
Q∗
B

]

, γC =
GC [MRTCO2

+MRBCO2
]

KCO2
Q∗V ∗

, (7.49)

using (7.38) and (7.40). For Gk = 1 l(BTPS) min−1 mmHg−1, γk = 1.55.
If we suppose peripheral control provides one fifth of the ventilatory drive, then in

a steady state, JC = 0.8, JP = 0.2, and this is consistent with the parameter choices
in table 7.3, if we select the Grodins value GC = 1 l(BTPS) min−1 mmHg−1 as well
as GP = 0.2 l(BTPS) min−1 mmHg−1. In fact the constraint

JP + JC = 1 (7.50)

(i. e., VI = V ∗ in steady state) provides a second relation between V ∗ and P ∗ to
supplement (7.38), and from these, explicit values for V ∗ and P ∗ can be determined.

7.7 A simplified model

Typical values of the dimensionless parameters in the model are given in table 7.5.
Note that the time scaleKB/Q

∗
B ≈ 80 s, which is the time scale of interest for Cheyne-

Stokes breathing: therefore we study (7.44) on the basis that t ∼ O(1). We now use
the parameter sizes to simplify the model.

We consider the equations in (7.44) in turn. In the pa equation, Λ is large, so that
pa rapidly tends to a quasi-equilibrium, in which

v ≈ q(pv − pa), (7.51)

where we additionally use the approximation that ε ≪ 1. Next, the intra-cranial
transport coefficient ν is small in (7.44)2, so that

ṗB ≈ a+ qB [pa(t− τ ∗aB)− pB] . (7.52)

In the third equation, s is relatively small, indicating that tissue CO2 changes on
a long time scale, of order seven minutes. On the O(1) time scale, pT is effectively
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Parameter Value
ε 0.19
δ 0.13
Λ 11.5
s 0.18
µ 0.165
ν 0.0022
a 1.7
b 0.9
JP 0.2
JC 0.8
γP 0.3
γC 1.5

Table 7.5: Typical dimensionless parameter values.

constant, and its slow evolution is formally described by the method of averaging.
We take a local time average of (7.44)3, which yields (neglecting O(δ))

ṗT ≈ s
[

b+ q {pa(t− τ ∗aT)} − qpT

]

, (7.53)

where the overbar denotes the local time average, and can be taken as

p̄ =
1

Tav

∫ t

t−Tav

p dt, (7.54)

in which formally 1 ≪ Tav ≪ 1

s
. After a slow transient, tissue CO2 relaxes to a

quasi-equilibrium in which it follows the mean arterial pressure, thus

pT ≈ b+ q {pa(t− τ ∗aT)}
q̄

. (7.55)

Next, the intra-cranial transport term µ in (7.44)4 is also small, comparable to s,
but not completely negligible. In fact, we can simply integrate this equation. Again,
after a relatively long transient, the solution can be written in the delayed integral
form,

pC ≈
∫ ∞

0

pB(t− s)k(s) ds, (7.56)

where the delay kernel
k(s) = µe−µs. (7.57)

Since µ is small, (7.56) is adequately approximated by the averaging result,

pC ≈ p̄B. (7.58)
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The final equation in (7.44) can be approximated by

pv ≈ pT (t− τ ∗vT), (7.59)

since δ is small. Since pT is slowly varying, so also is pv, and the O(1) delay in (7.59)
is irrelevant, i. e., pv ≈ pT .

In the Grodins model, blood flow is variable, and q and qB satisfy first order
differential equations with a response time (due to the sympathetic system) of order
ten seconds, and thus relatively rapid. Here we will simply suppose that the blood
flows are constant; then the delays are constant, and have the values indicated in table
7.4. There is some justification for this, because of the relatively rapid adjustment of
blood flow towards equilibrium, although this equilibrium depends on blood gases to
some extent.

With q = qB = 1, pa = pv − v, pv = pT = b+ p̄a, (7.51) implies

v̄ = b, (7.60)

and pB satisfies
ṗB ≈ a+ pv − v(t− τ ∗aB)− pB. (7.61)

Averaging this equation and using (7.60) implies

a+ pv = b+ p̄B, (7.62)

and thus finally
ṗB ≈ b+ p̄B − v(t− τ ∗aB)− pB. (7.63)

(7.63) and (7.60) constitute the final reduced form of the Grodins model. It is a single
delay differential equation which is similar to the Mackey-Glass model, except that it
explicitly depends on the long term average brain CO2 concentration.

7.7.1 Stability

For simplicity, we ignore the peripheral controller (or, we lump its effect into that of
the central controller). Also, because b = 1 − δ(a− b) and we have ignored terms of
O(δ), we take b ≈ 1. We take the ventilation to be of the form

v(pk) = [1 + γ(pk − a)]+ , (7.64)

where for the Khoo controller, pk = pB, and for the Grodins controller, pk = pC .

Khoo controller, v(pB)

We write
pB = a+ p, (7.65)

so that p = 0 is the rest state. Denoting also the delay as τ ∗aB = τ , and writing
p(t− τ) ≡ pτ , (7.63) becomes

ṗ ≈ 1 + p̄− [1 + γpτ ]+ − p. (7.66)
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The (unique) steady state of the equation

ṗ = f [p(t− τ)]− p, (7.67)

in which f ′ < 0, is oscillatorily unstable if |f ′| > 1 at the steady state, and

τ >
π − cos−1(1/|f ′|)

[|f ′|2 − 1]1/2
, (7.68)

where 0 < cos−1(1/|f ′|) < π/2. The frequency Ω of the resulting oscillation, at the
bifurcation point, is

Ω =
[π − cos−1(1/|f ′|)]

τ
, (7.69)

and the resulting period, 2π/Ω, lies between 2τ and 4τ .
For (7.66) we have instability if

τ ∗aB >
π − cos−1(1/γ)

[γ2 − 1]1/2
. (7.70)

Since τ ∗aB ≈ 0.14 is small, instability occurs when γ is large, and cos−1(1/γ) ≈ π/2.
Thus instability occurs for

γ >∼ γc =
π

2τ ∗aB
≈ 11.2 (7.71)

with period P ≈ 4τ ∗aB. (The exact value of γc from (7.70) is 11.865 when τ ∗aB = 0.14.)
The dimensional period is approximately four times the lung to brain arterial delay,
4τaB. In normal circumstances, this is about 45 seconds, and comparable to the
observed periods. In fact, a slightly reduced cardiac output will increase the delay,
consistent with periods of order a minute, and also with the fact that congestive heart
failure will cause such a reduced output.

Using the definition of γ in (7.49), that of P ∗ in (7.38), and that τ ∗aB =
Q∗
BτaB
KB

,

we have the instability criterion in the form

γτ ∗aB =

(
AτaBP

∗GC

KB

)
Q∗
B

Q∗
>∼
π

2
, (7.72)

where

A =
1

863KCO2

≈ 0.23 l l(BTPS)−1. (7.73)

This criterion can be directly compared with the Mackey-Glass instability criterion
(7.11); they are identical if the Mackey-Glass compartment volume is interpreted
as K = KBQ

∗/AQ∗
B. And, in fact, table 7.1 indicates that with this definition,

K = 34.8 l(BTPS), close to the tissue volume of 39 l. Thus the Mackey-Glass
instability criterion is quite close to that derived from the Grodins model, despite
the fact that the models are not at all equivalent.
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Grodins controller, v(pC)

The more realistic controller has the ventilation being a function of pC . In this case
we take

v = [1 + γ {pC(t− τ)− a}]+ , (7.74)

and if we use the small µ result (7.58), then it is obvious that the steady state is
unconditionally stable. To find an instability criterion, we need to retain the delay
kernel form (7.56). We write pB = a + p as before, so that

ṗ ≈ 1 + p̄− p−
[

1 + γ

∫ ∞

0

p(t− τ − s)k(s) ds

]

+

, (7.75)

and for small perturbations about the equilibrium p = 0, then p̄ = 0, and solutions
p ∝ exp(σt) exist if

σ = −1− γk̂(σ)e−στ , (7.76)

where

k̂(σ) =

∫ ∞

0

k(s)e−σs ds (7.77)

is the Laplace transform of k(s). For the exponential kernel (7.57), σ satisfies

σ = −1− γµ

µ+ σ
e−στ . (7.78)

For small positive γ, Reσ < 0 and the steady state is stable; oscillatory instability
occurs for γ > γc, where

γc =
(µ+ 1)ω

µ sinωτ
, (7.79)

where

tanωτ =
(µ+ 1)ω

ω2 − µ
. (7.80)

When µ and τ are both small, one can show that

γc ≈
1

µτ
, (7.81)

and this shows how stability is obtained in the limit µ → 0. It leaves unclear what
the actual mechanism of instability is which causes Cheyne-Stokes respiration.
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Chapter 8

Blood cell production

Of all the cells in the human body, some 1014, fully a quarter are blood cells. And of
these, by far the most common are the red blood cells (RBC), also known as reticu-
locytes or erythrocytes. Circulating erythrocyte density in a healthy adult human is
about 5× 1012 cells l−1. Just as the function of respiration is to supply oxygen to the
body, the primary rôle of blood is to transport this oxygen to the tissues. In chapter
6, we described how the circulation of the blood was effected by the pump action of
the heart, but we did not describe how oxygen itself is transported. In fact, oxygen is
very poorly soluble in blood, and so the rôle of carrier is taken by the red blood cells,
which contain the protein haemoglobin. Oxygen readily binds to haemoglobin, and
in this way the red blood cells act as the oxygen transporters within the blood. Red
blood cells also facilitate the transport of CO2. They contain the enzyme carbonic
anhydrase, which catalyses the reaction of CO2 with water to form hydrogen ions and
bicarbonate ions, and in fact most of the CO2 transported in the blood does so by
this means.

Although present in far fewer numbers, there are two other principal types of
blood cells: platelets and white blood cells (WBC). Platelets (also called thrombo-
cytes) are small cell fragments which are formed by the disintegration of parent cells
called megakaryocytes. A typical circulating density is 3 × 1011 cells l−1. They are
instrumental in blood clotting, which is a fundamental causative mechanism in wound
healing.

White blood cells, or leukocytes, come in six different forms, and provide different
constituents of the immune system, which is concerned with the protection of the
body from invasion by foreign organisms. They are present in far fewer numbers than
platelets and red blood cells, a typical density of all white blood cell types being
7 × 109 cells l−1. The six different types of white blood cell are the neutrophils, the
eosinophils, the basophils, the monocytes, the lymphocytes, and the plasma cells. The
first three of these have a granular appearance, and thus are called granulocytes. The
granulocytes and the monocytes protect the body against foreign organisms by means
of phagocytosis: that is, by ingesting them. T lymphocytes and B lymphocytes, and
the plasma cells, form important constituents of the immune system. Most of the
circulating white blood cells are neutrophils (nearly two thirds) and lymphocytes
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Figure 8.1: The cell lines of development of leukocytes, erythrocytes and platelets
from a supposed parent pluripotential stem cell. There are many generations of
differentiating cells (at least ten), and the process of development may take upwards
of twenty days.

(nearly one third): the other types are present in smaller quantities in the blood.

8.1 Stem cells and their lineage

All of the various blood cell types are derived from primitive cells called haematopoi-
etic stem cells (or pluripotent haematopoietic stem cells) which are located in the
bone marrow. The different kinds of cells arise through a process of maturation
which gives rise to a kind of family tree, such as that represented in figure 8.1. When
a primitive stem cell differentiates down one of the descendant paths, we say that it is
a committed stem cell. At the trunk (or, in fact, the stem) of the family tree, there is
an initial divergence between the lymphoid and myeloid cell lines. The primitive lym-
phoid cells (called blast cells) migrate to the lymph nodes where they develop through
a sequence of developmental stages until they form the various kinds of T and B
lymphocytes of the immune system. The other developmental line is that of myeloid
cells, which develop in the bone marrow, and which lead through an initial divergence
between erythroblasts, megakaryoblasts and myeloblasts, to the eventual formation
of (respectively) erythrocytes, platelets and the various forms of white blood cells,
or leukocytes. The myeloid leukocytes are also called myelocytes, and comprise the
granulocytes and monocytes. Generally speaking, there is a non-uniqueness of cell
nomenclature.

The actual ‘reproduction’ process takes place as a consequence of cell progression
through the cell cycle indicated in figure 8.2. Cells may exist in a ‘resting’ phase, called
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Figure 8.2: The cell cycle. The resting phase is denoted by G0, and the proliferative
phase includes sub-phases labelled G1, D (DNA synthesis), G2 and M (mitosis),
the last of which culminates in division of the cell to form two new cells. These
may be more mature cells, or may be copies of the original cell, the relative rates
of differentiation and regeneration being presumably controlled by the numbers of
extant cell types.

the G0 phase, in which they are quiescent. They may leave the resting phase and
enter the proliferative phase, during which they go through a sequence of sub-phases,
at the end of which cell divison occurs (mitosis) and two new cells are produced. Cells
may mature continuously, so that the divided cells are more ‘mature’ (differentiated)
than the parent. (This cannot be entirely true for stem cells, presumably, otherwise
they would be gradually depleted with time; although one view of the aging process
is that it is simply due precisely to such a gradual depletion.) Cell division typically
takes about two days, and this introduces a delay into the description of cell cycle
control. Cells can also spontaneously die. This process is called apoptosis, and it
provides a simple first order control on cell numbers.

As with other physiological systems, the number of blood cells in the body needs
to be tightly controlled. Diseases occur when the cell numbers increase or decrease
beyond certain bounds. For example, uncontrolled proliferation of white blood cells
occurs in leukaemia. It is therefore reasonable to infer that the processes of the cell
cycle are themselves controlled, although the signalling factors which enable this are
not known. It is likely that control is exerted at several levels, and by several different
hormones.

Peripheral control is also exercised on the process of differentiation. For example,
the number of circulating red blood cells is directly related to blood oxygen concen-
tration. If this falls too low, then a substance called erythropoietin is released, which
stimulates increased production of reticulocytes, and thus eventually restores the cir-
culating RBC level. As with other physiogical controls, the response is delayed, so
that the possibility of oscillation exists. Simlar controls on WBC and platelet numbers
are effected by granulopoietin and thrombopoietin, respectively.
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8.2 Periodic haematopoietic diseases

There are a number of blood diseases in which oscillations in blood cell counts have
been reported. The first four of those described below involve oscillations in all
blood cell types. This is suggestive of an instability at the stem cell cycle level, and
in the following sections, beginning in section 8.3, we introduce a family of models
describing cell regulation, which are capable of producing oscillations. At the simplest
level, these are delay differential equations, but when maturation stage is introduced
as a separate independent variable, they become delay partial differential equations.

The last two diseases below, auto-immune haemolytic anaemia and cyclical throm-
bocytopenia, involve oscillations in one blood cell type, suggestive of an instability in
the peripheral control process, and we will describe models of delay type which can
describe these oscillations too. Here the delay is that involved in the differentiation
process.

All of the oscillatory diseases which we describe have periods in the range upwards
of 20 days. This suggests that the controlling time scale is that of differentiation,
which may be of this order, rather than the shorter delay (2 days) induced by the cell
cycling time. This will be consistent with the models we study.

8.2.1 Cyclical neutropenia

The appended -penia indicates a lack, thus neutropenia (or, more generally, leukope-
nia) is a disease in which neutrophils are abnormally low, due to low production rate
in the bone marrow. In cyclical neutropenia, neutrophil counts rise and then fall
to extremely low levels, with a fairly regular period of about 20 days. The other
blood cell types also oscillate, although less regularly. The cause of the oscillations
is thought to originate in the stem cell compartment, both because of this, and also
because a cell density wave can be seen to propagate down the maturation sequence
through myeloblasts, promyelocytes and myelocytes before being manifested in the
circulation. Figure 8.3 shows blood cell counts from a patient with cyclical neutrope-
nia.

8.2.2 Chronic myelogenous leukaemia

Leukaemia refers to the uncontrolled proliferation of white blood cells. There are
two main types: lymphocytic and myelogenous, referring to the affected cell lineages.
Chronic myelogenous leukaemia, often abbreviated as CML, is a form of leukaemia
which eventually leads to premature release into the blood of excessive numbers of
immature white blood cells. The disease is caused by a single genetic alteration
in (probably) a single haematopoietic stem cell, which leads to proliferation of the
abnormal cell lineage, and increased numbers of leukocytes in the circulation. There
is a chronic phase, which with treatment can last for years, and in this chronic phase
pronounced oscillations in the leukocyte population can occur (figure 8.4), with a
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Figure 8.3: Neutrophil, platelet and reticulocyte counts for a patient with cyclical
neutropenia. Units are: neutrophils, 109 cells l−1; platelets, 1011 cells l−1; reticulo-
cytes, 1010 cells l−1. Figure provided courtesy of Michael Mackey.

typical period of 60 days. Like cyclical neutropenia, other blood cell types also
oscillate, but less regularly.

The chronic phase is eventually followed by an acute phase, during which abnormal
cell density increases dramatically (known as blast crisis) and other cell mutations
appear. The acute phase lasts months, and leads inevitably to death. Conventional
treatments for CML include substances such as interferon-α, which essentially kill
cells, but a much more promising (designed) drug which targets the enzyme action
of the abnormal cells is STI571, and this appears to be much more successful in the
early trials which have taken place.

8.2.3 Polycythemia vera

Polycythemia vera is similar to CML in that it is caused by a mutation of a single
stem cell, which leads to increased proliferation of all the haematopoietic progenitor
cells. Red blood cell counts may rise to 7 or 8×1012 cells l−1, and the haematocrit (the
percentage of blood consisting of cells) rises from its normal 40% to 60 or 70%. Blood
volume also increases, leading to vascular engorgement, and the increased viscosity
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tends to cause blocking of capillaries. At least in some cases, all three blood cell types
can oscillate (figure 8.5), somewhat irregularly, with a period of about 20 days.

8.2.4 Aplastic anaemia

Anaemia means a deficiency of haemoglobin, either due to insufficient Hb concentra-
tion within red blood cells, or to too few red blood cells. Aplastic anaemia is caused
by the lack of a functioning bone marrow, and can be caused by radiation damage,
for example. Oscillations have been seen with a period of about 40 days (figure 8.6).

8.2.5 Auto-immune haemolytic anaemia

If the red blood cells are excessively fragile, they may rupture as they pass through
the capillaries or the spleen. The normal resident lifetime of a red blood cell in
the circulation is about 120 days. In haemolytic anaemia, even though production
is normal, the life span of red blood cells is effectively shortened. Auto-immune
haemolytic anaemia is a rare form of this anaemia in which oscillations in reticulocyte
density have been reported, with a period of about 16 days.

8.2.6 Cyclic thrombocytopenia

Thrombocytopenia indicates a low level of thrombocytes, which refers to the cell
lineage which gives rise to megakaryocytes and their fragmented progeny, platelets.
People with this disease have a tendency to bleed internally from capillaries, so that
the skin appears purple and blotchy, giving rise to the name thrombocytopenic purpura.
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Figure 8.4: Leukocyte, platelet and reticulocyte counts for a patient with chronic
myelogenous leukaemia. Units are: leukocytes, 1010 cells l−1; platelets, 1011 cells l−1;
reticulocytes, 1010 cells l−1. Figure provided courtesy of Michael Mackey.
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Figure 8.5: Neutrophil, platelet and reticulocyte counts for a patient with poly-
cythemia vera. Units are: neutrophils, 109 cells l−1; platelets, 1011 cells l−1; reticulo-
cytes, in percentage (of all blood cells). Figure provided courtesy of Michael Mackey.

Cyclical thrombocytopenia, in which platelet counts oscillate with a period of between
20 and 40 days, has been reported. The oscillations are from normal to low levels.

8.3 Stem cell control models

The reproductive cycle of a cell was diagrammatically represented in figure 8.2. Repro-
duction of cells is controlled by various proteins called growth inducers. For example,
IL-3 (interleukin-3) is a growth inducer for all stem cells, while other growth inducers
are specific to different committed cell lines.

Differentiation of cells is controlled by another set of proteins called differentiation
inducers, for example erythropoietin stimulates production of red blood cells, while a
number of proteins stimulate white blood cell production; for example, G-CSF (gran-
ulocyte colony stimulating factor) stimulates production of granulocytes. Causative
factors for increased CSF production are tissue injury or infection.

In this section we present a simple model for the growth inducer effected control
of the cell cycle, and particularly for that of stem cells. We have in mind that an
oscillatory instability in the controlled cell cycle may provide an explanation for the
oscillations in some of the diseases described above, such as cyclical neutropenia and
chronic myelogenous leukaemia.
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Figure 8.6: Neutrophil, platelet and haemoglobin counts for a patient with aplastic
anaemia. Units are: neutrophils, 109 cells l−1; platelets, 1011 cells l−1; Hb, g dl−1.
Figure provided courtesy of Michael Mackey.

8.3.1 The G0 model

The model is based on the diagram in figure 8.2. We let N denote the density of cells
in the resting phase, and P denote the density of cells in the proliferative phase. We
suppose the recruitment rate from the resting phase is proportional to N , that cell
apoptosis occurs in the proliferative phase proportionally to P , and that cells are lost
by differentiation from the resting phase at a rate proportional to N . As indicated in
figure 8.2, the coefficients of proportionality are taken to be β, γ and δ, respectively.
Conservation equations for the cell densities are then given by

Ṗ = −γP + β(N)N − e−γτβ(Nτ )Nτ ,

Ṅ = −β(N)N − δN + 2e−γτβ(Nτ)Nτ , (8.1)

where Nτ = N(t−τ). The term e−γτβ(Nτ )Nτ represents the flux from the proliferative
phase to the resting phase. It is equal to the flux rercruited from the resting phase,
with allowance made for the time τ spent in the proliferative phase, together with
the exponential wastage factor due to apoptosis. The extra factor 2 in the equation
for N arises from the fact of cell division on mitosis.

In these equations, we take δ and γ to be constant, but we allow the specific
recruitment rate β to depend on N , to represent the effect of growth inducer control
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of proliferation, which is assumed to depend on the total number of resting phase
cells. Other assumptions are equally possible, for example that control is effected by
the proliferative phase density.

β should be a decreasing function of N , and we take it to be a Hill function

β =
β0θ

n

θn +Nn
. (8.2)

Note that in (8.1), the equation for P uncouples from that for N , so that we need
consider only the equation for N . We non-dimensionalise it by scaling N ∼ θ and
t ∼ τ . We then find the dimensionless equation for N in the form

Ṅ = g(N1)− g(N) + ε[µg(N1)−N ], (8.3)

where

g(N) =
bN

1 +Nn
, (8.4)

and the parameters are given by

b = βτ, ε = δτ, µ =
2e−γτ − 1

δτ
. (8.5)

We use typical values

δ = 0.05 d−1, β0 = 1.77 d−1, τ = 2.2 d,

n = 3, θ = 2.3× 103 cells µl−1, γ = 0.2 d−1, (8.6)

to find
b ≈ 3.9, µ ≈ 2.6, ε ≈ 0.11. (8.7)

The definition of the parameter µ appears contorted, but it is in fact a natural
one. We need µ > 0 in order that a steady cell population is viable, and we need
µ = O(1) in order that this steady state be of O(1), which we need in order that the
control by the Hill function for β be effective. Essentially, having µ = O(1) allows
the net gain of the resting cell population through proliferation to balance the loss to
differentiation.

Provided µb > 1, there is a unique steady state for N . To assess its stability, we
denote the steady state as N∗, and write N = N∗ + u. Substituting this into the
equation (8.3) and linearising, we derive the linear equation for u:

u̇ = g′[u1 − u] + ε[µg′u1 − u], (8.8)

where g′ = g′(N∗). This has solutions u = exp(σt) providing

σ = −α− Γe−σ, (8.9)

where α and Γ are defined by

α = g′ + ε, Γ = −(1 + εµ)g′. (8.10)
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Figure 8.7: Stability map for red blood cell model. (This is the same map as that
shown in figure 6.10.) The plus and minus signs indicate the sign of real values of the
growth rate σ, when these exist.

(8.9) is an equation we have seen before, in chapter 6. Figure 8.7 shows the
stability map in terms of the parameters Γ and α. For the present case, we have that
Γ+α = ε(1−µg′), and this is positive. (This follows from consideration of the graph
of µg(N) − N if µb > 1.) Therefore the steady state is unstable if Γ > Γ0(α) (if
α > −1) or if α < −1. Consulting the definitions of Γ and α, we see that instability
requires g′ < 0, and (approximately, using the fact that ε is small)

g′ < −1− 2
3
ε(µ− 1

2
), (8.11)

where we use the fact that Γ′(−1) = 1
2
.

For small ε, the instability criterion is thus essentially that g′(N∗) < −1. Since g is
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Figure 8.8: Solution of (8.3) with ε = 0.11, b = 3.9 and µ = 1.2.
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a unimodal function, this requires firstly that the most negative slope is less than −1,
and then that N∗ lies within the interval where g′ < −1. Since g(N∗) = N∗/µ, this
is equivalent to µ lying within a finite interval (µ−, µ+). For the function g defined
by (8.4), the criterion for a minimum slope less than −1 is that

b > bc =
4n

(n− 1)2
, (8.12)

(bc = 3 for n = 3), and then the instability interval endpoints are

µ± = 1
2
(n− 1)

[

1±
(

1− bc
b

)1/2
]

; (8.13)

for n = 3, bc = 3 and b = 3.9, we have µ− ≈ 0.52, µ+ ≈ 1.48. Figure 8.8 shows the
oscillations which result when µ = 1.2 within the instability interval.

8.3.2 Relaxation oscillations

One of the interesting features of many of the oscillations discussed previously is that
they have relatively long periods, compared with the delay of 2 days in the cell cycle
time. The reason for this is that the controlling time scale for the oscillations is the
maturation time 1/δ ≈ 20 days, which is much longer than the cell cycle time. Indeed,
we see from figure 8.8 that the dimensionless period is about 10, i. e., of O(1/ε), which
is dimensionally of O(1/δ). We can analyse these oscillations on the assumption that
ε is small, and they then take the form of relaxation oscillations (albeit in an infinite
dimensional system). We define a slow time variable

T = εt, (8.14)

so that the equation (8.3) becomes

N ′ =
[g(Nε)− g(N)]

ε
+ µg(Nε)−N, (8.15)

where Nε = N(T − ε) and N ′ = dN/dT . The point is, that if N varies on the slow
time scale T , then the delayed term can be Taylor expanded about T , thus yielding
a first order differential equation for N . Carrying out the approximation, we find

dN

dT
≈ µg(N)−N

1 + g′(N)
, (8.16)

and this describes evolution on a ‘slow manifold’ so long as g′(N) 6= −1. In the
case where the steady state is unstable, that is, µ− < µ < µ+, let N± denote the
intersections of N/µ± with g(N) (see figure 8.9); then when N < N−, N increases
until it reaches N−; when N > N+, it decreases until it reaches N−. In either case, the
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slowly varying approximation must break down, and there occurs a rapid transition,
where N jumps on the t time scale. In this transition phase, N approximately satisfies

dN

dt
= g(N1)− g(N). (8.17)

If a relaxation oscillation occurs, then we must have N tending to a constant as
t→ ±∞, and direct integration of (8.17) indicates that in that case we must have

[N + g(N)]∞−∞ = 0. (8.18)

Numerical integration of (8.17) appears to confirm that indeed N tends to a constant
as t → ∞. Thus the relaxation oscillation traces out the path shown in figure 8.10,
jumping rapidly from N− up to NU , slowly decreasing to N+, jumping rapidly down
to NL, and then slowly increasing back up to N−.

An approximation for the period is then determined by the time it takes to traverse
the slow parts of the solution, and this is given (dimensionlessly) by P = P0/ε, where

P0 =

∫ NU

N+

(
1 + g′

N − µg

)

dN +

∫ N−

NL

(
1 + g′

µg −N

)

dN. (8.19)

In dimensional terms, the period is thus P0/δ, and is directly proportional to the
maturation time.

An instructive analogue follows by writing

v = g(Nε) + ε[µg(Nε)−N ],

v̂ =
g(N)− g(Nε)

ε
, (8.20)
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Figure 8.10: Phase diagram of the relaxation oscillations of (8.3). g(N) is plotted for
b = 5, n = 3.

when the functional differential equation (8.15) takes the form

εN ′ = v − g(N),

N ′ + v̂ = µg(N)−N − εµv̂. (8.21)

With the single alteration that we take v̂ = v′, (8.21) forms a pair of ordinary differ-
ential equations whose oscillatory solutions have exactly the same form as those of
the delay equation.

8.4 Peripheral blood cell control models

Now we turn to a model which describes the peripheral control of red blood cell
production by the hormone erythropoietin. Diagrammatically, the model is illustrated
in figure 8.11. We denote the number of circulating red blood cells by E(t), with units
of cells µl−1. The number of circulating RBCs directly affects the quantity of oxygen
in the blood, and this controls the release of the hormone erythropoietin, which, we
suppose, affects the flux F of RBCs released into the blood, both through the rate
of commitment of pluripotential stem cells to the erythroid line, and by the rate
of maturation of the cell lineage. Because of the time τ which development of the
mature blood cells takes, the flux F is in fact a function of the delayed erythrocyte
density, Eτ ≡ E(t−τ). If we suppose that blood cells die as a simple first order decay
process1 with delay constant γ, then a model for E is the first order differential delay

1This is an unrealistic simplification, since in reality red blood cells have a finite lifetime of about
120 days.
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Figure 8.11: A schematic representation of erythropoietin feedback control of red
blood cell production. The flux of cells F from the committed proerythroblasts is
taken to depend on the RBC density E, with F (E) being a decreasing function. The
delay τ in the process of differentiation causes the flux delivered to the blood to
depend on the value of E(t− τ).

equation
dE

dt
= F [Eτ ]− γE, (8.22)

where we take F to be a montonically decreasing function. To be specific, let us
suppose that F is given by the Hill function

F (E) =
F0θ

n

θn + En
. (8.23)

We non-dimensionalise the equation by scaling E ∼ θ, t ∼ τ , so that the dimen-
sionless version of (8.22) can be written as

ξ̇ = ρf(ξ1)− αξ, f(ξ) =
1

1 + ξn
, (8.24)

where ξ1 = ξ(t− 1), and

α = γτ, ρ =
F0τ

θ
. (8.25)

Typical estimated values of the parameters are γ = 2.3 × 10−2 d−1 (i. e., day−1),
F0 = 106 cells µl−1 d−1, n = 8, θ = 3.5 × 106 cells µl−1, τ = 6 d. With these
values, we find ρ ≈ 1.7, α ≈ 0.14. The equation for ξ has a unique steady state ξ∗

(indeed this is evidently the case for any decreasing function f(ξ)), and its stability
is determined by linearisation about the steady state. We write ξ = ξ∗ + ξ̃, linearise,
and then solutions of the resulting linear equation are exp(σt), where

σ = −α− Γe−σ, (8.26)

and
Γ = ρ|f ′(ξ∗)|. (8.27)
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Again, the stability is described by figure 8.7. For positive Γ and α, as here, the
steady state loses stability in a Hopf bifurcation for Γ > Γ0(α). For small values of
α, instability occurs approximately if Γ > Γ0(0) = π/2, and the resulting blood cell
population oscillates periodically. The frequency is approximately π/2, so that the
dimensionless period is ≈ 4, and the dimensional period is ≈ 4τ , or about 24 days
with the values suggested here.

To apply this model to haemolytic anaemia, we would propose an increased value
of γ, representing a shortened life span for red blood cells in the circulation. Other
things being equal, increasing γ simply has the effect of increasing α; however, since α
is small, the instability criterion remains essentially the same, Γ >∼ π/2. In addition,
changing α has a dramatic effect on Γ through the variation of the steady state ξ∗
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Figure 8.13: Variation of Γ with ρ/α.
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(and thus |f ′(ξ∗)|). The steady state is given by ξ∗(1 + ξ∗n) = ρ/α, and thus ξ∗ is
a monotonically increasing function of ρ/α, as shown in figure 8.12. Consultation of
the graphs of ρf(ξ) and αξ shows that Γ is a humped function of α, as shown in figure
8.13. Further, because n is quite large, we see that when ξ∗ < 1, then ξ∗ ≈ ρ/α, and
this must be when α >∼ ρ; conversely ξ∗ ≈ (ρ/α)1/(n+1) when α <∼ ρ. In particular,
the maximum of Γ as a function of α is when α ∼ ρ. Since our estimate for ρ/α
is approximately 12, it seems we can suppose always that α < ρ, and thus that Γ

increases monotonically as α increases. Precisely, we find Γ = αn

[

1− αξ∗

ρ

]

, and

using the approximation for α < ρ with n large, we have

Γ ≈ αn; (8.28)

thus an approximate instability criterion is

α >∼
π

2n
; (8.29)

with the values we have used, this yields α >∼ 0.2. Thus in this case, instability and
consequent oscillations set in for a mild (50%) increase in the the blood cell removal
rate γ. In principal, a sufficient increase of γ would re-stabilise the equilibrium, but
this is not feasible in practice.

8.5 Maturation and delay

It is evident in the models we have studied so far that cell maturation, from committed
stem cells through blast cells, colony forming units to fully mature blood cells, is an
important constituent of the cell forming process. Since there are many different
types of cells involved in maturation, it is natural to develop models which consider
maturation stage as an independent variable, as well as age through the cell cycle,
and time. Thus we generalise the G0 model of the cell cycle as indicated in figure
8.14, by letting the density of proliferative cells p and the density of resting phase
cells n be functions of time t, maturation m and age a. The units of time are days
(d), and we also measure age as a time, but we allow the units of maturation (mat)
to be independent; for example, one might want to use cell generation number as a
measure of maturation, and it is generally more flexible not to assume maturation is
necessarily measured as a time.

We take age a to be measured from the beginning of the cell cycle, which is taken
to be of duration τ . Then for p, we have 0 < a < τ , while for n, τ < a < ∞ (or
one could have a maximum resting phase time). Maturation should proceed to a
finite maximum, say m = mF , when the mature cells are released into the blood.

The total number of cells in a particular lineage is thus

∫ mF

0

∫ τ

0

p(t,m, a) da dm in

the proliferative phase, and

∫ mF

0

∫ ∞

τ

n(t,m, a) da dm in the resting phase. This still
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Figure 8.14: A schematic illustration of cell maturation and proliferation.

assumes a single cell line.2 The units of both p and n are cells age−1 mat−1.
A particular conceptual difficulty concerns the primitive (uncommitted) stem cells

at m = 0. We think of the stem cell pool as consisting of a finite number of cells, and
these must then be described separately from p and n. We denote the proliferative
and resting cell densities at m = 0 as p0(t, a) and n(t, a), with units of cells age−1.

Conservation laws for p and n follow from first principles, in a similar way to other
age dependent population models, except that here there are two age-like variables.
Conservation of proliferative cells implies

∂p

∂t
+
∂p

∂a
+
∂(V p)

∂m
= −γp, (8.30)

where V is the maturation rate, assumed positive, with units of mat d−1 (maturation
units per day), and γ is the specific rate of apoptosis, assumed constant. We suppose
(8.30) applies during the cell cycle of length τ (which might depend on m), thus for
0 < a < τ ; then for a > τ , the cells in the resting phase satisfy the equation

∂n

∂t
+
∂n

∂a
+
∂(V n)

∂m
= −Rn, (8.31)

which differs from (8.30) by the rate of recruitment R (units: d−1) back to the prolif-
erative phase; cell mortality is taken to be zero in the resting phase. Equation (8.31)
applies for a > τ .

2In reality we should have cell densities pi and ni, where i labels the committed cell type.
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At the end of the cell cycle, a = τ , we apply a boundary condition describing the
conversion of p to n. This simply represents the fact of cell division on mitosis:

n(t,m, τ) = 2p(t,m, τ). (8.32)

The analogue of the renewal equation describing birth in age-structured population
models is the recruitment equation:

p(t,m, 0) = RN(t,m), (8.33)

where N is the total cell density (with respect to m only) in the resting phase,

N =

∫ ∞

τ

n da. (8.34)

This follows from the basic integral conservation law for p; when integrated over a, it
is seen that the influx to p at the beginning of the cell cycle is just p(t,m, 0).

If R > 0 everywhere, it is reasonable to suppose that n→ 0 as a→ ∞, and then
integration of (8.31) with respect to a from τ to ∞ yields

∂N

∂t
+
∂(V N)

∂m
= −RN + 2p(t,m, τ). (8.35)

Next we solve (8.30) for p, using the recruitment equation as the initial condition
at a = 0. We parameterise this as

t = s, m = µ, a = 0, p = R(s, µ)N(s, µ), (8.36)

valid for s, µ > 0. These form the initial data for the characteristic equations for
(8.30),

ȧ = 1, ṁ = V, ṗ = −(γ + V ′)p, (8.37)

where V ′ = ∂V/∂m; to be specific, we will assume V = V (m), so that V ′(m) =
dV/dm. The solution of the characteristic equations is

a = t− s,

∫ m

µ

dρ

V (ρ)
= t− s,

p = R(s, µ)N(s, µ) exp

[

−
∫ t

s

[γ + V ′(m)] dt

]

. (8.38)

Now define a function ν(m, a) by
∫ m

ν

dρ

V (ρ)
= a. (8.39)

Then a = t− s, µ = ν(m, a). Also dt = dm/V (m) on a characteristic, thus for t > a
(and also ν > 0),

p(t,m, a) = R[t−a, ν(m, a)]N [t−a, ν(m, a)] exp
[

−
∫ m

ν(m,a)

{γ + V ′(ρ)} dρ

V (ρ)

]

; (8.40)
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simplifying and putting a = τ , we have

p(t,m, τ) = R[t−τ, ν(m, τ)]N [t−τ, ν(m, τ)] exp
[

−
∫ m

ν(m,τ)

γ dρ

V (ρ)

]
V [ν(m, τ)]

V (m)
, (8.41)

for t > τ and ν > 0. Finally, (8.35) becomes

∂N

∂t
+

∂

∂m
(V N) = −RN

+ 2R[t− τ, ν(m, τ)]N [t − τ, ν(m, τ)] exp

[

−
∫ m

ν(m,τ)

γ dρ

V (ρ)

]
V [ν(m, τ)]

V (m)
. (8.42)

Note that ∫ m

ν(m,τ)

dρ

V (ρ)
≡ τ. (8.43)

It is convenient to define a modified maturation variable ξ by

ξ =

∫ m

0

dρ

V (ρ)
; (8.44)

ξ has units of time, and indeed it is equal to the elapsed time during maturation.
Note that ν > 0 if ξ > τ . The lower limit can be chosen for convenience, and allows
us to fix ξ at some reference point; here we choose this to be the initial maturation
stage (note that this cannot be done if V (0) = 0). Now if

F (m) ≡ f(ξ), (8.45)

then we find
F [ν(m, τ)] = f(ξ − τ). (8.46)

We change variable from m to ξ, and define

v(ξ) ≡ V (m),

M ≡ NV (8.47)

(note that M dξ = N dm, so that M is cell density in terms of the variable ξ; the
units of M are cells d−1). After a little manipulation, we find

∂M

∂t
+
∂M

∂ξ
= −RM + 2e−γτRτ,τMτ,τ , (8.48)

where
Rτ,τ = R[t− τ, ξ − τ ], Mτ,τ =M [t− τ, ξ − τ ], (8.49)

and we write M and R as functions of ξ and t rather than m and t.
This equation applies if t > τ and ξ > τ . To complete the specification of the

equation for M , we have to consider initial conditions at t = 0, and the rate of
committal of the pluripotential stem cell population at m = 0. If we suppose that

p = pI(ξ, a) at t = 0, (8.50)
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then one can show (cf. question 8.8) that M satisfies

∂M

∂t
+
∂M

∂ξ
= −RM +Q, (8.51)

where

Q =







2e−γτR[t− τ, ξ − τ ]M [t − τ, ξ − τ ], t > τ, ξ > τ,

2e−γtpI [ξ − t, τ − t]v(ξ − t), t < τ, ξ > t,

2e−γξV0p0[t− ξ, τ − ξ], t > ξ, ξ < τ.

(8.52)

This equation requires prescription of an initial condition for M at t = 0, and a
boundary condition at ξ = 0, which will be derived in the following subsection. The
effect of the initial condition is washed out of the system after a time

ξF =

∫ mF

0

dρ

V (ρ)
. (8.53)

After a time τ , the effect of the initial condition for pI becomes irrelevant, and
only the first and third conditions in (8.52) are important.

8.5.1 Stem cell committal

Recall that we denote the primitive stem cell (age-dependent) densities to be p0 and
n0 for proliferative and resting phases, respectively. By analogy to the committed cell
lineage, conservation laws for these are of the form

∂p0
∂t

+
∂p0
∂a

= −(γ0 + V0)p0,

∂n0

∂t
+
∂n0

∂a
= −(V0 +R0)n0, (8.54)

where V0 is the rate of loss of stem cells to maturation, and γ0 is the apoptotic rate.
We suppose they are constants. Note that V0 is unrelated to V , indeed the units of
V0 and V are not even the same: V has units of mat d−1, while V0 has units of d−1.
Note also that p0 and n0 have units of cells age−1 (unlike p and n).

The primitive loss to maturation must balance the source for p and n at m = 0,
thus

V0p0 = (V p)|m=0, V0n0 = (V n)|m=0, (8.55)

and the units are consistent.
Analogously to (8.30) and (8.31), we have

p0(t, 0) = R0N0,

n0(t, τ) = 2p0(t, τ), (8.56)
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where

N0 =

∫ ∞

τ

n0 da. (8.57)

Integration over a now yields

dN0

dt
= −V0N0 − R0N0 + 2p0|a=τ , (8.58)

and
(NV )|m=0 = N0V0. (8.59)

In order to find p0 we must solve

∂p0
∂t

+
∂p0
∂a

= −(γ0 + V0)p0, (8.60)

with parametric initial conditions on a = 0, s > 0:

p0 = R0(s)N0(s), a = 0, t = s. (8.61)

For t > a, the solution is

p0 = R0(t− a)N0(t− a) exp

[

−
∫ t

t−a

(γ0 + V0) ds

]

, (8.62)

whereas for t < a the solution depends on the initial condition posed at t = 0, a > 0.
Specifically, if p0 = p00(a) at t = 0, then

p0 = p00(a− t) exp

[

−
∫ t

0

(γ0 + V0) ds

]

, t < a. (8.63)

Putting a = τ , we find

dN0

dt
= −(R0 + V0)N0 + 2R0(t− τ)N0(t− τ)e−(γ0+V0)τ , t > τ, (8.64)

which prescribes the control system for N0. This is a precise analogue for (8.1)2, and
indeed provides a formal derivation of the latter equation. It describes pluripotential
stem cell control independently of the maturation process, providing we can assume
the stem cell recruitment rate R0 is a function only of the resting stem cell population,
N0. For t < τ , the equation for N0 involves the initial condition for p0, and we can
equivalently simply prescribe initial data for N0 there.

Finally, the two equations (8.64) and (8.48) are coupled through (8.59), which
provides the requisite boundary condition for M at ξ = 0:

M = V0N0 at ξ = 0. (8.65)

The equation for M itself takes the form, if we restrict attention to values of t > τ ,

∂M

∂t
+
∂M

∂ξ
= −RM +Q, (8.66)
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where

Q =







2e−γτR[t− τ, ξ − τ ]M [t − τ, ξ − τ ], ξ > τ,

2e−(γ0+V0)τe(γ0+V0−γ)ξV0R0(t− τ)N0(t− τ), ξ < τ,
(8.67)

and we have used the appropriate expression (8.62) for p0(t, a) in t > a.

8.5.2 Non-dimensionalisation

The equation (8.66) is simply non-dimensionalised. We write t and ξ in terms of τ ,
and use N0V0 (or its mean) as a scale for M . In dimensionless terms, and for ξ > 1,
(8.66) is now conveniently written in the form

∂M

∂t
+
∂M

∂ξ
= −rM + (1 + λ)r1,1M1,1, (8.68)

where M1,1 =M [t− 1, ξ − 1] (similarly for r), and

λ = 2e−γτ − 1 (8.69)

should be positive (otherwise cell lines will die), and r = Rτ . Also, M = O(1) at
ξ = 0.

8.5.3 Steady state

Let us suppose r in (8.68) is constant, and for simplicity ignore the distinct form of
the equation when ξ < 1. The equation for M is linear, and has a steady solution of
the form

M = esξ, (8.70)

where s is the unique positive root of

s =
[
(1 + λ)e−sτ − 1

]
r (8.71)

(we assume γτ < ln 2, so that λ > 0). The cell density with respect to maturation
time thus grows exponentially.

Direct consideration of (8.71) shows that s increases if R increases, and decreases
if τ or γ increase. If we use the same typical values of the parameters as before, i. e.,

R = 1.8 d−1, τ = 2.2 d, γ = 0.2 d−1, (8.72)

then a good approximation to s is

s ≈ r ln(1 + λ)

1 + r
(8.73)

(see question 8.9 for a better approximation, as well how to derive this), and in fact
this appears to be a uniformly good approximation. This suggests that s ∼ O(1)
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(unless r ≪ 1), and thus that the amplication factor of the cell flux from committal
to mature blood cell is ∼ exp(ξm), where ξm is the dimensionless maturation time
given by

ξm = ξF/τ (8.74)

(ξF is the dimensional maturation time). Estimates of cell cycle time τ of order 2
days, and of maturation time of order 20 days (in some cases) suggest an amplification
of order 104, and such a large amplification appears consistent with the apparent
difficulty in isolating primitive stem cells (and thus their sparsity).

8.5.4 Wave propagation

Suppose now that the primitive stem cell population N0 oscillates periodically, be-
cause of an instability in its control mechanism. If the period is 2π/ω, then (8.68)
has solutions of the same period of the form

M =
∑

p,q

cpqe
σqξ+ipω(t−ξ), (8.75)

provided σq satisfies a similar equation to (8.71), i. e.,

σ = −α− Γe−σ, (8.76)

where
α = Rτ, Γ = −Rτ(1 + λ). (8.77)

Note that since a viable population requires λ > 0, we have Γ + α < 0, and there
is always a single positive root, which can be labelled with q = 0 (see question 8.3).
The others are complex (conjugates), and are labelled with increasing frequency as
q = ±1,±2, etc.

The complex roots are shown in figure 8.15, which also shows that the complex
roots σ = s± iθ are well approximated by their high frequency approximation

θ ≈
(
n+ 1

2

)
π, n ∈ Z+, s ≈ − ln

((
n+ 1

2

)
π

|Γ|

)

, (8.78)

where n is even if Γ > 0 and odd if Γ < 0; it is only the lowest (and most unstable)
frequency mode which is not adequately approximated.

The issue of whether any periodic initial data for (8.66) in the interval 0 < ξ < τ
can be represented in the form (8.75) is tantamount to the issue of whether the modes
exp(ση) form a complete basis for representation of functions of η ∈ (0, 1). Such an
enquiry is beyond the scope of the present notes.

(8.75) shows that periodic variations in stem cell density will propagate down the
cell lineage as a travelling wave. For the normal case where σ0 > 0 and Reσq < 0 for
q 6= 0, the oscillatory components die away at large ξ, leaving only the ‘fundamental’,

M =
∑

p

cp0e
σ0ξ+ipω(t−ξ), (8.79)

a travelling wave whose amplitude grows as it propagates.
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in the complex σ = s+ iθ plane. The crosses
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8.5.5 Spontaneous oscillations

Of course the solution in (8.75) also represents the steady state, if ω = 0, or equiva-
lently we select only the p = 0 mode. In our discussion of the steady state, we selected
the unique positive growing mode σ0 (denoted as s in (8.71)). The other complex
modes could also be important if they have positive real part, causing oscillations as
maturation progresses; and as figure 8.16 shows, such oscillatory modes do occur for
larger values of |Γ|. For α = 4, for example, the first complex pair of solutions of
(8.76) has positive real part if |Γ| > 6.683. It seems feasible that such oscillations
might swamp the exponential growth, but in fact this is not the case, since it is easy
to show that Reσ0 > Reσj for any complex σj with positive real part, so that the
pure exponential growth term will dominate in general. (See also question 8.12.)

8.5.6 Peripherally controlled oscillations

The more interesting question concerning (8.68) is whether oscillatory instability can
be induced by the dependence of the parameters on cell density. Various choices
are possible, depending on which control concerns us. One obvious possibility is
differentiation-induced control, where we might suggest that the recruitment rate r
in (8.68) is a decreasing function of the total maturing cell density, i. e., r = r(M̄),
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Figure 8.16: Expanded version of the map shown in figure 8.7. The curves are plotted
parametrically as α = −Ω/ tanΩ, Γ = Ω/ sinΩ. Figure 8.7 showed the (principal)
Hopf bifurcation curve corresponding to the range Ω ∈ (0, π); further curves from the
ranges (π, 2π), (2π, 3π), etc., are added alternately above and below the α axis in the
order indicated (the curve labelled n corresponds to Ω ∈ (nπ, (n + 1)π)). Because

Re
∂σ

∂Γ

∣
∣
∣
∣
iΩ

=
Γ− cosΩ

|Γ− eiΩ|2
is positive for the curves above the α axis and negative below,

all of the pairs of eigenvalues σ cross the imaginary axis to the right as each bifurcation
curve is crossed. Therefore between the curves labelled 1 and 3 there is one pair with
Reσ > 0, between 3 and 5 there are two, and so on. The dashed lines are the
asymptotes Γ = ±α.

where

M̄ =

∫ ξm

0

M dξ. (8.80)

This might be relevant in the development of acute myelogenous leukaemia, at the
onset of blast crisis, when the body is flooded with immature blood cells.

The other possibility is peripheral control, where the mature blood cell density
affects the differentiation rate of committed stem cells. For example, in erythropoiesis,
we suppose the circulating erythrocyte density has a direct effect on the differentiation
rate of pluripotential stem cells. To model this, let B be the number of circulating
red blood cells3. The dimensionless flux of mature blood cells to the bloodstream is
M(ξm, t), and therefore a simple model for RBC number is

dB

dt
=M(ξm, t)− aB, (8.81)

3Rather than cell density, as it makes the units simpler.
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where the second term represents the removal of RBC via apoptosis.4 Since the stem
cell committal rate is V0, and this appears in the initial condition for M at ξ = 0, the
natural way to include peripheral control in the model for M is to have the initial
condition dependent on B, that is,

M = h(B) at ξ = 0. (8.82)

Some advantage accrues if we suppose that ξm ≫ 1, or ξF ≫ τ , meaning that the
maturation time is significantly longer than the cell cycle time, or equivalently that
there are a large number of generations in the cell lineage. Let us define

ε =
1

ξm
, (8.83)

and the slow time and maturation scales

T = εt, X = εξ. (8.84)

We also define
λ = εµ, (8.85)

and suppose that µ = O(1). Essentially we are revisiting the relaxation oscillation
analysis of section 8.3. The partial differential equation for M takes the form

∂M

∂T
+
∂M

∂X
=

−rM + rε,εMε,ε

ε
+ µrε,εMε,ε, (8.86)

and expanding in a Taylor series as we did before, we have

∂[(1 + r)M ]

∂T
+
∂[(1 + r)M ]

∂X
≈ µrM, (8.87)

with the boundary condition

M = h(B) at X = 0. (8.88)

If we suppose r is constant, then the solution of this is

M = h[B(T −X)] exp

[
µrX

1 + r

]

, (8.89)

and the emitted cell flux at X = 1 (ξ = ξm) is

M(1) = Ah[B(T − 1)], (8.90)

where the amplification factor A is

A = exp

[
µr

1 + r

]

. (8.91)

4This first order decay term is equivalent to choosing an exponential distribution of death times,
which is not very realistic, but will serve for illustration.
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Therefore the RBC conservation law becomes the delay recruitment model

dB

dT
= Ah(B1)− γB, (8.92)

where γ = aξm. We have seen this model relentlessly. Oscillations will occur as a con-
sequence of instability of the (unique) steady state if A|h′| is large enough. Generally,
as γ increases (RBC lifetime shortens), the equilibrium RBC number decreases and
|h′| increases, thus promoting the kind of oscillations seen in haemolytic anaemia, for
example.
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Glossary

Acetylcholine

ADP

Adrenaline (epinephrine)

Afferent nerves

Alveoli

Aorta

Apnea

Absence of breathing.

Apoptosis

Pre-programmed cell death.

Apneustic centre

Arteries

These are the blood vessels which carry freshly oxygenated blood from the (left
ventricle of the) heart to the tissues, where the oxygen load is consumed, and
metabolically produced carbon dioxide is taken up.

ATP

Autonomic control

Baroreceptors

Baroreflex

Basophil

Blast cells

Bradycardia

A slow heart rate.

Bronchi

Capillary bed

As the arteries transport blood away from the heart, they divide into finer and
finer passageways, first arterioles, and finally capillaries, extremely thin tubes
which perfuse tissue and which can efficiently exchange blood gases with the
tissue cells.
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Carbonic anhydrase

An enzyme contained in red blood cells which facilitates the reaction of water
and carbon dioxide to form bicarbonate ions, in which form most of the CO2 in
the blood is transported.

Carotid arteries

Carotid sinus

Catecholamines

Cerebro-spinal fluid (CSF)

Chemoreceptors

Cheyne-Stokes respiration

This is an oscillatory kind of breathing in which a waxing and waning pattern
of breathing alternates with periods of complete apnea, with a typical period of
a minute or so. Common causes of Cheyne-Stokes breathing are heart failure,
stroke, and ascent to high altitude, when the period is less.

Chronotropic effect

Compliance

Dead space

Diaphragm

Diastole

Dicrotic notch

Dorsal respiratory neurons

Efferent nerves

Elastance

Eosinophil

Erythrocytes

Erythropoietin

A hormone which controls red blood cell production. Low blood oxygen levels
stimulate production of erythropoietin in the kidneys, and this in turn stimu-
lates erythrocyte production in the marrow, by encouraging the production of
proerythroblasts, and by quickening their rate of maturation to form erythro-
cytes.
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Glossopharyngeal nerves

Granulocytes

A collective name for the three types of white blood cell having a granular
appearance: neutrophils, basophils, and eosinophils.

Granulopoietin

Haematocrit

The percentage of blood consisting of cells.

Haematopoietic stem cells

These are the most primitive cells resident in the bone marrow, which collec-
tively give rise to the various kinds of blood cells: erythrocytes, platelets and
white blood cells. The process of maturation which they undergo is called dif-
ferentiation. Isolation of stem cells is difficult, insofar as no real most primitive
cell has ever been really identified. It is likely that stem cells are very scarce,
and that they can survive in the resting phase for a long time.

Haemoglobin

Hydrolysis

Hypercapnea

Hyperpnea

Inotropic effect

Intercostal muscles

Leukocytes

General term for white blood cells.

Lymph nodes

Lymphocytes

Mayer waves

Megakaryocytes

Minute ventilation

Monocyte

Myelocytes

Myocytes
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Myocardium

Neutrophil

Noradrenaline (norepinephrine)

Parasympathetic nervous system

Phagocytosis

The process of cell ingestion by means of which granulocytes and monocytes
destroy antigens.

Plasma cells

Platelets

Platelets are cell fragments which are formed by the disintegration of megakary-
ocytes. They circulate in the blood with a life span of about ten days, and are
instrumental in clotting during wound healing.

Pneumotaxic centre

Residual volume

Respiratory sinus arrhythmia

Reticulocytes

Stroke volume

Sympathetic nervous system

Systole

Thoracic cavity

Thrombocytes

Another name for platelets.

Thrombocytopenia

A disease signalled by low circulating numbers of thrombocytes, or platelets.

Thrombocytopenic purpura

Another name for thrombocytopenia, arising from the purplish blotches on the
skin of those afflicted.

Thrombopoietin

Tidal volume
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Trachea

Vagus nerves

Vasoconstriction

Vasodilation

Veins

Ventral respiratory neurons

Windkessel
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